
K. Lyytinen et al. (Eds.): Design Requirements Workshop, LNBIP 14, pp. 467–494, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Understanding Requirements for Open Source Software

Walt Scacchi

Institute for Software Research, University of California-Irvine
Irvine, CA 92697-3425 USA
wscacchi@ics.uci.edu

Abstract. This study presents findings from an empirical study directed at un-
derstanding the roles, forms, and consequences arising in requirements for open
source software (OSS) development efforts. Five open source software devel-
opment communities are described, examined, and compared to help discover
what differences may be observed. At least two dozen kinds of software infor-
malisms are found to play a critical role in the elicitation, analysis, specifica-
tion, validation, and management of requirements for developing OSS systems.
Subsequently, understanding the roles these software informalisms take in a
new formulation of the requirements development process for OSS is the focus
of this study. This focus enables considering a reformulation of the require-
ments engineering process and its associated artifacts or (in)formalisms to bet-
ter account for the requirements when developing OSS systems. Other findings
identify how OSS requirements are decentralized across multiple informalisms,
and to the need for advances in how to specify the capabilities of existing OSS
systems.

Keywords: Open source software, Requirements process, Empirical studies,
Decentralized software development, Artifacts.

1 Introduction

The focus in this paper is directed at understanding the requirements processes for
open source software (OSS) development efforts, and how the development of these
requirements differs from those traditional to software engineering and requirements
engineering [1], [2], [3], [4], [5]. This study is about ongoing discovery, description,
and abstraction of OSS development (OSSD) practices and artifacts in different set-
tings across different communities. It is about expanding our notions of what
requirements need to address to account for OSSD. Subsequently, these are used to
understand what OSS communities are being examined, and what characteristics dis-
tinguish one community from another. This chapter also builds on, refines, and
extends earlier study on this topic [6], [7], [8], [9], [10], as well as identifying impli-
cations for what requirements arise when developing different kinds of OSS systems.

This study reports on findings and results from an ongoing investigation of the
socio-technical processes, work practices, and community forms found in OSSD [10],
[11], [12]. The purpose of this multi-year investigation is to develop narrative, semi-
structured (i.e., hypertextual), and formal computational models of these processes,
practices, and community forms [8], [13]. This chapter presents a systematic narrative

468 W. Scacchi

model that characterizes the processes through which the requirements for OSS sys-
tems are developed. The model compares in form, and presents an account of, how
software requirements differ across traditional software engineering and OSS ap-
proaches. This model is descriptive and empirically grounded. The model is also
comparative in that it attempts to characterize an open source requirements engineer-
ing process that transcends the practice in a particular project, or within a particular
community. This comparative dimension is necessary to avoid premature generaliza-
tions about processes or practices associated with a particular OSS system or those
that receive substantial attention in the news media (e.g., the GNU/Linux operating
system). Such comparison also allows for system projects that may follow a different
form or version of OSSD (e.g., those in the higher education computing community
or networked computer game arena). Subsequently, the model is neither prescriptive
nor proscriptive in that it does not characterize what should be or what might be done
in order to develop OSS requirements, except in the concluding discussion, where
such remarks are bracketed and qualified.

Comparative case studies of requirements or other software development proc-
esses are also important in that they can serve as foundation for the formalization
of our findings and process models as a process meta-model [14]. Such a meta-
model can be used to construct a predictive, testable, and incrementally refined
theory of OSSD processes within or across communities or projects. A process
meta-model is also used to configure, generate, or instantiate Web-based process
modeling, prototyping, and enactment environments that enable modeled processes
to be globally deployed and computationally supported (e.g., [8], [13], [15], [16]).
This may be of most value to other academic research or commercial development
organizations that seek to adopt "best practices" for OSSD processes that are well
suited to their needs and situation. Therefore, the study and results presented in
this report denote a new foundation on which computational models of OSS re-
quirements processes may be developed, as well as their subsequent analysis and
simulation (cf. [13], [17].

The study reported here entails the use of empirical field study methods [18] that
follow conform to the principles for conducting and evaluating interpretive research
design [19] as identified earlier [9].

2 Understanding OSS Development Across Different Communities

We assume there is no general model or globally accepted framework that defines
how OSS is or should be developed. Subsequently, our starting point is to investigate
OSS practices in different communities from an ethnographic perspective [16], [20],
[21]. We have chosen five different communities to study. These are those centered
about the development of software for networked computer games, Internet/Web in-
frastructure, bioinformatics and higher education computing. The following sections
briefly introduce and characterize these OSS sub-domains. Along the way, example
software systems or projects are highlighted or identified via external refer-
ence/citation, which can be consulted for further information or review.

 Understanding Requirements for Open Source Software 469

2.1 Networked Computer Game Worlds

Participants in this community focus on the development and evolution of first person
shooters (FPS) games (e.g., Quake Arena, Unreal Tournament), massive multiplayer
online role-playing games (e.g., World of Warcraft, Lineage, EveOnline, City of He-
roes), and others (e.g., The Sims (Electronic Arts), Grand Theft Auto (Rockstar
Games)). Interest in networked computer games and gaming environments, as well as
their single-user counterparts, have exploded in recent years as a major (now global)
mode of entertainment, playful fun, and global computerization movement [22]. The
release of DOOM [4], an early first-person action game, onto the Web in open source
form1 in the mid 1990’s, began what is widely recognized the landmark event that
launched the development and redistribution of computer game mods [9], [23].

Mods2 are variants of proprietary (closed source) computer game engines that pro-
vide extension mechanisms like game scripting languages (e.g., UnrealScript for mod
development with Unreal game engines) that can be used to modify and extend a
game, and these extensions are licensed for distribution in an open source manner.
Mods are created by small numbers of users who want and are able to modify games,
compared to the huge numbers of players that enthusiastically use the games as pro-
vided. The scope of mods has expanded to now include new game types, game char-
acter models and skins (surface textures), levels (game play arenas or virtual worlds),
and artificially intelligent game bots (in-game opponents).

Perhaps the most widely known and successful game mod is Counter-Strike,
which is a total conversion of Valve Software's Half-Life computer game developed
by two game programmers (Valve Software has since commercialized CS and many
follow-on versions). Millions of copies of CS have been distributed, and millions of
people have player CS over the Internet, according to http://counterstrikesource.net/.
Other popular computer games that are frequent targets for modding include the
Quake, Unreal, Half-Life, and Crysis game engines, NeverWinter Nights for role-
playing games, motor racing simulation games (e.g., GTR series), and even the mas-
sively popular World of Warcraft (which only allows for modification of end-user
interfaces). Thousands of game mods are distributed through game mod portals like
MODDB.com. However, many successful game companies including Electronic Arts
and Microsoft do not embrace nor encourage game modding, and do not provide end-
user license agreements that allow game modding and redistribution.

1 The end-user license agreement for games that allow for end-user created game mods often

stipulate that the core game engine (or retail game software product) is protected as closed
source, proprietary software that cannot be examined or redistributed, while any user created
mod can only be redistributed as open source software that cannot be declared proprietary or
sold outright, and must only be distributed in a manner where the retail game product must
be owned by any end-user of a game mod. This has the effect of enabling a secondary market
for retail game purchases by end-users or other game modders who are primarily interested
in accessing, studying, playing, further modifying, and redistributing a game mod.

2 For introductory background on computer game mods, see
 http://en.wikipedia.org/wiki/Mod_(computer_gaming).

470 W. Scacchi

2.2 Internet/Web Infrastructure

Participants in this community3 focus on the development and evolution of systems
like the Apache web server, Mozilla/Firefox Web browser4, GNOME and K Devel-
opment Environment (KDE) for end-user interfaces, the Eclipse and NetBeans inter-
active development environments for Java-based Web applications, and thousands of
others. This community can be viewed as the one most typically considered in popu-
lar accounts of OSS projects. The GNU/Linux operating system environment is of
course the largest, most complex, and most diverse sub-community within this arena,
so much so that it merits separate treatment and examination. Many other Internet or
Web infrastructure projects constitute recognizable communities or sub-communities
of practice. The software systems that are the focus generally are not standalone end-
user applications, but are often targeted at system administrators or software develop-
ers as the targeted user base, rather than the eventual end-users of the resulting sys-
tems. However, notable exceptions like Web browsers, news readers, instant messag-
ing, and graphic image manipulation programs are growing in number within the end-
user community

2.3 Bioinformatics

Participants in this community5 focus on the development and evolution of software
systems supporting research into bioinformatics and related computing-intensive
biological research efforts. In contrast to the preceding two development oriented
communities, OSS plays a significant role in scientific research communities. For
example, when scientific findings or discoveries resulting from in silico experimenta-
tion or observations are reported6, then members of the relevant scientific community
want to be assured that the results are not the byproduct of some questionable soft-
ware calculation or opaque processing trick. In scientific fields like astrophysics that

3 The SourceForge web portal (http://www.sourceforge.net), the largest associated with the

OSS community, currently stores information on more than 1,750K registered users and de-
velopers, along with nearly 200K OSSD projects (as of July 2008), with more than 10% of
those projects indicating the availability of a mature, released, and actively supported soft-
ware system. However, some of the most popular OSS projects have their own family of re-
lated projects, grouped within their own portals, such as for the Apache Foundation and
Mozilla Foundation.

4 It is reasonable to note that the two main software systems that enabled the World Wide
Web, the NCSA Mosaic Web browser (and its descendants, like Netscape Navigator, Mozilla,
Firefox, and variants like K-Meleon, Konqueror, SeaMonkey, and others), and the Apache
Web server (originally know as httpd) were originally and still remain active OSSD projects.

5 For information about OSS projects, activities, and events in this community, see
http://www.bioinformatics.org, http://www.open-bio.org, and http://www.open-bio.org/wiki/
Upcoming_BOSC_conference.

6 For example, see [24]. The OSS processing pipelines for each sensor or mass spectrometer
are mostly distinct and are maintained by different organizations. However, their outputs
must be integrated, and the data source must be registered and oriented for synchronized
alignment or overlay, then composed into a final representation (e.g., see [24]). Subse-
quently, many OSS programs may need to be brought into alignment for such a research
method and observation,for a scientific discovery to be claimed and substantiated [25].

 Understanding Requirements for Open Source Software 471

critically depend on software, open source is considered an essential precondition for
research to proceed, and for scientific findings to be trusted and open to independent
review and validation. Furthermore, as discoveries in the physics of deep space are
made, this in turn often leads to modification or extension of the astronomical soft-
ware in use in order to further explore and analyze newly observed phenomena, or to
modify/add capabilities to how the remote sensing mechanisms operate.

2.4 Higher Education Computing

Participants in this community focus on the development and evolution of software
supporting educational and administrative operations found in large universities or
similar institutions. This community should not in general be associated with the
activities of academic computer scientists nor of computer science departments,
unless they specifically focus on higher education computing applications (which is
uncommon). People who participate in this community generally develop software
for academic teaching or administrative purposes in order to explore topics like
course management (Sakai, Moodle), campuswide information systems/portals
(uPortal), Web-based academic applications (Fluid), and university e-business sys-
tems [26] (for collecting student tuition, research grants administration, payroll, etc.
-- Kuali). Projects in this community7 are primarily organized and governed
through multi-institution contracts, annual subscriptions, and dedicated staff as-
signments [27]. Furthermore, it appears that software developers in this community
are often not the end-users of the software the develop, in contrast to most OSS
projects. Accordingly, it may not be unreasonable to expect that OSS developed in
this community should embody or demonstrate principles or best practices in ad-
ministrative computing found in large public or non-profit enterprises, rather than
commercial for-profit enterprises. This includes the practice of developing explicit
software requirements specification documents prior to undertaking system devel-
opment. Furthermore, much like the bioinformatics community, members of this
community expect that when breakthrough technologies or innovations have been
declared, such as in a refereed conference paper or publication in an educational
computing journal, the opportunity exists for other community members to be able
to access, review, or try out the software to assess and demonstrate its capabilities.
Furthermore, there appears to be growing antagonism toward commercial software
vendors (Blackboard Inc., PeopleSoft, Oracle) whose products target the higher
education computing market (e.g., WebCT). However, higher education computing
software is intended for routine production use by administrative end-users and
others, and not research-grade “proof of concept” demonstration or prototype sys-
tems that are found in academic research laboratories.

7 For information about OSS projects, events, and activities in this community, see

http://www.sakaiproject.org, http://www.moodle.org, http://www.uportal.org, http://www.
fluidproject. org, http://www.kuali.org, as well as EDUCAUSE (http://www. educause.edu/),
a non-profit association focusing on current issues in information technology for higher edu-
cation, including OSS development and OSS policy in academia.

472 W. Scacchi

2.5 Military Computing

Participants in this community8 focus on the development and deployment of comput-
ing systems and applications that support secured military and combat operations.
Although information on specific military systems may be limited, there are a small
but growing number of sources of public information and OSS projects that support
military and combat operations. Accordingly, it is becoming clear that the future of
military computing, and the future acquisition of software-intensive, mission-critical
systems for military or combat applications will increasingly rely on OSS [28], [29],
[30], [31], [32], [33], [34], [35]. For example, the U.S. Army relies on tactical com-
mand and control systems hosted on Linux systems that support Apache Tomcat serv-
ers, Jabber/XMPP chat services, and JBoss-based Web services [30]. Other emerging
applications are being developed for future combat systems, enterprise systems (the
U.S. Department of Defense is the world's largest enterprise, with more than 1 million
military and civilian employees), and various training systems, among others [33],
[34], [35]. The development of software systems for developing simulators and game-
based virtual worlds [36] are among those military software projects that operate pub-
licly as a “traditional” OSS project that employs a GPL software license, while other
projects operate as corporate source (i.e., OSS projects behind the corporate firewall)
or community source projects, much like those identified for higher education com-
puting [27].

2.6 Overall Cross-Community Characteristics

In contrast to efforts that draw attention to generally one (but sometimes many) open
source development project(s) within a single community (e.g., [37], [38], [39], there
is something to be gained by examining and comparing the communities, processes,
and practices of OSSD in different communities. This may help clarify what observa-
tions may be specific to a given community (e.g., GNU/Linux projects), compared to
those that span multiple, and mostly distinct communities. In this study, two of the
communities are primarily oriented to develop software to support scholarly research
or institutional administration (bioinformatics and higher education computing) with
rather small user communities. In contrast, the other three communities are oriented
primarily towards software development efforts that may replace/create commercially
viable systems that are used by large end-user communities. Thus, there is a sample
space that allows comparison of different kinds.

Each of these highlighted items point to the public availability of data that can be
collected, analyzed, and re-represented within narrative ethnographies [40], [41],
computational process models [13], [14], [17], or for quantitative studies [42], [43].
Significant examples of each kind of data have been collected and analyzed as part of
this ongoing study. This paper includes a number of OSSD artifacts as data exhibits
that empirically ground our analysis. These artifacts serve to document the social ac-
tions and technical practices that facilitate and constrain OSSD processes [7], [10],

8 The primary source of information about OSS projects in the military comes from the cited

references, rather than from publicly accessible Web sites. However, there are a few Military
OSS projects accessible on the Web such as the Delta3D game engine at
http://www.Delta3D.org, used to developed military training simulations.

 Understanding Requirements for Open Source Software 473

[12], [44], [45]. Subsequently, we turn to review what requirements engineering is
about, in order to establish how the process of developing OSS system requirements
is similar or different than is common to traditional software engineering and infor-
mation system development practices.

3 Informalisms for Describing OSS Requirements

The functional and non-functional requirements for OSS systems are elicited, ana-
lyzed, specified, validated, and managed through a variety of Web-based artifacts.
These descriptive documents can be treated as software informalisms. Software in-
formalisms [9] are the information resources and artifacts that participants use to de-
scribe, proscribe, or prescribe what's happening in a OSSD project. They are informal
narrative resources codified in lean descriptions [cf. 46] that coalesce into online
document genres (following [47], [48]) that are comparatively easy to use, and pub-
licly accessible to those who want to join the project, or just browse around. In earlier
work, Scacchi [9] demonstrates how software informalisms can take the place of for-
malisms, like “requirement specifications” or software design notations which are
documentary artifacts seen as necessary to develop high quality software according to
the software engineering community [1], [2], [3], [4], [5]. Yet these software infor-
malisms often capture the detailed rationale, contextualized discourse, and debates for
why changes were made in particular development activities, artifacts, or source code
files. Nonetheless, the contents these informalisms embody require extensive review
and comprehension by a developer before contributions can be made (cf. [49]). Fi-
nally, the choice to designate these descriptions as informalisms9 is to draw a distinc-
tion between how the requirements of OSS systems are described, in contrast to the
recommended use of formal, logic-based requirements notations (“formalisms”) that
are advocated in traditional approaches (cf. [1], [2], [3], [4], [5]).

In OSSD projects, software informalisms are the preferred scheme for describing
or representing OSS requirements. There is no explicit objective or effort to treat
these informalisms as "informal software requirements" that should be refined into
formal requirements [3], [51], [52] within any of these communities. Accordingly,
each of the available types of software requirements informalisms have been found in
one or more of the five communities in this study. Along the way, we seek to identify
some of the relations that link them together into more comprehensive stories, story-
lines, or intersecting story fragments that help convey as well as embody the require-
ments of an OSS system. Knowledge about who is doing what, where, when, why,
and how is captured in different or multiple informalisms.

Two dozen types of software informalisms can be identified, and each has sub-
types that can be identified. Those presented here are members of the set of software
informalisms that are being used by different OSSD projects. Each OSSD project
usually employs only a subset as its informal document ecology (cf. [47], [48]) that
meets their interests or needs. There are no guidelines for which informalisms to use

9 As Goguen [50] observes, formalisms are not limited to those based on a mathematical logic

or state transition semantics, but can include descriptive schemes that are formed from struc-
tured or semi-structured narratives, such as those employed in Software Requirements Speci-
fications documents.

474 W. Scacchi

for what, only observed practices that recur across OSSD projects. Thus it is pre-
mature and perhaps inappropriate to seek to further organize these informalisms into a
classification or taxonomic scheme whose purpose is to prescribe when or where best
to use one or another. Subsequently, they are presented here as an unordered list since
to do so otherwise would transform this analysis from empirically ground, interpreta-
tive descriptions into untested, hypothetical prescriptions (cf. 19], [21]).

The most common informalisms used in OSSD projects include (i) communica-
tions and messages within project Email [46], (ii) threaded message discussion
forums (see Exhibit 1), bulletin boards, or group blogs, (iii) news postings, and (iv)
instant messaging or Internet relay chat. These enable developers and users to con-
verse with one another in a lightweight, semi-structured manner, and now use of these
tools is global across applications domains and cultures. As such, the discourse cap-
tured in these tools is a frequent source of OSS requirements. A handful of OSSD
projects have found that summarizing these communications into (v) project digests
[7] helps provide an overview of major development activities, problems, goals, or
debates. These project digests represent multi-participant summaries that record and
hyperlink the rationale accounting for focal project activities, development problems,
current software quality status, and desired software functionality. Project digests
(which sometimes are identified as “kernel cousins”) record the discussion, debate,
consideration of alternatives, code patches and initial operational/test results drawn
from discussion forums, online chat transcripts, and related online artifacts (cf. [7]).
Exhibit 110 provides an example of a project digest from the GNUe electronic busi-
ness software project.

As OSS developers and user employ these informalisms, they have been found to
also serve as carriers of technical beliefs and debates over desirable software features,
social values (e.g., reciprocity, freedom of choice, freedom of expression), project
community norms, as well as affiliation with the global OSS social movement [6],
[10], [44].

Other common informalisms include (vi) scenarios of usage as linked Web pages
or screenshots, (vii) how-to guides, (viii) to-do lists, (ix) Frequently Asked Questions,
and other itemized lists, and (x) project Wikis, as well as (xi) traditional system
documentation and (xii) external publications (e.g., [53], [54]). OSS (xiii) project
property licenses (whether to assert collective ownership, transfer copyrights, insure
“copyleft,” or some other reciprocal agreement) are documents that also help to define
what software or related project content are protected resources that can subsequently
be shared, examined, modified, and redistributed.

Finally, (xiv) open software architecture diagrams, (xv) intra-application function-
ality realized via scripting languages like Perl and PhP, and the ability to either (xvi)
incorporate externally developed software modules or “plug-ins”, or (xvii) integrate
software modules from other OSSD efforts, are all resources that are used informally,
where or when needed according to the interests or actions of project participants.

All of the software informalisms are found or accessed from (xix) project related
Web sites or portals. These Web environments are where most OSS software infor-
malisms can be found, accessed, studied, modified, and redistributed [9].

10 Each exhibit appears as a screenshot of a Web browsing session. It includes contextual in-

formation seen in a more complete display view, as is common in virtual ethnographic stud-
ies (cf. [10], [13], [40]).

 Understanding Requirements for Open Source Software 475

Exhibit 1. A project digest that summarizes multiple messages including those hyperlinked
(indicated by highlighted and underlined text fonts) to their originating online sources. Source:
http://www.kerneltraffic.org/GNUe/latest.html, July 2006.

A Web presence helps make visible the project's information infrastructure and the
array of information resources that populate it. These include OSSD multi-project
Web sites (e.g., SourgeForge.net, Savanah.org, Freshment.org, Tigris.org,
Apache.org, Mozilla.org), community software Web sites (PhP-Nuke.org), and pro-
ject-specific Web sites (e.g., www.GNUenterprise.org), as well as (xx) embedded
project source code Webs (directories), (xxi) project repositories (CVS [53]), and
(xxii) software bug reports and (xxiii) issue tracking data base like Bugzilla ([55],
http://www.bugzilla.org/). Last, giving the growing global interest in online social
networking, it not surprising to find increased attention to documenting various kinds
of social gatherings and meetings using (xxiv) social media Web sites (e.g, YouTube,

476 W. Scacchi

Flickr, MySpace, etc.) where OSS developers, users, and interested others come to-
gether to discuss, debate, or work on OSS projects, and to use these online media to
record, and publish photographs/videos that establish group identity and affiliation
with different OSS projects.

Together, these two dozen types of software informalisms constitute a substantial
yet continually evolving web of informal, semi-structured, or processable information
resources that capture, organize, and distribute knowledge that embody the require-
ments for an OSSD project. This web results from the hyperlinking and
cross-referencing that interrelate the contents of different informalisms together. Sub-
sequently, these OSS informalisms are produced, used, consumed, or reused within
and across OSSD projects. They also serve to act as both a distributed virtual reposi-
tory of OSS project assets, as well as the continually adapted distributed knowledge
base through which project participants evolve what they know about the software
systems they develop and use.

Overall, it appears that none of these software informalisms would defy an effort to
formalize them in some mathematical logic or analytically rigorous notation. None-
theless, in the three of the five software communities examined in this study, there is
no perceived requirement for such formalization (except for higher education comput-
ing and military computing), as the basis to improve the quality, usability, or cost-
effectiveness of the OSS systems. If formalization of these documentary software
informalisms has demonstrable benefit to members of these communities, beyond
what they already realize from current practices, these benefits have yet to be articu-
lated in the discourse that pervades each community. However, in contrast, the higher
education and military communities do traditionally employ and develop formal re-
quirements specification documents in order to coordinate and guide development of
their respective “community source” software projects. Thus, we examine and com-
pare these requirements development practices across all five communities so as to
surface similarities, differences, and their consequences.

4 OSS Processes for Developing Requirements

In contrast to the world of classic software engineering, OSSD communities do not
seem to readily adopt or practice modern software engineering or requirements engi-
neering processes. Perhaps this is no surprise. If the history of software engineering
were to reveal that one of the driving forces for capture and formalize software re-
quirements was to support the needs of procurement and acquisition officials (i.e., not
actual users of the resulting software) who want to be sure they know what some fu-
ture software system is suppose to do once delivered, then requirements (documents)
serve as the basis for software development contracts, delivery, and payment sched-
ules. Software requirements are traditionally understood to serve a role in the devel-
opment of proposed systems prior to their development [cf. 1], rather than for
software systems that continuously emerge from networks of socio-technical interac-
tions across a diverse ecosystem of users, developers, and other extant software sys-
tems [10], [11], [21]. However, OSS communities do develop software that is
extremely valuable, generally reliable, often trustworthy, and readily used within its

 Understanding Requirements for Open Source Software 477

associated user community. So, what processes or practices are being used to develop
the requirements for OSS systems?

We have found many types of software requirements activities being employed
within or across the five communities. However, what we have found in OSSD pro-
jects is different from common prescriptions for requirements engineering processes
that seem to embraced in varying degrees by the higher education and military com-
munity source projects. The following subsections present six kinds of OSS require-
ments activities and associated artifacts that are compared with those traditional to
software requirements engineering.

Exhibit 2. A sample of an asserted requirement to use the kdelibs platform libraries. Source:
http://sourceforge.net/tracker/index.php?func=detail&aid=1851183&group_id=165310&atid=8
35080, June 2008.

478 W. Scacchi

4.1 Informal Post-Hoc Assertion of OSS Requirements vs. Requirements
Elicitation

It appears that OSS requirements are articulated in a number of ways that are ulti-
mately expressed, represented, or depicted on the Web. On closer examination, re-
quirements for OSS can appear or be implied within an email message or within a
discussion thread that is captured and/or posted on a Web site for open review, elabo-
ration, refutation, or refinement. Consider the following example found on the Web
site for the Avogardo molecular editor tool (http://avogadro.openmolecules.net) in
the bioinformatics community. This example displayed in Exhibit 2 reveals the speci-
fication “We should use platform libraries when present. So for KDE, if the kdelibs
are present, we should use them.” As noted earlier, KDE is an Internet infrastructure
community project.

These capabilities (appearing near the bottom of Exhibit 2) highlight implied re-
quirements for the need or desirability of full integration of the Avogadro editor with
the KDE functional command dialog system. These requirements are simply asserted
without reference to other documents, standards, or end-user focus groups--they are
requirements because some developers wanted these capabilities.

Perhaps it is more useful to define OSS requirements as asserted system capabili-
ties. These capabilities are post hoc requirements characterizing a functional capabil-
ity that has already been implemented, either in the system at hand, or by reference to
some other related system that already exists. Based on observations and analyses
presented here and elsewhere [6], [7], [8], [9], [10], [22], [45], it appears that con-
cerned OSS developers assert and justify software system capabilities they support
through their provision of the required coding effort to make these capabilities opera-
tional, or to modification some existing capability which may be perceived as limited
or sometimes deficient. Senior members or core developers in the community then
vote or agree through discussion to include the asserted capability into the system’s
feature set [56], or at least, not to object to their inclusion. The historical record their
discourse and negotiation may be there, within the email or discussion forum archive,
to document who required what, where, when, why, and how. However, once as-
serted, there is generally no further effort apparent to document, formalize, or sub-
stantiate such a capability as a system requirement. Asserted capabilities then become
taken-for-granted requirements that are can be labeled or treated as obvious to those
familiar with the system's development.

Another example reveals a different kind required OSSD capability. This case dis-
played in Exhibit 3, finds a requirements “mission” document that conveys a non-
functional requirement for both community development and community software
development in the bottom third of the exhibit. This can be read as a non-functional
requirement for the system’s developers to embrace community software develop-
ment as the process to develop and evolve the ArgoUML system, rather than through
a process that relies on the use of system models represented as UML diagrams.

Perhaps community software development, and by extension, community devel-
opment, are recognized as socio-technical capabilities that are important to the devel-
opment and success of this system. Regular practice of such capabilities may also be a
method for improving system quality and reliability that can be compared to func-
tional capabilities of existing software engineering tools and techniques that seem to

 Understanding Requirements for Open Source Software 479

primarily focus on technical or formal analysis of software development artifacts as
the primary way to improve quality and reliability.

The next example reveals yet another kind of elicitation found in the Internet/Web
infrastructure community. In Exhibit 4, we see an overview of the MONO project.
Here we see multiple statements for would-be software component/class owners to
sign-up and commit to developing the required ideas, run-time, (object service)
classes, and projects (cf. [45]). These are non-functional requirements for people to
volunteer to participate in community software development, in a manner perhaps
compatible with that portrayed in Exhibit 3.

Exhibit 3. An OSS mission statement encouraging both the development of software for the
community and development of the community. Source: http://www.tigris.org, June 2008.

480 W. Scacchi

Exhibit 4. A non-functional requirement identifying a need for volunteers to become owners
for yet to be developed software components whose functional requirements are still somewhat
open and yet to be determined. Source: http://www.mono-project.com/Todo, June 2008.

The systems in Exhibit 3 must also be considered early in their overall develop-
ment or maturity, because it calls for functional capabilities that are needed to help
make the desired software functionality sufficiently complete for future usage.
However, these yet “Todo” software implementation tasks signal to prospective OSS
developers, who may want to join a project, as to what kinds of new software func-
tionalities are desired, and thus telegraph a possible pathway for how to become a key

 Understanding Requirements for Open Source Software 481

contributor within a large, established OSSD project [45] by developing a proposed
software system component or function that some core developer desires.

Thus, in understanding how the capabilities and requirements of OSS systems are
elicited, we find evidence for elicitation of volunteers to come forward to participate
in community software development by proposing new software development pro-
jects, but only those that are compatible with the OSS engineering mission for the
Tigris.org community.

We also observe the assertion of requirements that simply appear to exist without
question or without trace to a point of origination, rather than somehow being elic-
ited from stakeholders, customers, or prospective end-users of OSS systems. As
previously noted, we have not yet found evidence or data to indicate the occurrence
or documentation of a requirements elicitation effort arising in a traditional OSSD
project. However, finding such evidence would not invalidate the other observa-
tions; instead, it would point to a need to broaden the scope of how software re-
quirements are captured or recorded. For example, community source projects
found in the higher education community seek to span OSSD practices with
traditional software engineering practices, which results in hybrid software devel-
opment and software requirements practices that do not seem to fully realize the
practices (or benefits) of OSS engineering projects like those found at Tigris.org.
Early experiences such a hybrid scheme suggest the successful software production
may not directly follow [57].

4.2 Requirements Reading, Sense-Making, and Accountability vs.
Requirements Analysis

Software requirements analysis helps identify what problems a software system is
suppose to address and why, while requirements specifications identify a mapping of
user problems to system based solutions. In OSSD, how does requirements analysis
occur, and where and how are requirements specifications described? Though re-
quirements analysis and specification are interrelated activities, rather than distinct
stages, we first consider examining how OSS requirements are analyzed. In Exhibit 5
from the networked game community for the computer game Unreal Tournament
(aka, UT3), it seems that game mod developers are encouraged to produce multi-
version , continuously improving game mods, so that they can subsequently be recog-
nized as professional game developers. Thus, OSS developers learn that achieving
enhanced social status requires development of new software functions (mods) that
improve across versions.

In seeking to analyze what is needed to more capably develop UT3 game mods, a
game developer may seek additional information from other sources to determine how
best to satisfy the challenge of developing a viable game mod. This in turn may lead
one to discover and review secondary information sources, such as that shown in Ex-
hibit 6. This exhibit points to still other Web-based information sources revealing
both technical and social challenges that must be addressed to successfully develop a
viable game mod.

482 W. Scacchi

Exhibit 5. An asserted capability (in the center) that invites would-be OSS game developers to
make UT3 game mods, including improved versions, of whatever kind they require among the
various types of available extensions so they may “get professional status,” and possibly win
money or other contest prizes. Source: http://www.ut3modding.com/, June 2008.

The notion that requirements for OSS system are, in practice, analyzed via the
reading of technical accounts as narratives, together with making sense of how such
readings are reconciled with one’s prior knowledge, is not unique to the game modding
software community. These same activities can and do occur in the other three commu-
nities. If one reviews the functional and non-functional requirements appearing in
Exhibits 1-6, it is possible to observe that none of the descriptions appearing in these
exhibits is self-contained. Instead, each requires the reader (e.g., a developer within the

 Understanding Requirements for Open Source Software 483

Exhibit 6. Understanding and analyzing what you need to know and do in order to develop a
game mod. Source: http://wiki.beyondunreal.com/wiki/Making_Mods, May 2006.

community) to closely or casually read what is described, make sense of it, consult other
materials or one’s expertise, and trust that the description’s author(s) are reliable and
accountable in some manner for the OSS requirements that has been described [38],
[50]. Analyzing OSS requirements entails little/no automated analysis, formal
reasoning, or visual animation of software requirements specifications prior to the de-
velopment of proposed software functionality (cf. [1], [5]). Instead, emphasis focuses on
understanding what has already been accomplished in existing, operational system
functionality, as well as what others have written and debated about it in different, pro-
ject-specific informalisms. Subsequently, participants in these communities are able to
understand what the functional and non-functional requirements are in ways that are
sufficient to lead to the ongoing development of various kinds of OSS systems.

4.3 Continually Emerging Webs of Software Discourse vs. Requirements
Specification and Modeling

If the requirements for OSS systems are asserted after code-based implementation rather
than elicited prior to development of proposed system functionality, how are these OSS
requirements specified or modeled? In traditional software development projects, the
specification of requirements may be a deliverable required by contract. In most OSSD

484 W. Scacchi

projects, there are no such contractual obligations, and there are no requirements speci-
fication documents. In examining data from the five communities, of which Exhibits 1-6
are instances, it is becoming increasingly apparent that OSS capabilities can emerge
both from the experiences of community participants using the software, as well as
through iterative discussion and debate rendered in email and discussion forums. These
communication messages in turn give rise to the development of narrative descriptions
that more succinctly specify and condense into a web of discourse about the functional
and non-functional requirements of an OSS system. This discourse is rendered in multi-
ple, dispersed descriptions that can be found in email and discussion forum archives, on
Web pages that populate community Web sites, and in other informal software descrip-
tions that are posted, hyperlinked, or passively referenced through the assumed common
knowledge that community participants expect their cohorts to possess. In this way,
participating OSS developers and users collectively develop a deep, situated understand-
ing of the capabilities they have realized and how unrealized needs must be argued for,
negotiated, and otherwise be found to be obvious to the developers who see it in their
self-interest to get them implemented.

In Exhibit 7 from the bioinformatics community, we see passing reference to the
implied socio-technical requirement for bioinformatics scientists to program and or-
chestrate an e-science workflow to perform their research computing tasks. Such
workflows are needed to realize a multi-step computational process that can be satis-
fied through an e-science tool/framework like Taverna (cf. [25], [58]). To compre-
hend and recognize what the requirements for bioinformatics workflows are in order
to determine how to realize some bioinformatics data analysis or in silico experiment,
community members who develop OSS for such applications will often be bioinfor-
matics scientists (e.g., graduate students or researchers with Ph.D. degrees), and rarely
would be simply a competent software engineering professional. Consequently, the
bioinformatics scientists that develop software in this community do not need to reca-
pitulate any software system requirement of the problem domain (e.g., microbiology).
Instead, community members are already assumed to have mastery over such topics
prior to software development, rather than encountering problems in their understand-
ing of microbiology arising from technical problems in developing, operation, or
functional enhancement of bioinformatics software. Subsequently, discussion and
discourse focuses on how to use and extend the e-science workflow software in order
to accomplish the scientific research to be realized through a computational workflow
specification. Thus, a web of discourse can emerge about the functional requirement
for specifying computational workflows that can be supported and documented by the
software capabilities of an OSS workflow modeling tool like Traverna, rather than for
specifying the functionality of the tool.

Thus, spanning the five communities and the seven exhibits, we begin to observe
that the requirements for OSS are specified in webs of discourse that reference or
link:

 email, bboard discussion threads, online chat transcripts or project digests,

 system mission statements,

 ideas about system functionality and the non-functional need for volunteer de-
velopers to implement the functionality,

 Understanding Requirements for Open Source Software 485

Exhibit 7. A description with embedded screenshot example of the Taverna tool framework for
bioinformatics scientists suggesting why and how to develop workflows for computational
processes needed to perform a complex data analysis or in silico research experiment [41].
Source http://taverna.sourceforce.net June 2008.

 promotional encouragement to specify and develop whatever functionality you
need, which might also help you get a new job, and

 scholarly scientific research tools and publications that underscore how the re-
quirements of bioinformatics software though complex, are understood without
elaboration, since they rely on prior scientific knowledge and tradition of open
scientific research.

Each of these modes of discourse, as well as their Web-based specification and dis-
semination, is a continually emerging source of OSS requirements from new contribu-
tions, new contributors or participants, new ideas, new career opportunities, and new
research publications.

486 W. Scacchi

4.4 Condensing Discourse That Hardens and Concentrates System
Functionality and Community Development vs. Requirements Validation

Software requirements are validated with respect to the software’s implementation.
The implemented system can be observed to demonstrate, exhibit, or be tested in op-
eration to validate that its functional behavior conforms to its functional requirements.
How are the software implementations to be validated against their requirements OSS
requirements when they are not recorded in a formal Software Requirements Specifi-
cations document, nor are these requirements typically cast in a mathematical logic,
algebraic, or state transition-based notational scheme?

In each of the five communities, it appears that the requirements for OSS are co-
mingled with design, implementation, and testing descriptions and software artifacts,
as well as with user manuals and usage artifacts (e.g., input data, program invocation
scripts). Similarly, the requirements are spread across different kinds of artifacts in-
cluding Web pages, sites, hypertext links, source code directories, threaded email
transcripts, and more. In each community, requirements are routinely described, as-
serted, or implied informally. Yet it is possible to observe in threaded email discus-
sions that community participants are able to comprehend and condense wide-ranging
software requirements into succinct descriptions using lean media that pushes the con-
text for their creation into the background.

Consider the next example found on the Web site for the KDE system
(http://www.kde.org/), within the Internet/Web Infrastructure community. This example
displayed in Exhibit 8 reveals asserted capabilities for the Qt3 subsystem within KDE,
as well as displaying and documenting the part of the online discourse that justifies and
explains the capabilities of the Qt3 subsystem in a manner that concentrates attention to
processing features that the contributors find rationalizes the Qt3 requirements.

Goguen [50] suggests the metaphor of "concentrating and hardening of require-
ments" as a way to characterize how software requirements evolve into forms that are
perceived as suitable for validation. His characterization seems to quite closely match
what can be observed in the development of requirements for OSS. We find that re-
quirements validation is a by-product, rather than an explicit goal, of how OSS re-
quirements are constituted, described, discussed, cross-referenced, and hyperlinked to
other informal descriptions of system and its implementations.

4.5 Global Access to OSS Webs vs. Communicating Requirements

One distinguishing feature of OSS associated with each of the five communities is
that their requirements, informal as they are, are organized and typically stored in a
persistent form that is globally accessible. This is true of community Web sites, site
contents and hyperlinkage, source code directories, threaded email and other online
discussion forums, descriptions of known bugs and desired system enhancements,
records of multiple system versions, and more. Persistence, hypertext-style organiza-
tion and linkage, and global access to OSS descriptions appear as conditions that do
not receive much attention within the classic requirements engineering approaches,
with few exceptions [51]. Yet, each of these conditions helps in the communication of
OSS requirements. These conditions also contribute to the ability of community par-
ticipants or outsiders looking in to trace the development and evolution of software
requirements both within the software development descriptions, as well as across

 Understanding Requirements for Open Source Software 487

community participants. This enables observers or developers to navigationally trace,
for example, a web of different issues, positions, arguments, policy statements, and
design rationales that support (e.g., see Exhibit 8) or challenge the viability of emerg-
ing software requirements (cf. [59], [60]).

Exhibit 8. Asserted requirements and condensed justifications producing a hardened rationale
for the KDE software subsystem Qt3 expressed through an online discourse. Source:
http://dot.kde.org/996206041/, July 2001.

488 W. Scacchi

Each of the five communities also communicates community-oriented require-
ments. These non-functional requirements may seem similar to those for enterprise
modeling [5], [61]. However, there are some differences, though they may be minor.
First, each community is interested in sustaining and growing the community as a
development enterprise (cf. [15]). Second, each community is interested in sustaining
and growing the community’s OSS artifacts, descriptions, and representations. Third,
each community is interested in updating and evolving the community's information
sharing Web sites. In recognition of these community requirements, it is not
surprising to observe the emergence of commercial efforts (e.g., SourceForge and
CollabNet) that offer community support systems that are intended to address these
requirements, such as is used in projects like those in Tigris.org, or even the
Avogadro project in the Bioinformatics community see (Exhibits 2 and 3).

4.6 Identifying a Common Foundation for the Development of OSS
Requirements

Based on the data and analysis presented above, it is possible to begin to identify what
items, practices, or capabilities may better characterize how requirements for OSS are
developed and articulated. This centers around the preceding OSS requirements proc-
esses that enable the emergent creation, usage, and evolution of informal software
descriptions as the vehicle for developing OSS requirements.

5 Understanding OSS Requirements

First, there is no single correct, right, or best way/method for constructing software
system requirements. The requirements engineering approach long advocated by the
software engineering and software requirements community does not account for the
practice nor results of OSS system, project, or community requirements. OSS re-
quirements (and subsequent system designs) are different. Thus, given the apparent
success of sustained exponential growth for certain OSS systems [62], [63], and for
the world-wide deployment of OSSD practices, it is safe to say that the ongoing de-
velopment of OSS systems points to the continuous development, articulation, adapta-
tion, and reinvention of their requirements (cf. [22]) as capabilities that emerge
through socio-technical interactions between people, discursive artifacts, and the sys-
tems they use, rather than as needs to be captured before the proposed system comes
into use.

Second, the traditional virtues of high-quality software system requirements,
namely, their consistency, completeness, traceability, and internal correctness are not
so valued in OSSD projects. OSSD projects focus attention and practice to other vir-
tues that emphasize community development and participation, as well as other socio-
technical concerns. Thus, as with the prior observation, OSS system requirements are
different, and therefore may represent an alternative paradigm for how to develop
robust systems that are open to both their developers and users. Nonetheless, there are
many examples of the use of tools and techniques for articulating OSS requirements
as well as for tracing or monitoring their development (cf. [61]).

 Understanding Requirements for Open Source Software 489

Third, OSS developers are generally also end-users of the systems they develop.
Thus, there is no “us-them” distinction regarding the roles of developers and end-
users, as is commonly assumed in traditional system development practices. Because
the developers are also end-users, communication gaps or misunderstandings often
found between developers and end-users are typically minimized.

Fourth, OSS requirements tend to be distributed across space, time, people, and the
artifacts that interlink them. OSS requirements are thus decentralized—that is, decen-
tralized requirements that co-exist and co-evolve within different artifacts, online
conversations, and repositories, as well as within the continually emerging interac-
tions and collective actions of OSSD project participants and surrounding project
social world. To be clear, decentralized requirements are not the same as the (central-
ized) requirements for decentralized systems or system development efforts. Tradi-
tional software engineering and system development projects assume that their
requirements can be elicited, captured, analyzed, and managed as centrally controlled
resources (or documentation artifacts) within a centralized administrative authority
that adheres to contractual requirements and employs a centralized requirements arti-
fact repository—that is, centralized requirements. Once again, OSS projects represent
an alternative paradigm to that long advocated by software engineering and software
requirements engineering community.

Last, given that OSS developers are frequently the source for the requirements they
realize in hindsight (i.e., what they have successfully implemented and released de-
note what was required) rather than in foresight, perhaps it is better to characterize
such software system requirements as instead “software system capabilities” (and not
software development practices associated with capability maturity models). She or
he who codes determines what the requirements will be based on what they have
coded—the open source code frequently appears before there is some online discourse
that specifies how and why it was done. OSS developers may simply tell others what
was done, whether or not they discussed and debated it beforehand. They are gener-
ally under no contractual obligation to report and document software functionality
prior to its coding and implementation. Subsequently, OSS capabilities embody re-
quirements that have been found retrospectively to be both implementable and sus-
tainable across releases. Software capabilities specification—specifying what the ex-
isting OSS system does—may therefore become a new engineering practice and
methodology that can be investigated, modeled, supported, and refined. This in turn
may then lead to principles for how best to specify software system capabilities.

6 Conclusions

The paper reports on a study that investigates, compares, and describes how the re-
quirements engineering processes occurs in OSSD projects found in different com-
munities. A number of conclusions can be drawn from the findings presented.

First, this study sought to discover and describe the practices and artifacts that
characterize how the requirements for developing OSS systems. Perhaps the processes
and artifacts that were described were obvious to the reader. This might be true for
those scholars and students of software requirements engineering who have already
participated in OSS projects, though advocates who have do not report on the

490 W. Scacchi

processes described here [37], [38], [39], [54]. For the majority of students who have
not participated, it is disappointing to not find such descriptions, processes, or arti-
facts within the classic or contemporary literature on requirements engineering [1],
[2], [3], [4], [5]. In contrast, this study sought to develop a baseline characterization of
the how the requirements process for OSS occurs and the artifacts (and other mecha-
nisms). Given such a baseline of the "as-is" process for OSS requirements engineer-
ing, it now becomes possible to juxtapose one or more "to-be" prescriptive models for
the requirements engineering process, then begin to address what steps are needed to
transform the as-is into the to-be [17]. Such a position provides a basis for further
studies which seek to examine how to redesign OSS practices into those closer to ad-
vocated by classic or contemporary scholars of software requirements engineering.
This would enable students or scholars of software requirements engineering, for ex-
ample, to determine whether or not OSSD would benefit from more rigorous require-
ments elicitation, analysis, and management, and if so, how.

Second, this study reports on the centrality and importance of software informal-
isms to the development of OSS systems, projects, and communities. This result
might be construed as an advocacy of the 'informal' over the 'formal' in how software
system requirements are or should be developed and validated, though it is not so in-
tended. Instead, attention to software informalisms used in OSS projects, without the
need to coerce or transform them into more mathematically formal notations, raises
the issue of what kinds of engineering virtues should be articulated to evaluate the
quality, reliability, or feasibility of OSS system requirements so expressed. For exam-
ple, traditional software requirements engineering advocates the need to assess
requirements in terms of virtues like consistency, completeness, traceability, and cor-
rectness [1], [2], [3], [4], [5]. From the study presented here, it appears that OSS re-
quirements artifacts might be assessed in terms of virtues like encouragement of
community building; freedom of expression and multiplicity of expression; readabil-
ity and ease of navigation; and implicit versus explicit structures for organizing, stor-
ing and sharing OSS requirements. "Low" measures of such virtues might potentially
point to increased likelihood of a failure to develop a sustainable OSS system. Subse-
quently, improving the quality of such virtues for OSS requirements may benefit from
tools that encourage community development; social interaction and communicative
expression; software reading and comprehension; community hypertext portals and
Web-based repositories. Nonetheless, resolving such issues is an appropriate subject
for further study.

Overall, OSSD practices are giving rise to a new view of how complex software
systems can be constructed, deployed, and evolved. OSSD does not adhere to the tra-
ditional engineering rationality found in the legacy of software engineering life cycle
models or prescriptive standards. The development OSS system requirements is in-
herently and undeniably a complex web of socio-technical processes, development
situations, and dynamically emerging development contexts [20], [21], [41], [50],
[64]. In this way, the requirements for OSS systems continually emerge through a
web of community narratives. These extended narratives embody discourse that is
captured in persistent, globally accessible, OSS informalisms that serve as an organ-
izational memory [65], hypertextual issue-based information system [7, 34], and a
networked community environment for information sharing, communication, and
social interaction [21], [44], [66], [67]. Consequently, ethnographic methods are

 Understanding Requirements for Open Source Software 491

needed to elicit, analyze, validate, and communicate what these narratives are, what
form they take, what practices and processes give them their form, and what research
methods and principles are employed to examine them [5], [10], [13], [40], [41], [50],
[64]. This report thus contributes a new study of this kind.

Acknowledgements

The research described in this report is supported by grants #0534771 from the U.S.
National Science Foundation, as well as the Acquisition Research Program and the
Center for the Edge Research Program, both at the Naval Postgraduate School. No
endorsement implied. Chris Jensen, Thomas Alspaugh, John Noll, Margaret Elliott,
and others at the Institute for Software Research are collaborators on the research pro-
ject described in this paper.

References

1. Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering. In: Future
of Software Engineering (FOSE 2007), pp. 285–303. IEEE Computer Society, Los
Alamitos (2007)

2. Davis, A.M.: Software Requirements: Analysis and Specification. Prentice-Hall,
Englewood Cliffs (1990)

3. Jackson, M.: Software Requirements & Specifications: Practice, Principles, and
Prejudices. Addison-Wesley Pub. Co., Boston (1995)

4. Kushner, D.: Masters of Doom: How Two Guys Created an Empire and Transformed Pop
Culture. Random House, New York (2003)

5. Nuseibeh, R., Easterbrook, S.: Requirements Engineering: A Roadmap. In: Finkelstein, A.
(ed.) The Future of Software Engineering. ACM Press, New York (2000)

6. Elliott, M., Scacchi, W.: Free Software Development: Cooperation and Conflict in A
Virtual Organizational Culture. In: Koch, S. (ed.) Free/Open Source Software
Development, pp. 152–172. IGI Publishing, Hershey (2005)

7. Elliott, M., Ackerman, M.S., Scacchi, W.: Knowledge Work Artifacts: Kernel Cousins for
Free/Open Source Software Development. In: Proc. ACM Conf. Support Group Work
(Group 2007), Sanibel Island, FL, pp. 177–186 (November 2007)

8. Jensen, C., Scacchi, W.: Process Modeling Across the Web Information Infrastructure.
Software Process–Improvement and Practice 10(3), 255–272 (2005)

9. Scacchi, W.: Understanding the Requirements for Developing Open Source Software
Systems. IEE Proceedings–Software 149(1), 24–39 (2002)

10. Scacchi, W.: Free/Open Source Software Development: Recent Research Results and
Methods. In: Zelkowitz, M.V. (ed.) Advances in Computers, vol. 69, pp. 243–295 (2007)

11. Scacchi, W.: Socio-Technical Interaction Networks in Free/Open Source Software
Development Processes. In: Acuña, S.T., Juristo, N. (eds.) Software Process Modeling, pp.
1–27. Springer Science+Business Media Inc., New York (2005)

12. Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K.: Understanding Free/Open
Source Software Development Processes. Software Process–Improvement and
Practice 11(2), 95–105 (2006)

492 W. Scacchi

13. Scacchi, W., Jensen, C., Noll, J., Elliott, M.: Multi-Modal Modeling, Analysis and
Validation of Open Source Software Development Processes. Intern. J. Internet
Technology and Web Engineering 1(3), 49–63 (2006)

14. Mi, P., Scacchi, W.: A Knowledge-based Environment for Modeling and Simulating
Software Engineering Processes. IEEE Transactions on Knowledge and Data
Engineering 2(3), 283–294 (1990)

15. Noll, J., Scacchi, W.: Supporting Software Development in Virtual Enterprises. J. Digital
Information 1(4) (February 1999),

 http://jodi.ecs.soton.ac.uk/Articles/v01/i04/Noll/
16. Noll, J., Scacchi, W.: Specifying Process-Oriented Hypertext for Organizational

Computing. J. Network and Computer Applications 24(1), 39–61 (2001)
17. Scacchi, W.: Understanding Software Process Redesign using Modeling, Analysis and

Simulation. Software Process–Improvement and Practice 5(2/3), 183–195 (2000)
18. Zelkowitz, M.V., Wallace, D.: Experimental Models for Validating Technology.

Computer 31(5), 23–31 (1998)
19. Klein, H., Myers, M.D.: A Set of Principles for Conducting and Evaluating Intrepretive

Field Studies in Information Systems. MIS Quarterly 23(1), 67–94 (1999)
20. Ackerman, M.S., Atkinson, C.J.: Socio-Technical and Soft Approaches to Information

Requirements Elicitation in the Post-Methodology Era. Requirements Engineering 5, 67–
73 (2000)

21. Truex, D., Baskerville, R., Klein, H.: Growing Systems in an Emergent Organization.
Communications ACM 42(8), 117–123 (1999)

22. Scacchi, W.: Free/Open Source Software Development Practices in the Computer Game
Community. IEEE Software 21(1), 59–67 (2004)

23. Cleveland, C.: The Past, Present, and Future of PC Mod Development. Game Developer,
46–49 (February 2001)

24. Cagney, G., Amiri, S., Prewararadena, T., Lindo, M., Emili, A.: Silico proteome analysis
to facilitate proteomic experiments using mass spectrometry. Proteome Science 1(5)
(2003), doi:10.1186/1477-5956-1-5

25. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: A tool for the composition and
enactment of bioinformatics workflows. Bioinformatics J. 20(17), 3045–3054 (2004)

26. Scacchi, W.: Understanding the Development of Free E-Commerce/E-Business Software:
A Resource-Based View. In: Sowe, S.K., Stamelos, I., Samoladas, I. (eds.) Emerging Free
and Open Source Software Practices, pp. 170–190. IGI Publishing, Hershey (2007)

27. Wheeler, B.: Open Source 2010: Reflections on 2007, EDUCAUSE, pp. 49–67
(January/February 2007)

28. Bollinger, T.: Use of Free and Open-Source Software (FOSS) in the U.S. Department of
Defense, The MITRE Corporation (January 2, 2001),

 http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html
29. Guertin, N.: Naval Open Architecture: Open Architecture and Open Source in DOD, Open

Source - Open Standards - Open Architecture, Association for Enterprise Integration
Symposium, Arlington VA (March 14, 2007)

30. Justice, N.: Open Source Software Challenge: Delivering Warfighter Value, Open Source -
Open Standards - Open Architecture, Association for Enterprise Integration Symposium,
Arlington VA (March 14, 2007)

31. Riechers, C.: The Role of Open Technology in Improving USAF Software Acquisition,
Open Source - Open Standards - Open Architecture, Association for Enterprise Integration
Symposium, Arlington VA (March 14, 2007)

 Understanding Requirements for Open Source Software 493

32. Scacchi, W., Alspaugh, T.: Emerging Issues in the Acquisition of Open Source Software
within the U.S. Department of Defense. In: Proc. 5th Annual Acquisition Research
Symposium, Naval Postgraduate School, Monterey, CA (2008)

33. Starrett, E.: Software Acquisition in the Army. Crosstalk: The Journal of Defense Software
Engineering, 4–8 (May 2007)

34. Weathersby, J.M.: Open Source Software and the Long Road to Sustainability within the
U.S. DoD IT System. The DoD Software Tech. News 10(2), 20–23 (2007)

35. Wheeler, D.A.: Open Source Software (OSS) in U.S. Government Acquisitions. The DoD
Software Tech. News 10(2), 7–13 (2007)

36. McDowell, P., Darken, R., Sullivan, J., Johnson, E.: Delta3D: A Complete Open Source
Game and Simulation Engine for Building Military Training Systems. J. Defense
Modeling and Simulation: Applications, Methodology, Technology 3(3), 143–154 (2006)

37. DiBona, C., Ockman, S., Stone, M.: Open Sources: Voices from the Open Source
Revolution. O’Reilly Press, Sebastopol (1999)

38. Pavlicek, R.: Embracing Insanity: Open Source Software Development. SAMS Publishing,
Indianapolis (2000)

39. Raymond, E.: The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly and Associates, Sebastopol (2001)

40. Hine, C.: Virtual Ethnography. SAGE Publishers, London (2000)
41. Kling, R., Scacchi, W.: The Web of Computing: Computer technology as social

organization. In: Yovits, M. (ed.) Advances in Computers, vol. 21, pp. 3–90. Academic
Press, New York (1982)

42. Howison, J., Conklin, M., Crowston, K.: Flossmole: A collaborative repository for floss
research, data, and analysis. Intern. J. Information Technology and Web Engineering 1(3),
17–26 (2006)

43. Madey, G., Freeh, V., Tynan, R.: Modeling the F/OSS Community: A Quantitative
Investigation. In: Koch, S. (ed.) Free/Open Source Software Development, pp. 203–221.
Idea Group Publishing, Hershey (2005)

44. Elliott, M., Scacchi, W.: Mobilization of Software Developers: The Free Software
Movement. Information, Technology and People 21(1), 4–33 (2008)

45. Jensen, C., Scacchi, W.: Role Migration and Advancement Processes in OSSD Projects: A
Comparative Case Study. In: Proc. 29th. Intern. Conf. Software Engineering, Minneapolis,
MN, pp. 364–374. ACM Press, New York (2007)

46. Yamaguchi, Y., Yokozawa, M., Shinohara, T., Ishida, T.: Collaboration with Lean Media:
How Open-Source Software Succeeds. In: Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW 2000), Philadelphia, PA, pp. 329–338. ACM Press,
New York (2000)

47. Kwansik, B., Crowston, K.: Introduction to the special issue: Genres of digital documents.
Information, Technology and People 18(2) (2005)

48. Spinuzzi, C.: Tracing Genres through Organizations: A Sociocultural Approach to
Information Design. MIT Press, Cambridge (2003)

49. Lanzara, G.F., Morner, M.: Artifacts rule! How organizing happens in open software
projects. In: Czarniawska, B., Hernes, T. (eds.) Actor Network Theory and Organizing.
Copenhagen Business School Press, Copenhagen (2005)

50. Goguen, J.A.: Formality and Informality in Requirements Engineering (Keynote Address).
In: Proc. 4th. Intern. Conf. Requirements Engineering, pp. 102–108. IEEE Computer
Society, Los Alamitos (1996)

494 W. Scacchi

51. Cybulski, J.L., Reed, K.: Computer-Assisted Analysis and Refinement of Informal
Software Requirements Documents. In: Proceedings Asia-Pacific Software Engineering
Conference (APSEC 1998), Taipei, Taiwan, R.O.C., pp. 128–135 (December 1998)

52. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. John
Wiley and Sons, Inc., New York (1998)

53. Fogel, K.: Open Source Development with CVS. Coriolis Press, Scottsdale (1999)
54. Fogel, K.: Producing Open Source Software: How to Run a Successful Free Software

Project. O’Reilly Press, Sebastopol (2005)
55. Ripoche, G., Gasser, L.: Scalable Automatic Extraction of Process Models for

Understanding F/OSS Bug Repair. In: Proc. 16th Intern. Conf. Software Engineering & its
Applications (ICSSEA 2003), Paris, France (December 2003)

56. Fielding, R.T.: Shared Leadership in the Apache Project. Communications of the
ACM 42(4), 42–43 (1999)

57. Rosenberg, S.: Dreaming in Code: Two Dozen Programmers, Three years, 4732 Bugs, and
One Quest for Transcendent Software. Crown Publishers, New York (2007)

58. Howison, J., Wiggins, A., Crowston, K.: eResearch workflows for studying free and open
source software development. In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi,
G. (eds.) IFIP International Federation for Information Processing, Milan, IT. Open Source
Development, Communities, and Quality, vol. 275 (2008)

59. Conklin, J., Begeman, M.L.: gIBIS: A Hypertext Tool for Effective Policy Discussion.
ACM Transactions Office Information Systems 6(4), 303–331 (1988)

60. Lee, J.: SIBYL: a tool for managing group design rationale. In: Proc. Conf. Computer-
Supported Cooperative Work (CSCW 1990), Los Angeles, CA, pp. 79–92. ACM Press,
New York (1990)

61. Robinson, W.: A Requirements Monitoring Framework for Enterprise Systems.
Requirements Engineering 11(1), 17–41 (2006)

62. Deshpande, A., Riehle, D.: The Total Growth of Open Source Software. In: Russo, B.,
Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) IFIP International Federation for
Information Processing, Open Source Development, Communities, and Quality, Milan, IT,
vol. 275 (2008)

63. Scacchi, W.: Understanding Free/Open Source Software Evolution. In: Madhavji, N.H.,
Ramil, J.F., Perry, D. (eds.) Software Evolution and Feedback: Theory and Practice, pp.
181–206. John Wiley and Sons Inc., New York (2006)

64. Viller, S., Sommerville, I.: Ethnographically informed analysis for software engineers. Int.
J. Human-Computer Studies 53, 169–196 (2000)

65. Ackerman, M.S., Halverson, C.A.: Reexamining Organizational Memory.
Communications of the ACM 43(1), 59–64 (2000)

66. Kim, A.J.: Community-Building on the Web: Secret Strategies for Successful Online
Communities. Peachpit Press (2000)

67. Smith, M., Kollock, P. (eds.): Communities in Cyberspace. Routledge, London (1999)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

