
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tjca20

Download by: [RMIT University Library] Date: 18 December 2017, At: 10:22

International Journal of Computers and Applications

ISSN: 1206-212X (Print) 1925-7074 (Online) Journal homepage: http://www.tandfonline.com/loi/tjca20

Formal Analysis of The Structural Correctness of
Slc Descriptions

S.J. Choi & W. Scacchi

To cite this article: S.J. Choi & W. Scacchi (2003) Formal Analysis of The Structural Correctness
of Slc Descriptions, International Journal of Computers and Applications, 25:2, 91-97, DOI:
10.1080/1206212X.2003.11441688

To link to this article: https://doi.org/10.1080/1206212X.2003.11441688

Published online: 11 Jul 2015.

Submit your article to this journal

Article views: 1

View related articles

http://www.tandfonline.com/action/journalInformation?journalCode=tjca20
http://www.tandfonline.com/loi/tjca20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/1206212X.2003.11441688
https://doi.org/10.1080/1206212X.2003.11441688
http://www.tandfonline.com/action/authorSubmission?journalCode=tjca20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tjca20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/1206212X.2003.11441688
http://www.tandfonline.com/doi/mlt/10.1080/1206212X.2003.11441688

International Journal of Computers and Applications, Vol. 25, No. 2, 2003

FORMAL ANALYSIS OF THE STRUCTURAL
CORRECTNESS OF SLC DESCRIPTIONS

8.J. Choi* and W . 8cacchi**

Abstract

This article presents a way of assuring the correctness of configured
software descriptions throughout software lifecycle activities. To
achieve this , we draw on concepts in the areas of software architec­
ture and software engineering environments to provide a formal and
automated basis for achieving verification and validation of software
concepts, for assuring the structural correctness of software lifecycle
object configurations based on the objects ' resource attributes and
resource relations and the transformation of these attributes and
relations throughout the software lifecycle. We formalize these con­
cepts such that we provide a set of lemmas and closure theorems
that substantiate our concept of software lifecycle correctness. All
proofs are also included. These concepts in turn provide the basis for
an integrated environment with automated tools that can ensure
the correctness of configured software descriptions. Thus, through
our approach and formalisms, we demonstrate a way to combine
software verification and validation techniques with software archi­
tectural definition concepts that can support a software engineering
environment.

Key Words

Structural correctness, V&V, architectural definition, formal
analysis , SEE

1. Introduction

Determining the correctness of a software system can
involve verifYing that the implementation conforms to its
specification and design, whereas validating the imple­
mentation satisfies its requirements. Formal verification
usually denotes that it is possible to rigorously show that
a formal software specification can be consistently and
completely transformed into a formal design, and in turn
into an operational source code form [1]. Software lifecycle
verification seeks to determine the degree to which the
products from a given development phase or activity fulfills

• Computer Science Department, California State University
Fullerton, Fullerton, CA 92834-9480, USA; e-mail: sjchoi@ecs.
fullerton.edu

•• Information and Computer Science Department, University of
California, Irvine, CA 92697-3425, USA; e-mail: wscacchi@ics.
ucLedu

(paper no. 202-1129)

91

the specifications established during prior lifecycle phases.
Validation often denotes that each operational require­
ment that can be systematically traced to some software
functionality or condition is satisfactorily realized in the
source code implementation. Formal verification offers the
intrinsic value of a rigourous analysis that shows how a
source code program can be derived from its formal speci­
fication. However, in practice, formal verification is often
limited to small or modest-size programs with well-defined
requirements and relatively stable specifications [2].

The objective in this article is to describe a formal
approach to verifYing and validating the development of
large software systems throughout their lifecycle. Our
notion of the correctness of a software system throughout
its lifecycle is limited to the structural formalism we util­
ize, and thus we make no claim about proving behavioural
properties of programs correct. This is similar to the dis­
tinction between the development of a program that can
be "compiled" (syntax, type, and usage checked) from one
whose behaviour can be "executed" at runtime. In this
regard, a program that cannot be successfully and cor­
rectly compiled cannot be executed. Accordingly, our view
is that a set of software lifecycle descriptions that cannot
be formally shown to be structurally correct, as we will
describe, cannot be behaviourally correct. But we believe
our approach is practical and can be applied to software
development efforts that involve many people who may be
distributed across multiple sites in a loosely couple manner
[3,4] .

There are two principal concepts embodied in our
approach, and an associated environment that supports
their operationalization. The first concept involves the
generalization, extension, and application of architectural
definition language (ADL) concepts [5], to all software
lifecycle descriptions, not just to software architecture
design activities. ADLs address the structural organization
of components of a system, their interrelationships, and
principles and guidelines governing their design and evolu­
tion over time [5]. Furthermore, recent advances with ADLs
show how they can be: correctly refined from abstract
to lower level forms or programs [6, 7]; formally defined
and logically analysed [8]; defined for comparing differ­
ent architecture patterns [9]; and defined for specifYing

D
ow

nl
oa

de
d

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

]
at

 1
0:

22
 1

8
D

ec
em

be
r

20
17

behavioural architectural models incorporating concur­
rency, synchronization, dataflow, and timing properties
[10]. Our effort involves development of a formalism that
views all objects created as a software system's lifecycle
components (individual requirements, design diagrams,
test plans, etc.), each with an interface through which
information resources are provided to or required by other
lifecycle descriptions. Resource type and configuration rela­
tions are then associated with the interfaces, which must
be compatible for two or more software objects to be inter­
connected. As such, software lifecycle components can be
composed or interconnected into lifecycle stage descrip­
tions (e.g., requirements analysis, design, testing). Further,
descriptions associated with successive software lifecycle
stages are also maintained as neighbour relations, which
denote ordered mappings of interdescription transforma­
tions. Thus, in this regard, we have adapted concepts
from ADLs to interrelated software system descriptions of
mixed notation type and formalization. 2 This formalism
also serves to provide a basis for the second concept. We
define and formalize the structural correctness of config­
ured software descriptions (i.e., a software system's lifecycle
descriptions) in terms of their consistency, completeness,
and traceability. The formalism leads to lemmas and clos­
ure theorems (CTs) that form the basis for supporting the
structural correctness. Last, we briefly describe a software
engineering environment that supports the construction
and incremental analysis of the structural correctness of
the software object descriptions in configured groupings.

2. Definitions and Background Concepts

The development of large software systems is comprised
of a set of activities known as the software development
process or software lifecycle. Various names and forms
of these software lifecycle activities have been identified
by many authors. Some prefer to group these activities
into standardized phases with well-defined products, and
others only see an arbitrary number of intermediate trans­
formations that progressively take user requirements into
source code. In our approach, the number of stages depends
only on the choice of which intermediate lifecycle prod­
ucts are intended to persist, and whether there is a formal
language notation associated with the product of each
development stage. To focus our discussion, we adopt the
following software lifecycle stages: requirements, functional
specification, design, implementation, and testing and
maintenance. We note that these software lifecycle activi­
ties suggest many possible relationships among the various
lifecycle descriptions. However, they do not necessarily
imply a unique sequential order of software development.
Further, we assume that functional specification, design,
and implementation will be described with language nota­
tions, and the others employ informal descriptions. The
basic concepts utilized in this work-descriptions, objects,
predefined attributes of objects, and resources-can be

2 As should be clear, we are adopting some concepts from ADLs,
but at this point we are not addressing advances of behavioural
architectural concepts [16], nor architectural styles [23].

92

found in [11]; the following sections briefly describe the
essential background for understanding our concepts.

2.1 Relationships

Two objects occurring in the same description can have
two types of resource relationships. They can be require­
related, meaning that one object imports a resource from
the other object, or they can be provide-related, meaning
that one object exports a resource to another object.
Clearly, these two relations are the inverse of each other.
The rationale to include both in our model relates to the
closure properties that are central to our definition and
formal analysis of structural correctness, as defined later.

Part-of is a simple relation between a basic and a com­
posed object or between two composed objects occurring in
the same description. The relation identifies a hierarchical
membership relationship between two objects and is useful
in identifYing the components of a composed object.

Inter-related is the only relation in our model that
relates objects from two different descriptions, signifYing
that these two objects are related through a resource
transformation (RT). The concept of RT is discussed in
more detail below.

2.2 Neighbours and Proper Neighbours

A complete system is a partially ordered hierarchical com­
position of all of its included lifecycle descriptions. Each
lifecycle product description corresponds to a subhier­
archy of the system lifecycle hierarchy. In a top-rooted
hierarchy, the first lifecycle product (requirements) is the
left-most subhierarchy. Intermediate lifecycle products are
then ordered left to right according their appearance in
the lifecycle model. In this way, design and implementa­
tion descriptions, for example, represent subhierarchies of
objects that are adjacent to each other. An object y is a
neighbour of object x if y has an inter-related relation­
ship with x. If y is an object of an immediate previous
description (i.e., is located in an adjacent subhierarchy to
the left) , then y is left-neighbour of x. Similarly, if y is an
object of an immediate following description (in an adja­
cent subhierarchy to the right), then y is right-neighbour
of x. Furthermore, we define that a set S of objects is a
proper neighbour of an object x if all elements of S are all
right-neighbours (left-neighbours) of x and x is the only
left-neighbour (right-neighbour) of all objects in S.

2.3 The Concept of Resource Transformation

In general terms, an RT deals with how resources pro­
vided by an object in one description are transformed
into resources provided by objects in a neighbouring
description. Notice that an object's required resources are
provided by some other objects; thus, we need to con­
sider only the provided resources. The specific realization
of each RT is not the focus of this study. Nonetheless,
intuitively, the realization of RTs can be viewed as the

D
ow

nl
oa

de
d

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

]
at

 1
0:

22
 1

8
D

ec
em

be
r

20
17

behavioural content that is added by developers in evolv­
ing the description of a software object description into its
neighbours(s), whether forward or backward in the lifecycle
[12, 13]. This may be achieved through description creation,
refinement, and editing in one or more notations. Alterna­
tively, it may be realized automatically when employing an
automated transformation refinement or implementation
system. For our approach, what differs between the two is
only the determination of which transformed descriptions
will persist , be evolved, or be treated as deliverable prod­
ucts. Given this concept of RT, we distinguish two types of
transformations as the minimum relevant to our analysis.

Expanding-transformation (1 -to-n transforma­
tion) . This type of transformation signifies that a
resource provided by an object is transformed into one
or more resources provided by the neighbouring objects.
Expanding-transformation occurs if all neighbouring
objects are properly t ransformed, as is explained next.

Merging-transformation (n-to-l transformation,
for n > 1). This type of transformation signifies that two
or more resources are transformed into a single resource.
The merging-transformation can occur, for example, if two
objects have the same neighbour. This type of transforma­
tion is also called the generalized transformation .3

3. Formal Analysis

In this section we formalize the concepts developed in
the previous section by asserting three postulates and
proving several lemmas that lead to three CTs. The main
lemmas included in the following sections are two resources
lemmas, the attributes lemma, and two completeness
lemmas. These lemmas lead to the immediate proof of the
corresponding CT. Practical examples of the lemmas and
theorems are described in [11].

3.1 Postulates

In dealing with the development of software systems, there
are many known heuristics or facts derived from experi­
ence that are very difficult, if not impossible, to prove or
include as part of a formal system. In formalizing the con­
cepts of structural correctness, we encounter these type of
problems, and our approach to dealing with them has been
to postulate their existence. Accordingly, at the beginning
of formalization work, we introduce three postulates that
are required to make our formalization complete. The first
postulate relates to the fact that if an object provides a
resource in a lifecycle description, then its neighbours must
provide the corresponding transformed resources.

Postulate 1 [Existence of the Transformed Resources].
Let r be a resource provided by an object x and 8 be

3 In this work we distinguish between proper transformation
and generalized transformation only in those cases where the
distinction is strictly required in the context under discussion.
Otherwise, transformation refers to proper transformation.

93

proper neighbours of x . Then 8 must provide a non-empty
set of resources R where R is the transformation of r .

The second postulate relates to the fact that if an
object x requires a resource from another object y in a given
life-cycle description, then the neighbours of x require at
least one resource from the neighbours of y .

Postulate 2 [Existence of the Required Resources]. Let
x be an object that requires a resource r from another
object y in a lifecycle description, 81 the proper neighbours
of x and 82 the (proper) neighbours of y. Then there exists
a non-empty set of resources R, the transformation of r ,
and a resource Ri E R such that 81 requires Ri from 82.

The last postulate relates to the fact that there are
"invisible resources"; this means there exist some resources
in the neighbours of an object that are required (consumed)
within the neighbours itself.

Postulate 3 [Existence of the Invisible Resources]. Let
8 be the proper neighbours of an object x. Then there may
exist a resource r provided by an object Yi E 8 such that
r is required Yj E 8 and i f j .

Lemma 1. Let x be an object and 8 be the set of all its
right-neighbours. Let x and 8 be proper neighbours. Then
all of the resources provided by x must be transformed into
resources provided by 8.

Proof. Assume that x provides a set of resources
r1, r2, . . . , rn. As 8 is proper neighbour of x , then by
Postulate 1,8 provides the resources R1 , R2, .. . , Rn where
Ri is a non-empty set and the respective transformation
of resource rio Hence, all provided resources of x must be
transformed into provided resources of 8. 0

Resources-Lemma 1. Let x and y be require-related,
and let the set of objects 81 be the proper right-neighbours
of x and 82 all right-neighbours of y . Then there must be
at least one object in 81 that has require-related relation
with an object in 82.

Proof. Let r be a resource required by x from y. Then
by Postulate 2, there exists a non-empty set of resources
R, the transformed resources of r, and a resource Ri E R
such that 81 requires it from 82. Hence, there must be an
object X E 81 that requires Ri provided by 82. As RT Ri
must be provided by an object Y E 82, then there exists an
object X E 81 that is require-related to an object Y E 82.

o

Resources-Lemma 2. Let x and y be provide-related,
and the set of objects 81 be the proper neighbour of x and
82 be all right-neighbours of y . Then there must be at least
one object in 81 which has a provide-related relation with
an object in 82.

Proof. Let r be a resource provided by x to y . Then,
by Postulate 1, 81 must provide a non-empty set of

D
ow

nl
oa

de
d

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

]
at

 1
0:

22
 1

8
D

ec
em

be
r

20
17

resources R transformed resources from r . Now, by
Postulate 2, there must exist a resource Ri E R such that
S2 requires Ri from S1. As such, there must be an object
X E SI that provides Ri to Y E S2. Hence, there exists an
object X E SI that is provide-related with an object Y E S2.

o

The Resources-Attributes-Lemma. Let SI be the set
of all objects that are provide-related with an object x,
and let S3 be the set of all right-neighbours of S1. Let S2
and x be proper right-neighbours. Then all require-related
relations of objects in S2 must be contained in S2 U S3.

Proof. Assume that yl, y2 , . . . , yn are objects that
provide resources to x (SI is provide-related to x) . With­
out loss of generality, assume that yl provides resources
7'1 , 1'2 , ... , rm t o x and that Yl is the neighbour of y1.
Then by Resources-Lemma 1, there must be at least
one required-related relation from S2 to Y1. By defini­
tion of RT, Yl must provide the transformed resources of
7'1 , 1'2, . .. , rm. Therefore, all require-related relation of S2
must be contained in Y2, Y3, . . . , Yn, the respective neigh­
bours of y2, y3 , ... , yn. As Yl , Y2, . . . , Y n are contained in
S3, all the require-related relations of S2 on the resources
7'1 , 1'2, . . . ,rn are contained in S3. Furthermore, by Pos­
tulate 3, any object zi E S2 can require resources from
another object zj E S2 with i =1= j . Hence, all require-related
relations of S2 are contained in S2 U S3. 0

Resources-Completeness-Lemma 1. Let n be the
number of resources required by an object x, and let S be
the proper neighbours of x. Then S must require at least n
resources.

Proof. The proof follows directly from Postulate 2.
Assume that 7'1,1'2 , . .. , rn are all of the resources required
by object x and that Rl, R2, ... , Rn are the respective
transformations. As S is the proper neighbour of x , by
Postulate 2, S must require at least one resource from each
Ri . Hence the total number of resources required by S must
be equal to or larger than n . 0

Resources-Completeness-Lemma 2. Let n be the
number of resources provided by an object x, and let S be
the proper neighbours of x . Then S must provide at least
n resources.

Proof. Assume that 7'1 , 1'2, ... , rn are all of the
resources provided by object x , and that for all i =1= j ,
ri =1= rj , that is, there are in total n different resources
r. As S is proper neighbour of x , x has an inter-related
relation only with S, and thus by Lemma 1 all of the
resources required by x must be transformed into resources
provided by S. Call these resources Rl, R2, ... , Rn. As Ri
is a non-empty set , Ri must include at least one element in
it ; the cardinality of set Ri is equal to or larger than 1 for
all i between 1 and n. Therefore, the cardinality of the set
formed by the union of all the Ri 's, for i from 1 to n , must
be equal or larger than n . 0

94

4. The Concept of Structural Correctness

Structural correctness concerns how configured software
descriptions conform to preceding neighbour descriptions
and to the software system requirements. In our view, a
software system is structurally correct if all of its lifecycle
descriptions are structurally traceable, consistent, and
complete. Clearly, structural correctness deals with all
software lifecycle descriptions, as we are able to trace the
descriptions and transformations of all of their objects and
resources in a consistent and complete manner. In the
following paragraphs, we discuss completeness, consistency,
and traceability and introduce the correctness constraints
(CC) , which are important concepts in analysing software
lifecycle correctness. In addition, we will highlight the main
formal results by calling them CTs. These theorems are
instrumental in analysing the presence of inconsistencies
and incompleteness that may occur between two different
descriptions. By checking these theorems, it is possible
to determine whether a description of an activity has
been consistently and completely transformed into the
description of a different inter-related activity.

4.1 Structural Traceability

Structural traceability shows to what extent all resources
in a description can be identified (internal traceability) and
that objects have left- and right-neighbours (external trace­
ability) . Internal traceability is primarily concerned with
identifying resources within a description and is defined in
terms of the following two constraints.

• provide-traceability: All resources provided by a
description should be used.

• require-traceability : All resources required by a
description must exist.

These constraints are applicable to all software
descriptions. Resources that are used in a description
must be present, and all resources that are pro­
vided in a description should be used within that
description. In the requirements description, for exam­
ple, if an object called "Section-I. 1" references an
object called "Section-1.2.1" then it is necessary that
the object called "Section-l/2/1" exist. Application
of these constraints to other descriptions is straight­
forward. External traceability is primarily concerned
with identifying the objects occurring in other life­
cycle activities and is defined in terms of the following
constraint.

• neighbour-traceability : All objects must have left­
and right-neighbours, except the objects belonging to
the left-most (requirements) and right-most (main­
tenance) descriptions. The objects in the requirements
description do not have left-neighbours and the objects
in the maintenance description do not have right­
neighbours. Neighbour-traceability signifies that each
object in the descript ion must be traceable to the
objects in the requirements description. If there is
an object that cannot be traced to the objects in

D
ow

nl
oa

de
d

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

]
at

 1
0:

22
 1

8
D

ec
em

be
r

20
17

the requirements description, then the user must be
informed in order to correct this traceability mismatch.

4 .2 Structural Consistency

A description is structurally consistent to the extent
that the provision and use of resources do not conflict
within that description (internal consistency) nor between
neighbouring descriptions (external consistency). Internal
consistency occurs within a description and is defined in
terms of the following two constraints:

• intra-name-consistency : All resources must have
unique names within a particular description.

• use-consistency: All resources should be used con­
sistently. For example, if an object is defined as a
function then it should not be used as a variable.
Another example: a resource cannot be included in
the provides and requires attributes of the same object
simultaneously.

Use-consistency deals with whether the resources
within a description are used properly or not . The
proper use of resources is only meaningful if the
resources have semantics that can be specified for­
mally. As we currently utilize formal languages such
as Gist for the specification description, NuMil for
the design description, and C for the implement­
ation description, use-consistency is applicable only for
these descriptions. However, it should be noted that if
we can specify other lifecycle descriptions in a formal
manner, we can also apply this constraint in those
descriptions.

External consistency is primarily concerned with
consistencies occurring between neighbouring descrip­
tions. It is defined in terms of the following three
constraints;

• inter-name-consistency: All objects must have a
unique name throughout the lifecycle.

• relation-consistency : The relations of objects in one
description must be preserved in other descriptions. In
this context, we introduce the Resources Theorem.

The Resources-Theorem. Let S be all the objects in a
lifecycle description. Then all resource relations, provide­
related and require-related, in S must be closed.

Proof. Directly from Resources-Lemma 2
(Resources-Lemma 1) , if XES and yES are provide­
related (require-related) , then at least one object in SI,
the sets of all right-neighbours of x , has a provide-related
(require-related) relation with an object in S2, the set of
all right-neighbours of y. 0

• attribute-consistency: The attributes of an object in
one description must be preserved in other descrip­
tions . In this context, we introduce the Resource­
Attribute-Theorem.

95

The Resource-Attribute-Theorem. Let S be all the
objects in a lifecycle description. Then all resources in the
requires attribute of the objects in S must be closed.

Proof. Directly from the attributes-lemma, if SI E S
is the set of all objects that are provide-related with object
XES (all required resources of x are provided by S) , then
all require-related relations of objects in S2, the proper
right-neighbours of x , must be in S3, where S3 is the set of
all right-neighbours of S1. 0

4.3 Structural Completeness

A description is structurally complete if all resources
occurring in a description are traceable to transformed
resources of the next lifecycle description. The con­
cept of completeness is formally defined in terms of
transformation-completeness.

• transformation-completeness: All provided and
required resources of an object in a description must
be transformed into an equivalent set of resources in a
different description. In this context, we introduce the
Resource-Completeness-Theorem.

The Resource-Completeness-Theorem. Let S be all
the objects in a lifecycle description. Then the number of
provided and required resources of the objects in S must
be closed.

Proof. Directly from the Completeness-Lemma 1
(Completeness-Lemma 2), if the total number resources
required (provided) by an object xES is n, then the total
number of resources required (provided) by SI , the proper
neighbour of x, is at least n . 0

In summary, require-traceability, provide-traceability,
neighbour-traceability, inter-name-consistency, and intra­
name-consistency, must be present in all descriptions.
Similarly, all resources used in a description must be trace­
able within that description or, equivalently, all objects
must be traceable throughout the descriptions. However,
transformation-completeness, use-consistency, attribute­
consistency, and relation-consistency are constraints that
are only meaningful within/between formalizable descrip­
tions such specification, design, and implementation
descriptions.

Fig. 1 below summarizes our current results by showing
the CC in terms of lifecycle descriptions.

Require Spec. Design Imp!. Test Main!.
Require-Traceability x x x x x x
Provide-T raceabilily x x x x x x
Neighbour-T raceabi lily x x x x x x
Intra-Name-Consistency x x x x x x
Inter-Name-Consistency x x x x x x
Relation-Consistency x x x
Attribute-Consistency x x x
Use-Consistency x x x
Transformation-Completeness x x x

Figure 1. CCs for SLC.

D
ow

nl
oa

de
d

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

]
at

 1
0:

22
 1

8
D

ec
em

be
r

20
17

5. Tools Supporting the Correctness Concept

In this section, we provide a brief overview of an soft­
ware engineering environment supporting the structural
correctness called SOFTMAN. A more complete discus­
sion of SOFTMAN may be found elsewhere [12, 13J.
SOFTMAN provides a set of necessary tools and inte­
grates these tools in such way that they are accessible
through a common user interface called the NSDI
(N arrative-Specification-Design-Implementation) Editing
Environment.

The tools of the SOFTMAN environment for validating
and verifying the software descriptions are:

• language-directed editing environment, which pro­
vides mechanisms to check these constraints inter­
actively and incrementally, so that violation of CC
can be detected at the time of description creation or
modification;

• language processors, which analyses the CC in batch
mode so that the analysis can be done for much
larger software descriptions than may be practical with
interactive analysis;

• an object management facility to maintain the
description objects, the relations, and constraints of
objects, and a correctness query processor, which
checks, tracks, and maintains the state of the CC of
the objects.

It should be noted that the CC on the descriptions are
performed on demand by a SOFTMAN user. In this way,
a user (an individual or software development team) may
choose to allow inconsistencies, untraceable objects or
resources, or incompleteness in the software descriptions
they are developing to occur while utilizing the tools.
However, a user can request that any or all of the CC be
checked, and the tools will report the state of correctness
at any time.

6. Comparison to Related Research

The basic idea behind our approach builds upon the idea
of "well-formed system compositions" introduced by
Haberman and Perry [14J and Tichy [15], and later used by
others in formalizing ADLs [8J. These efforts define a well­
formed system as the composition of source code program
modules whose interfaces are syntactically and structurally
consistent. Thus, these notions of well-formed composition
correspond to what we have called internal correctness.
Similarly, recent advances addressing notations and formal
analysis of software requirements descriptions indicate that
internal consistency, completeness, and correctness can
now be determined [2, 16J. However, these results of these
important efforts were directed to single-stage software
descriptions, such as software requirements descriptions or
source code program (implementation) descriptions. What
is new in our work is the extension to support of external
correctness of inter related software descriptions, as well
as internal correctness of individual software descriptions.

96

In a sense, this means that we have generalized the idea
of well-formed composition of system architecture to a
diverse range of lifecycle descriptions that can be assembled
in large software development efforts. As already noted,
these lifecycle descriptions are often described with differ­
ent notations or formalisms, including informal narrative
descriptions. In this way, the number and diversity of
descriptions that constitute the set of lifecycle descriptions
is open, and not fixed to a specific lifecycle process model,
approach, or development paradigm. This leads us to a
basis for verifying and validating the structural correct­
ness of a set of inter-related software lifecycle descriptions.
We observe that the work cited above led to the devel­
opment of environments for maintaining the well-formed
configuration of software source code in their many related
versions. In our work, we too have developed an environ­
ment that supports our approach. This means that we
can provide basic services for managing the well-formed
configurations of the various software lifecycle descriptions
individually as well as collectively [15]. Further, we have
incorporated the necessary mechanisms to check the CC
needed for software lifecycle verification and validation. In
this regard, we have developed an approach and supporting
tools that combine software architecture and configuration
management concepts together with software lifecycle ver­
ification and validation services. Our formal analysis and
automated support of structural correctness are clearly
limited, as weak methods that strive to accommodate
architectural refinement, incremental development , and
partiality in a manner akin to that advocated by software
architecture researchers [6, 7J and by Jackson and Wing
in their advocacy of "lightweight" formal methods [17J .
However, techniques for specifying and analysing a grow­
ing range of formal behaviourally based software lifecycle
descriptions, now including requirements and architectural
design notations [2, 6, 7, 9, 10]' will enable more com­
prehensive correctness assurance than we have described
here. Nonetheless, we believe that our results represent a
contribution that builds on the formal , conceptual, and
environment engineering work that we have cited in a way
that can open up further investigations in each of these
areas . One such area for further exploration could address
the structural and behavioural definition, formal analysis,
and automated support of inter-related software lifecycle
descriptions.

7. Conclusion

We have presented the concepts and integrated environ­
ment for assuring the structural correctness of configured
software lifecycle descriptions. We identified and applied
concepts appearing in software architecture definition lan­
guages to a diverse range of software lifecycle descriptions
that use informal or formal notations. This enabled iden­
tification and formal analysis of properties, lemmas, and
theorems that define a minimal set of relations, attributes,
transformations, and constraints that can be incrementally
or fully checked to verify and validate inter-related software
lifecycle descriptions.

D
ow

nl
oa

de
d

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

]
at

 1
0:

22
 1

8
D

ec
em

be
r

20
17

Initially, we formalized the structural correctness of a
software lifecycle configuration in terms of the consistency,
completeness, and traceability of the resource relations and
resource attributes of its composed software objects, as well
as the transformation of these relations and constraints.
We then identified the nine CCs and three correctness
theorems for the resource relations and attributes. Next,
we identified how these constraints can be applied to
support the verification and validation configured software
descriptions throughout the software lifecycle. However,
it should be noted that the CC do not check whether the
narrative requirements of a software system are feasible
or satisfy user requirements. Thus, on the one hand, a
software system conforming to the CC can be said to
be well engineered or well configured , but not necessarily
behaviourally correct. On the other hand, for a system to
be trustworthy and reliable, it must first be shown to be
structurally correct.

We also briefly described an integrated software life­
cycle engineering environment with a necessary set of tools
to support the concept of structural correctness.

Acknowledgements

This article is an expanded version of [11] .

References

[IJ S. Gerhart, D. Craigen, & T. Ralston, Experience with formal
methods in critical systems, IEEE Software, 11 (1) , 1994,
21-28.

[2J C. Heitmeyer, R. Jeffords, & B. Labaw, Automated
consistency checking of requirements specifications, ACM
Transactions of Software Engineering and Methodology, 5 (3),
1996, 231-261.

[3J C. Loftus et al., Distributed software engineering (Englewood
Cliffs, NJ: Prentice-Hall, 1995).

[4J J. Noll & W. Scacchi, Repository support for virtual software
enterprises, Proc. of the California Software Symp., Los
Angeles, CA, 1996, 120-134.

[5) D. Garlan & D. Perry, Introduction to the special issue
on software architecture, IEEE Transactions on Software
Engineering, 21 (4), 1995, 269-274.

[6J R. Gruia-Catalin & D. Wilcox, Architecture-directed refine­
ment, IEEE Transactions on Software Engineering, 20(40),
1994, 239-259.

[7J M. Marconi, X. Qian, & R. Riemenschneider, Correct
architecture refinement , IEEE Transactions on Software
Engineering, 21 (4), 1995, 356-372.

[8J T. Dean & J.R. Cody, A syntactic theory of software archi­
tecture, IEEE Transactions on Software Engineering, 21 (4),
1995, 302-313.

[9J M. Shaw & R. Deline, Abstractions for software architecture
and tools to support them, IEEE Transactions on Software
Engineering, 21 (4) , 1995, 314-335.

97

[10J D. Lukham & J. Kennedy, Specification and analysis of
system architecture using RAPIDE, IEEE Transactions on
Software Engineering, 21 (4), 1995,336-355.

[l1J S. Choi & W. Scacchi, Formalization and tools supporting
the structural correctness of SLC descriptions, Proc. of the
lASTED Conf. on Software Engineering, Las Vegas, NV,
1998, 27-34.

[12J S. Choi & W. Scacchi, Extracting and restructuring the
design of large systems, IEEE Software, 7(1), 1990, 66-73.

[13J S. Choi & W. Scacchi, SOFTMAN: An environment for
forward and reverse computer-aided software engineering,
Information and Software Technology, 33(9), 1991, 664-674.

[14J A. Haberman & D. Perry, System composition and version
control for ADA, Software Engineering Environments, Tech­
nical Report, Carnegie-Mellon University, Pittsburgh, PA,
1980, 331-343.

[15J W . Tichy, Configuration management: Trends in software,
vol. 2 (Chichester, UK: John Wiley & Sons, 1994).

[16J M. Heimdahl & N. Leveson, Completeness and consistency
in hierarchical state-based requirements, IEEE Transactions
on Software Engineering, 22(6), 1996, 363-377.

[17) D. Jackson & J. Wing, Lightweight formal methods,
Computer, 29(4), 1996, 21-22.

Biographies

Song-James Choi is an Associate Professor of Computer
Science at the California State University at Fullerton
(CSUF). He received his M.Sc. and Ph.D. in computer
science from the University of Southern California, with
emphasis in software engineering. His interests are software
engineering, software development process modelling, soft­
ware acquisition, configuration management, and reverse
software engineering.

Walt S cacchi is a research computer scientist at the
Institute for Software Research (ISR) at the University
of California, Irvine. He joined ISR in 1999 after serving
on the faculty at the University of Southern California
since 1981. He received his Ph.D. in information and com­
puter science from the University of California, Irvine, in
1981. From 1981 to 1991 he directed the USC System Fac­
tory Project, and from 1993 to 1998 he directed the USC
ATRIUM Laboratory. His interests include organizational
studies of software development, software process engineer­
ing, software systems acquisition, electronic commerce, and
collaborative work environments. He has published more
than 100 research papers and consults widely to clients in
industry and government agencies.

D
ow

nl
oa

de
d

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

]
at

 1
0:

22
 1

8
D

ec
em

be
r

20
17

