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FORMAL ANALYSIS OF THE STRUCTURAL 
CORRECTNESS OF SLC DESCRIPTIONS 

8.J. Choi* and W . 8cacchi** 

Abstract 

This article presents a way of assuring the correctness of configured 
software descriptions throughout software lifecycle activities. To 
achieve this , we draw on concepts in the areas of software architec­
ture and software engineering environments to provide a formal and 
automated basis for achieving verification and validation of software 
concepts, for assuring the structural correctness of software lifecycle 
object configurations based on the objects ' resource attributes and 
resource relations and the transformation of these attributes and 
relations throughout the software lifecycle. We formalize these con­
cepts such that we provide a set of lemmas and closure theorems 
that substantiate our concept of software lifecycle correctness. All 
proofs are also included. These concepts in turn provide the basis for 
an integrated environment with automated tools that can ensure 
the correctness of configured software descriptions. Thus, through 
our approach and formalisms, we demonstrate a way to combine 
software verification and validation techniques with software archi­
tectural definition concepts that can support a software engineering 
environment. 

Key Words 

Structural correctness, V&V, architectural definition, formal 
analysis , SEE 

1. Introduction 

Determining the correctness of a software system can 
involve verifYing that the implementation conforms to its 
specification and design, whereas validating the imple­
mentation satisfies its requirements. Formal verification 
usually denotes that it is possible to rigorously show that 
a formal software specification can be consistently and 
completely transformed into a formal design, and in turn 
into an operational source code form [1]. Software lifecycle 
verification seeks to determine the degree to which the 
products from a given development phase or activity fulfills 
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the specifications established during prior lifecycle phases. 
Validation often denotes that each operational require­
ment that can be systematically traced to some software 
functionality or condition is satisfactorily realized in the 
source code implementation. Formal verification offers the 
intrinsic value of a rigourous analysis that shows how a 
source code program can be derived from its formal speci­
fication. However, in practice, formal verification is often 
limited to small or modest-size programs with well-defined 
requirements and relatively stable specifications [2]. 

The objective in this article is to describe a formal 
approach to verifYing and validating the development of 
large software systems throughout their lifecycle. Our 
notion of the correctness of a software system throughout 
its lifecycle is limited to the structural formalism we util­
ize, and thus we make no claim about proving behavioural 
properties of programs correct. This is similar to the dis­
tinction between the development of a program that can 
be "compiled" (syntax, type, and usage checked) from one 
whose behaviour can be "executed" at runtime. In this 
regard, a program that cannot be successfully and cor­
rectly compiled cannot be executed. Accordingly, our view 
is that a set of software lifecycle descriptions that cannot 
be formally shown to be structurally correct, as we will 
describe, cannot be behaviourally correct. But we believe 
our approach is practical and can be applied to software 
development efforts that involve many people who may be 
distributed across multiple sites in a loosely couple manner 
[3,4] . 

There are two principal concepts embodied in our 
approach, and an associated environment that supports 
their operationalization. The first concept involves the 
generalization, extension, and application of architectural 
definition language (ADL) concepts [5], to all software 
lifecycle descriptions, not just to software architecture 
design activities. ADLs address the structural organization 
of components of a system, their interrelationships, and 
principles and guidelines governing their design and evolu­
tion over time [5]. Furthermore, recent advances with ADLs 
show how they can be: correctly refined from abstract 
to lower level forms or programs [6, 7]; formally defined 
and logically analysed [8]; defined for comparing differ­
ent architecture patterns [9]; and defined for specifYing 
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behavioural architectural models incorporating concur­
rency, synchronization, dataflow, and timing properties 
[10]. Our effort involves development of a formalism that 
views all objects created as a software system's lifecycle 
components (individual requirements, design diagrams, 
test plans, etc.), each with an interface through which 
information resources are provided to or required by other 
lifecycle descriptions. Resource type and configuration rela­
tions are then associated with the interfaces, which must 
be compatible for two or more software objects to be inter­
connected. As such, software lifecycle components can be 
composed or interconnected into lifecycle stage descrip­
tions (e.g., requirements analysis, design, testing). Further, 
descriptions associated with successive software lifecycle 
stages are also maintained as neighbour relations, which 
denote ordered mappings of interdescription transforma­
tions. Thus, in this regard, we have adapted concepts 
from ADLs to interrelated software system descriptions of 
mixed notation type and formalization. 2 This formalism 
also serves to provide a basis for the second concept. We 
define and formalize the structural correctness of config­
ured software descriptions (i.e., a software system's lifecycle 
descriptions) in terms of their consistency, completeness, 
and traceability. The formalism leads to lemmas and clos­
ure theorems (CTs) that form the basis for supporting the 
structural correctness. Last, we briefly describe a software 
engineering environment that supports the construction 
and incremental analysis of the structural correctness of 
the software object descriptions in configured groupings. 

2. Definitions and Background Concepts 

The development of large software systems is comprised 
of a set of activities known as the software development 
process or software lifecycle. Various names and forms 
of these software lifecycle activities have been identified 
by many authors. Some prefer to group these activities 
into standardized phases with well-defined products, and 
others only see an arbitrary number of intermediate trans­
formations that progressively take user requirements into 
source code. In our approach, the number of stages depends 
only on the choice of which intermediate lifecycle prod­
ucts are intended to persist, and whether there is a formal 
language notation associated with the product of each 
development stage. To focus our discussion, we adopt the 
following software lifecycle stages: requirements, functional 
specification, design, implementation, and testing and 
maintenance. We note that these software lifecycle activi­
ties suggest many possible relationships among the various 
lifecycle descriptions. However, they do not necessarily 
imply a unique sequential order of software development. 
Further, we assume that functional specification, design, 
and implementation will be described with language nota­
tions, and the others employ informal descriptions. The 
basic concepts utilized in this work-descriptions, objects, 
predefined attributes of objects, and resources-can be 

2 As should be clear, we are adopting some concepts from ADLs, 
but at this point we are not addressing advances of behavioural 
architectural concepts [16], nor architectural styles [23]. 
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found in [11]; the following sections briefly describe the 
essential background for understanding our concepts. 

2.1 Relationships 

Two objects occurring in the same description can have 
two types of resource relationships. They can be require­
related, meaning that one object imports a resource from 
the other object, or they can be provide-related, meaning 
that one object exports a resource to another object. 
Clearly, these two relations are the inverse of each other. 
The rationale to include both in our model relates to the 
closure properties that are central to our definition and 
formal analysis of structural correctness, as defined later. 

Part-of is a simple relation between a basic and a com­
posed object or between two composed objects occurring in 
the same description. The relation identifies a hierarchical 
membership relationship between two objects and is useful 
in identifYing the components of a composed object. 

Inter-related is the only relation in our model that 
relates objects from two different descriptions, signifYing 
that these two objects are related through a resource 
transformation (RT). The concept of RT is discussed in 
more detail below. 

2.2 Neighbours and Proper Neighbours 

A complete system is a partially ordered hierarchical com­
position of all of its included lifecycle descriptions. Each 
lifecycle product description corresponds to a subhier­
archy of the system lifecycle hierarchy. In a top-rooted 
hierarchy, the first lifecycle product (requirements) is the 
left-most subhierarchy. Intermediate lifecycle products are 
then ordered left to right according their appearance in 
the lifecycle model. In this way, design and implementa­
tion descriptions, for example, represent subhierarchies of 
objects that are adjacent to each other. An object y is a 
neighbour of object x if y has an inter-related relation­
ship with x. If y is an object of an immediate previous 
description (i.e., is located in an adjacent subhierarchy to 
the left) , then y is left-neighbour of x. Similarly, if y is an 
object of an immediate following description (in an adja­
cent subhierarchy to the right), then y is right-neighbour 
of x. Furthermore, we define that a set S of objects is a 
proper neighbour of an object x if all elements of S are all 
right-neighbours (left-neighbours) of x and x is the only 
left-neighbour (right-neighbour) of all objects in S. 

2.3 The Concept of Resource Transformation 

In general terms, an RT deals with how resources pro­
vided by an object in one description are transformed 
into resources provided by objects in a neighbouring 
description. Notice that an object's required resources are 
provided by some other objects; thus, we need to con­
sider only the provided resources. The specific realization 
of each RT is not the focus of this study. Nonetheless, 
intuitively, the realization of RTs can be viewed as the 
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behavioural content that is added by developers in evolv­
ing the description of a software object description into its 
neighbours(s), whether forward or backward in the lifecycle 
[12, 13]. This may be achieved through description creation, 
refinement, and editing in one or more notations. Alterna­
tively, it may be realized automatically when employing an 
automated transformation refinement or implementation 
system. For our approach, what differs between the two is 
only the determination of which transformed descriptions 
will persist , be evolved, or be treated as deliverable prod­
ucts. Given this concept of RT, we distinguish two types of 
transformations as the minimum relevant to our analysis. 

Expanding-transformation (1 -to-n transforma­
tion) . This type of transformation signifies that a 
resource provided by an object is transformed into one 
or more resources provided by the neighbouring objects. 
Expanding-transformation occurs if all neighbouring 
objects are properly t ransformed, as is explained next. 

Merging-transformation (n-to-l transformation, 
for n > 1). This type of transformation signifies that two 
or more resources are transformed into a single resource. 
The merging-transformation can occur, for example, if two 
objects have the same neighbour. This type of transforma­
tion is also called the generalized transformation .3 

3. Formal Analysis 

In this section we formalize the concepts developed in 
the previous section by asserting three postulates and 
proving several lemmas that lead to three CTs. The main 
lemmas included in the following sections are two resources 
lemmas, the attributes lemma, and two completeness 
lemmas. These lemmas lead to the immediate proof of the 
corresponding CT. Practical examples of the lemmas and 
theorems are described in [11]. 

3.1 Postulates 

In dealing with the development of software systems, there 
are many known heuristics or facts derived from experi­
ence that are very difficult, if not impossible, to prove or 
include as part of a formal system. In formalizing the con­
cepts of structural correctness, we encounter these type of 
problems, and our approach to dealing with them has been 
to postulate their existence. Accordingly, at the beginning 
of formalization work, we introduce three postulates that 
are required to make our formalization complete. The first 
postulate relates to the fact that if an object provides a 
resource in a lifecycle description, then its neighbours must 
provide the corresponding transformed resources. 

Postulate 1 [Existence of the Transformed Resources]. 
Let r be a resource provided by an object x and 8 be 

3 In this work we distinguish between proper transformation 
and generalized transformation only in those cases where the 
distinction is strictly required in the context under discussion. 
Otherwise, transformation refers to proper transformation. 
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proper neighbours of x . Then 8 must provide a non-empty 
set of resources R where R is the transformation of r . 

The second postulate relates to the fact that if an 
object x requires a resource from another object y in a given 
life-cycle description, then the neighbours of x require at 
least one resource from the neighbours of y . 

Postulate 2 [Existence of the Required Resources]. Let 
x be an object that requires a resource r from another 
object y in a lifecycle description, 81 the proper neighbours 
of x and 82 the (proper) neighbours of y. Then there exists 
a non-empty set of resources R, the transformation of r , 
and a resource Ri E R such that 81 requires Ri from 82. 

The last postulate relates to the fact that there are 
"invisible resources"; this means there exist some resources 
in the neighbours of an object that are required (consumed) 
within the neighbours itself. 

Postulate 3 [Existence of the Invisible Resources]. Let 
8 be the proper neighbours of an object x. Then there may 
exist a resource r provided by an object Yi E 8 such that 
r is required Yj E 8 and i f j . 

Lemma 1. Let x be an object and 8 be the set of all its 
right-neighbours. Let x and 8 be proper neighbours. Then 
all of the resources provided by x must be transformed into 
resources provided by 8. 

Proof. Assume that x provides a set of resources 
r1, r2, . . . , rn. As 8 is proper neighbour of x , then by 
Postulate 1,8 provides the resources R1 , R2, .. . , Rn where 
Ri is a non-empty set and the respective transformation 
of resource rio Hence, all provided resources of x must be 
transformed into provided resources of 8. 0 

Resources-Lemma 1. Let x and y be require-related, 
and let the set of objects 81 be the proper right-neighbours 
of x and 82 all right-neighbours of y . Then there must be 
at least one object in 81 that has require-related relation 
with an object in 82. 

Proof. Let r be a resource required by x from y. Then 
by Postulate 2, there exists a non-empty set of resources 
R, the transformed resources of r, and a resource Ri E R 
such that 81 requires it from 82. Hence, there must be an 
object X E 81 that requires Ri provided by 82. As RT Ri 
must be provided by an object Y E 82, then there exists an 
object X E 81 that is require-related to an object Y E 82. 

o 

Resources-Lemma 2. Let x and y be provide-related, 
and the set of objects 81 be the proper neighbour of x and 
82 be all right-neighbours of y . Then there must be at least 
one object in 81 which has a provide-related relation with 
an object in 82. 

Proof. Let r be a resource provided by x to y . Then, 
by Postulate 1, 81 must provide a non-empty set of 
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resources R transformed resources from r . Now, by 
Postulate 2, there must exist a resource Ri E R such that 
S2 requires Ri from S1. As such, there must be an object 
X E SI that provides Ri to Y E S2. Hence, there exists an 
object X E SI that is provide-related with an object Y E S2. 

o 

The Resources-Attributes-Lemma. Let SI be the set 
of all objects that are provide-related with an object x, 
and let S3 be the set of all right-neighbours of S1. Let S2 
and x be proper right-neighbours. Then all require-related 
relations of objects in S2 must be contained in S2 U S3. 

Proof. Assume that yl, y2 , . . . , yn are objects that 
provide resources to x (SI is provide-related to x) . With­
out loss of generality, assume that yl provides resources 
7'1 , 1'2 , ... , rm t o x and that Yl is the neighbour of y1. 
Then by Resources-Lemma 1, there must be at least 
one required-related relation from S2 to Y1. By defini­
tion of RT, Yl must provide the transformed resources of 
7'1 , 1'2, . .. , rm. Therefore, all require-related relation of S2 
must be contained in Y2, Y3, . . . , Yn, the respective neigh­
bours of y2, y3 , ... , yn. As Yl , Y2, . . . , Y n are contained in 
S3, all the require-related relations of S2 on the resources 
7'1 , 1'2, . . . ,rn are contained in S3. Furthermore, by Pos­
tulate 3, any object zi E S2 can require resources from 
another object zj E S2 with i =1= j . Hence, all require-related 
relations of S2 are contained in S2 U S3. 0 

Resources-Completeness-Lemma 1. Let n be the 
number of resources required by an object x, and let S be 
the proper neighbours of x. Then S must require at least n 
resources. 

Proof. The proof follows directly from Postulate 2. 
Assume that 7'1,1'2 , . .. , rn are all of the resources required 
by object x and that Rl, R2, ... , Rn are the respective 
transformations. As S is the proper neighbour of x , by 
Postulate 2, S must require at least one resource from each 
Ri . Hence the total number of resources required by S must 
be equal to or larger than n . 0 

Resources-Completeness-Lemma 2. Let n be the 
number of resources provided by an object x, and let S be 
the proper neighbours of x . Then S must provide at least 
n resources. 

Proof. Assume that 7'1 , 1'2, ... , rn are all of the 
resources provided by object x , and that for all i =1= j , 
ri =1= rj , that is, there are in total n different resources 
r. As S is proper neighbour of x , x has an inter-related 
relation only with S, and thus by Lemma 1 all of the 
resources required by x must be transformed into resources 
provided by S. Call these resources Rl, R2, ... , Rn. As Ri 
is a non-empty set , Ri must include at least one element in 
it ; the cardinality of set Ri is equal to or larger than 1 for 
all i between 1 and n. Therefore, the cardinality of the set 
formed by the union of all the Ri 's, for i from 1 to n , must 
be equal or larger than n . 0 
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4. The Concept of Structural Correctness 

Structural correctness concerns how configured software 
descriptions conform to preceding neighbour descriptions 
and to the software system requirements. In our view, a 
software system is structurally correct if all of its lifecycle 
descriptions are structurally traceable, consistent, and 
complete. Clearly, structural correctness deals with all 
software lifecycle descriptions, as we are able to trace the 
descriptions and transformations of all of their objects and 
resources in a consistent and complete manner. In the 
following paragraphs, we discuss completeness, consistency, 
and traceability and introduce the correctness constraints 
(CC) , which are important concepts in analysing software 
lifecycle correctness. In addition, we will highlight the main 
formal results by calling them CTs. These theorems are 
instrumental in analysing the presence of inconsistencies 
and incompleteness that may occur between two different 
descriptions. By checking these theorems, it is possible 
to determine whether a description of an activity has 
been consistently and completely transformed into the 
description of a different inter-related activity. 

4.1 Structural Traceability 

Structural traceability shows to what extent all resources 
in a description can be identified (internal traceability) and 
that objects have left- and right-neighbours (external trace­
ability) . Internal traceability is primarily concerned with 
identifying resources within a description and is defined in 
terms of the following two constraints. 

• provide-traceability: All resources provided by a 
description should be used. 

• require-traceability : All resources required by a 
description must exist. 

These constraints are applicable to all software 
descriptions. Resources that are used in a description 
must be present, and all resources that are pro­
vided in a description should be used within that 
description. In the requirements description, for exam­
ple, if an object called "Section-I. 1" references an 
object called "Section-1.2.1" then it is necessary that 
the object called "Section-l/2/1" exist. Application 
of these constraints to other descriptions is straight­
forward. External traceability is primarily concerned 
with identifying the objects occurring in other life­
cycle activities and is defined in terms of the following 
constraint. 

• neighbour-traceability : All objects must have left­
and right-neighbours, except the objects belonging to 
the left-most (requirements) and right-most (main­
tenance) descriptions. The objects in the requirements 
description do not have left-neighbours and the objects 
in the maintenance description do not have right­
neighbours. Neighbour-traceability signifies that each 
object in the descript ion must be traceable to the 
objects in the requirements description. If there is 
an object that cannot be traced to the objects in 
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the requirements description, then the user must be 
informed in order to correct this traceability mismatch. 

4 .2 Structural Consistency 

A description is structurally consistent to the extent 
that the provision and use of resources do not conflict 
within that description (internal consistency) nor between 
neighbouring descriptions (external consistency). Internal 
consistency occurs within a description and is defined in 
terms of the following two constraints: 

• intra-name-consistency : All resources must have 
unique names within a particular description. 

• use-consistency: All resources should be used con­
sistently. For example, if an object is defined as a 
function then it should not be used as a variable. 
Another example: a resource cannot be included in 
the provides and requires attributes of the same object 
simultaneously. 

Use-consistency deals with whether the resources 
within a description are used properly or not . The 
proper use of resources is only meaningful if the 
resources have semantics that can be specified for­
mally. As we currently utilize formal languages such 
as Gist for the specification description, NuMil for 
the design description, and C for the implement­
ation description, use-consistency is applicable only for 
these descriptions. However, it should be noted that if 
we can specify other lifecycle descriptions in a formal 
manner, we can also apply this constraint in those 
descriptions. 

External consistency is primarily concerned with 
consistencies occurring between neighbouring descrip­
tions. It is defined in terms of the following three 
constraints; 

• inter-name-consistency: All objects must have a 
unique name throughout the lifecycle. 

• relation-consistency : The relations of objects in one 
description must be preserved in other descriptions. In 
this context, we introduce the Resources Theorem. 

The Resources-Theorem. Let S be all the objects in a 
lifecycle description. Then all resource relations, provide­
related and require-related, in S must be closed. 

Proof. Directly from Resources-Lemma 2 
(Resources-Lemma 1) , if XES and yES are provide­
related (require-related) , then at least one object in SI, 
the sets of all right-neighbours of x , has a provide-related 
(require-related) relation with an object in S2, the set of 
all right-neighbours of y. 0 

• attribute-consistency: The attributes of an object in 
one description must be preserved in other descrip­
tions . In this context, we introduce the Resource­
Attribute-Theorem. 
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The Resource-Attribute-Theorem. Let S be all the 
objects in a lifecycle description. Then all resources in the 
requires attribute of the objects in S must be closed. 

Proof. Directly from the attributes-lemma, if SI E S 
is the set of all objects that are provide-related with object 
XES (all required resources of x are provided by S) , then 
all require-related relations of objects in S2, the proper 
right-neighbours of x , must be in S3, where S3 is the set of 
all right-neighbours of S1. 0 

4.3 Structural Completeness 

A description is structurally complete if all resources 
occurring in a description are traceable to transformed 
resources of the next lifecycle description. The con­
cept of completeness is formally defined in terms of 
transformation-completeness. 

• transformation-completeness: All provided and 
required resources of an object in a description must 
be transformed into an equivalent set of resources in a 
different description. In this context, we introduce the 
Resource-Completeness-Theorem. 

The Resource-Completeness-Theorem. Let S be all 
the objects in a lifecycle description. Then the number of 
provided and required resources of the objects in S must 
be closed. 

Proof. Directly from the Completeness-Lemma 1 
(Completeness-Lemma 2), if the total number resources 
required (provided) by an object xES is n, then the total 
number of resources required (provided) by SI , the proper 
neighbour of x, is at least n . 0 

In summary, require-traceability, provide-traceability, 
neighbour-traceability, inter-name-consistency, and intra­
name-consistency, must be present in all descriptions. 
Similarly, all resources used in a description must be trace­
able within that description or, equivalently, all objects 
must be traceable throughout the descriptions. However, 
transformation-completeness, use-consistency, attribute­
consistency, and relation-consistency are constraints that 
are only meaningful within/between formalizable descrip­
tions such specification, design, and implementation 
descriptions. 

Fig. 1 below summarizes our current results by showing 
the CC in terms of lifecycle descriptions. 

Require Spec. Design Imp!. Test Main!. 
Require-Traceability x x x x x x 
Provide-T raceabilily x x x x x x 
Neighbour-T raceabi lily x x x x x x 
Intra-Name-Consistency x x x x x x 
Inter-Name-Consistency x x x x x x 
Relation-Consistency x x x 
Attribute-Consistency x x x 
Use-Consistency x x x 
Transformation-Completeness x x x 

Figure 1. CCs for SLC. 
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5. Tools Supporting the Correctness Concept 

In this section, we provide a brief overview of an soft­
ware engineering environment supporting the structural 
correctness called SOFTMAN. A more complete discus­
sion of SOFTMAN may be found elsewhere [12, 13J. 
SOFTMAN provides a set of necessary tools and inte­
grates these tools in such way that they are accessible 
through a common user interface called the NSDI 
(N arrative-Specification-Design-Implementation) Editing 
Environment. 

The tools of the SOFTMAN environment for validating 
and verifying the software descriptions are: 

• language-directed editing environment, which pro­
vides mechanisms to check these constraints inter­
actively and incrementally, so that violation of CC 
can be detected at the time of description creation or 
modification; 

• language processors, which analyses the CC in batch 
mode so that the analysis can be done for much 
larger software descriptions than may be practical with 
interactive analysis; 

• an object management facility to maintain the 
description objects, the relations, and constraints of 
objects, and a correctness query processor, which 
checks, tracks, and maintains the state of the CC of 
the objects. 

It should be noted that the CC on the descriptions are 
performed on demand by a SOFTMAN user. In this way, 
a user (an individual or software development team) may 
choose to allow inconsistencies, untraceable objects or 
resources, or incompleteness in the software descriptions 
they are developing to occur while utilizing the tools. 
However, a user can request that any or all of the CC be 
checked, and the tools will report the state of correctness 
at any time. 

6. Comparison to Related Research 

The basic idea behind our approach builds upon the idea 
of "well-formed system compositions" introduced by 
Haberman and Perry [14J and Tichy [15], and later used by 
others in formalizing ADLs [8J. These efforts define a well­
formed system as the composition of source code program 
modules whose interfaces are syntactically and structurally 
consistent. Thus, these notions of well-formed composition 
correspond to what we have called internal correctness. 
Similarly, recent advances addressing notations and formal 
analysis of software requirements descriptions indicate that 
internal consistency, completeness, and correctness can 
now be determined [2, 16J. However, these results of these 
important efforts were directed to single-stage software 
descriptions, such as software requirements descriptions or 
source code program (implementation) descriptions. What 
is new in our work is the extension to support of external 
correctness of inter related software descriptions, as well 
as internal correctness of individual software descriptions. 
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In a sense, this means that we have generalized the idea 
of well-formed composition of system architecture to a 
diverse range of lifecycle descriptions that can be assembled 
in large software development efforts. As already noted, 
these lifecycle descriptions are often described with differ­
ent notations or formalisms, including informal narrative 
descriptions. In this way, the number and diversity of 
descriptions that constitute the set of lifecycle descriptions 
is open, and not fixed to a specific lifecycle process model, 
approach, or development paradigm. This leads us to a 
basis for verifying and validating the structural correct­
ness of a set of inter-related software lifecycle descriptions. 
We observe that the work cited above led to the devel­
opment of environments for maintaining the well-formed 
configuration of software source code in their many related 
versions. In our work, we too have developed an environ­
ment that supports our approach. This means that we 
can provide basic services for managing the well-formed 
configurations of the various software lifecycle descriptions 
individually as well as collectively [15]. Further, we have 
incorporated the necessary mechanisms to check the CC 
needed for software lifecycle verification and validation. In 
this regard, we have developed an approach and supporting 
tools that combine software architecture and configuration 
management concepts together with software lifecycle ver­
ification and validation services. Our formal analysis and 
automated support of structural correctness are clearly 
limited, as weak methods that strive to accommodate 
architectural refinement, incremental development , and 
partiality in a manner akin to that advocated by software 
architecture researchers [6, 7J and by Jackson and Wing 
in their advocacy of "lightweight" formal methods [17J . 
However, techniques for specifying and analysing a grow­
ing range of formal behaviourally based software lifecycle 
descriptions, now including requirements and architectural 
design notations [2, 6, 7, 9, 10]' will enable more com­
prehensive correctness assurance than we have described 
here. Nonetheless, we believe that our results represent a 
contribution that builds on the formal , conceptual, and 
environment engineering work that we have cited in a way 
that can open up further investigations in each of these 
areas . One such area for further exploration could address 
the structural and behavioural definition, formal analysis, 
and automated support of inter-related software lifecycle 
descriptions. 

7. Conclusion 

We have presented the concepts and integrated environ­
ment for assuring the structural correctness of configured 
software lifecycle descriptions. We identified and applied 
concepts appearing in software architecture definition lan­
guages to a diverse range of software lifecycle descriptions 
that use informal or formal notations. This enabled iden­
tification and formal analysis of properties, lemmas, and 
theorems that define a minimal set of relations, attributes, 
transformations, and constraints that can be incrementally 
or fully checked to verify and validate inter-related software 
lifecycle descriptions. 
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Initially, we formalized the structural correctness of a 
software lifecycle configuration in terms of the consistency, 
completeness, and traceability of the resource relations and 
resource attributes of its composed software objects, as well 
as the transformation of these relations and constraints. 
We then identified the nine CCs and three correctness 
theorems for the resource relations and attributes. Next, 
we identified how these constraints can be applied to 
support the verification and validation configured software 
descriptions throughout the software lifecycle. However, 
it should be noted that the CC do not check whether the 
narrative requirements of a software system are feasible 
or satisfy user requirements. Thus, on the one hand, a 
software system conforming to the CC can be said to 
be well engineered or well configured , but not necessarily 
behaviourally correct. On the other hand, for a system to 
be trustworthy and reliable, it must first be shown to be 
structurally correct. 

We also briefly described an integrated software life­
cycle engineering environment with a necessary set of tools 
to support the concept of structural correctness. 
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