Open Acquisition: Combining Open Source Software

Development with System Acquisition
Final Report

Walt Scacchi
Institute of Software Research
University of California, Irvine
Irvine, CA 92697-3425 USA
949-824-4130, 949-824-1715 (fax)
Wscacchi@ics.uci.edu

June 2002

This report can be found on the Web at:
http://www.ics.uci.edu/~wscacchi/Papers/DAU/OpenAcquisition.pdf

The research described in this report was supported by the Defense Acquisition

University through contract N487650-27803. No endorsement implied. Mark Ackerman
at the University of Michigan, as well as Mark Bergman and Margaret Elliott at the UCI
Institute for Software Research, are collaborators on the research described in this paper.

mailto:Wscacchi@ics.uci.edu

Overview to the Final Report

This report describes the results obtained during the first year of a research project that
investigates open software acquisition processes and architectures. These results are
organized and presented as a separable research paper in a form intended for external
publication. It constitutes an original, previously unpublished research paper, though it
also serves to document research that is still in progress. The intent is that the author will
then submit research articles derived from this report for journal publication.

The report contain all required sections—including data, analysis, results and conclusions
as appropriate, though this is not the exact structure of sections use to organize the
presentation of the research results. The report begins with in introductory section to
introduce the topic and motivate the problem of open software acquisition. The second
section provides background technical information and/or literature review as appropriate
for the topic and field of study. The third section is more dependent on the research
strategy and other information appropriate for an academic article in the author’s field of
inquiry. The fourth section include data, analysis, results, findings, discussion or other
new knowledge that represents a contribution in the field of study. The fifth section
discusses and summarizes key research objectives and findings, along with conclusions
that follow, and present an agenda for continued research along the lines of the
investigation. A set of references follows adhering to the style and format appropriate for
publication in the author’s field. Figures and tables are incorporated into the document
so the finished product is camera ready.

As such, the research paper that constitutes the Final Report from the first year of this
research project follows.

Open Acquisition: Combining Open Source Software
Development with System Acquisition

Walt Scacchi
Institute of Software Research
University of California, Irvine
Irvine, CA 92697-3425 USA
949-824-4130, 949-824-1715 (fax)
Wscacchi@ics.uci.edu

Abstract

This study explores and develops concepts leading to the combination of best practices
from open source software development (OSSD) projects with emerging capabilities for
virtual system acquisition. Virtual system acquisition is an evolving approach to
demonstrate significant improvements in reducing the cost and cycle time for acquiring
software-intensive systems, while improving their quality. It employs techniques and
advanced information technology (IT) for electronic government applications. Open
source software development is a relatively new approach to the development,
deployment, and ongoing evolution of complex software system applications. The open
source approach rethinks what are the resources, products, processes, and production
environments necessary to develop large-scale, easy to use, and highly reliable software
system applications. Open acquisition is a new concept that combines the best practices
from advanced electronic government techniques with those from open source software
development. The study described in this paper thus develops, demonstrates initial
capabilities, and outlines further steps needed to make open acquisition techniques part of
the evolving framework for realizing virtual system acquisition.

Introduction

Acquisition of complex, software-intensive systems is a subject of growing importance
and substantial government expenditure both for civilian and military systems. The
acquisition of research and system development services gives rise to the new
technologies that get incorporated into complex systems. The current U.S. Federal
investment in acquiring R&D now exceeds $100B for FY02. Within the DoD
community, R&D in the Concept and Technology Development stage is a critical part of
the overall acquisition life cycle for major program acquisitions like for the DD(X)
[2002] class Naval surface warfighting ships, or the Joint Strike Fighter aircraft for use in
all branches of the military in the U.S., and in the NATO ally countries. These are
significant acquisitions representing hundreds of billions of dollars in investments and
expenditures over periods of 10-20 years. However, the acquisition of complex software-
intensive systems has been problematic for decades [Glaseman 1982]. Furthermore, the
U.S. Department of Defense currently anticipates shrinkage in its acquisition workforce
by up to 50% over the 1995-2005 period due to staff attrition and retirement. Thus, DoD

mailto:Wscacchi@ics.uci.edu

in particular, and the U.S. Government overall, must find new ways to acquire complex
systems, as well as the research and development services that get incorporate into them.

One approach to address and investigate problems in acquiring complex software-
intensive systems employs the concept of iteratively modeling, simulating, and evolving
the specification and architectural design of such systems. This approach is called virtual
systems acquisition [Scacchi and Boehm 1998]. Virtual system acquisition is a long-term
approach to researching and developing radically new approaches for acquiring systems
[Nissen, Snider, and Lamm 1998] with lower cost, shorter development cycles, agile and
adaptive techniques that can realize high quality systems. Work to date on this approach
has resulted in the formulation and demonstration of the ability to model, simulate, and
redesign system acquisition processes that can scale to large, distributed process
architectures [Choi and Scacchi 2001, Scacchi 2000]. This research work has also
produced Web-based environments that enable the prototyping and enactment of
digital/electronic government (E-Government) processes and knowledge management
capabilities [Scacchi 2001].

The U.S. Federal Government is investigating E-Government strategies for procurement
and acquisition [Scacchi and Boehm 1998, Scacchi 2001], data storage and data entry
(e.g., electronic filings of tax forms by individuals, and SEC forms by businesses), E-
catalog based retail product sales (U.S. Mint), and smart cards [DG.O 2002, DGRC 2002,
Steyaert 2001]. The procurement of materials, goods, and contracted services through
acquisition activities represents one of the most frequently cited areas where E-
Government investments are advocated or being considered. Thus, procurement and
acquisition (hereafter acquisition) is compelling point of departure for this study.

How might open source development concepts be combined with emerging E-
Government approaches to acquisition? One new way is through open acquisition. Open
acquisition seeks to open for public sharing, discussion, review, ongoing development
and refinement, and unrestricted reproduction (replication and redistribution) the "source
code" of the products and processes of the business of government acquisition. Open
acquisition represents a concept that seeks more than just the adoption and use of open
systems [Meyers and Obendorf 2001], or open source software systems by government
agencies in the acquisition community, though such actions are compatible and merit
independent consideration.

The open acquisition concept introduced in this study seeks to explore the opportunities
that emerge when one views its purpose as including how to empower and engage an
interested acquisition workforce in understanding how acquisition processes and
practices can be made better, cheaper, and faster through the development of open
source processes, practices, and communities of practice for government acquisition and
related operations. This paper describes these concepts and provides examples of such an
approach. It also describes how both the existing and new generation of national
information infrastructure may be employed to support interactive participatory
development, refinement, redesign, continuous improvement, and community-based
evolution.

Background

This section identifies some of the central issues, practices, and opportunities that give
rise to the potential of open acquisition. These are found by examining the acquisition of
software-intensive systems and open source software development practices. In
particular, we are interesting in identifying shortcomings, challenges, and opportunities at
hand, in order to establish a foundation for how to proceed towards open acquisition.

The Acquisition of Software-Intensive Systems

We begin by establishing the context for the acquisition of software-intensive systems.
Acquisition of systems is governed within the DoD community by the DoD 5000
directives, and the acquisition life cycle process framework that they prescribe. This
framework is most commonly conveyed using the graphic in Figure 1.

THE 5000 MODEL

Process entry at Milestones

Technology Opportunities & " a o
User Needs . B, or C for within phases)

Frogram outyear funding
when it makes sense, but no
kater than Milestone B
{unless entering at C)

Single Step or
Ewoludion to Full
EE_\ A 10C apaki FOC

System Development
& Demonstration

/A

Pre-Systems Systems Acquisition Sustainment
Acquisition (Engineering and Manufacturing
Development, Demonstration, LRIP &
Froduction)

Figure 1. The DoD 5000 Acquisition Model [2001]

Here we see an overall view of the acquisition life cycle model as a linear sequence that
spans (a) Concept & Technology Deployment, (b) System Development and
Demonstration, (c) Production and Deployment, and (d) Operations & Support.
Unfortunately, such a model is monolithic, very abstract, and somewhat misleading. It is
monolithic in that for each of the four principal acquisition processes, their
decomposition, inputs, outputs, and supporting tools/capabilities is opaque rather than
transparent. This opacity resists revealing how things are supposed to work, where or
how important decisions are made, or how acquisition might be improved or redesigned.
This model is also abstract in that the four major sub-processes are themselves very

complex processes, since they might be highly iterative, incremental, and ongoing, with
many consequential decisions being made throughout. It is therefore misleading to expect
that all acquisitions follow the model in a strictly linear manner. Problems like these are
well known in the software process research and practice community [Scacchi 2001b].
Furthermore, as we look more closely as the DoD 5000 directives we find little or no
reference to how to most effectively operationalize or put the model into practice. We
also do not have access to any reference process model that might be amenable to
automated enactment support, redesign, or continuous improvement [Scacchi 1999, 2000,
Scacchi and Mi 1997, Scacchi and Noll 1997].

In an effort to begin to address these shortcomings, the DoD 5000 directives have been
further refined and articulated in a recent set of acquisition guidelines, like the DoD
5000.2-R [2001]. These guidelines stipulate mandatory procedures (or processes) that
must be performed in conjunction with the major Defense acquisition programs, which
these days are almost always software-intensive systems. However, looking closely at
these procedures we know find the following dilemma, as characterized in Figure 2.

DoD Regulation Guidance S000.2-https Ao, acg.osd, milfap/index.himl ﬂ
MANDATORY PROCEDURES FOR MAJDR DEFEMSE ACQUISITION PROGRAMS (MDAPS) AR
10 June 2001
Cffice of the Secretary of Defense
CS. Chapter 5 Program Design
EIC5.2 Systems Engineering
BICS.2.3 The following key systems engineesring activities shall ocour;
EICS.2.3.5 The following paragraphs discuss other important design considerations., Their
EICS.2.3.5.2 Madeling & Simulation (Mas)
EC5.2.3.5.2.3 Planning the M&S Approach
£5.2.3.5.2.3.1 The PM shall plan for and document the MRS approach as part of the
EIC5.2.3.5.2.3.2 The PM shall accomplish the fallowing:
£5.2,3.5.2.3.2.1 Map M&5 onto the design process to identify the care MaS
C5.2.3.5 2.2.2. 2 Identify which steps of the design process that MBS will
C5.2.3.5 2.3.2.3 Make necessary investments to enable execution of the M&3
£5.2.3.5.2.3.2. 4 Integrate M&S efforts over the life cycle of the system, fram
C5.2.3.5.2.3.5 Relate MBS to other acquisition activities such as Simulation Test
C5,2,3.9,2.3.3 The appropriate Lead Executive Component Executive or Service
£5.2.3.5.2.4 M&S Standards, M&S standards facilitate reuse, cammanality,
£5.2.3.5.2.5 Relationship of M&S and Testing. The PM shall use both testing and M&S
C5.2.3.5.2.6 M&S Support of Simulation-Based Acquisition, Whenever and wherever 4

Page - —— 2||'? T et R e g el 1

Figure 2. A partial view of the nested structure extracted from the DoD 5000.2-R
mandatory procedures for major system acquisition [2001]

This figure provides a partial view of the overall hierarchical (or "nested") structure of
the DoD 5000.2-R procedures, as shown for Chapter C5. What we see in this outline
view is that this chapter, like many others in the procedure set, has at least eight levels of
nested section sub-structure. Such complexity overwhelms most readers of the nearly 200
page procedures specification, making both performance and compliance with such
procedures very difficult to manage, track, or certify. Furthermore, like most software
development or systems engineering standards, the guidelines do not exist in a readily

usable form, other than as narrative text within an electronic document [cf. Freericks
2001]. What is likely to help here is a transformation of these procedures from an
informal narrative, into an open source set of process templates or electronic forms that
can be organized and managed as a database [Freericks 2001]. Such a transformation
would then establish a foundation for providing computer-based or Web-based
deployment, and other forms of browsing, navigation, and (semi-)automated process
enactment support. Computer-based models of the processes of the DoD 5000.2-R
procedures can follow from the transformation.

Recent research in system acquisition and acquisition reform [cf. Boehm and Hansen
2001, Nissen, Snider, and Lamm 1998, Schooff, Haimes, Chittister 1997] has given rise
to a new conceptualization of how dramatic improvements in acquisition cost, speed, and
resulting system quality might best be achieved [Anderson 2000, Meyers and Oberndorf
2001, SA-CMM 2000]. These advances, in general, build on best practices from industry
or industry-oriented research, or go beyond current "adversarial" views of acquisition in
commercial settings [Verville and Halingten 2001]. For example, modeling and
simulation of systems across the acquisition life cycle has been identified as a significant
opportunity for cost reduction and improvement in resulting system quality [Brown,
Grant, et al., 2000]. Similarly, virtual system acquisition has demonstrated how large,
complex process models for software system acquisition can be modeled, analyzed,
simulated, and redesigned using Web-based tools and techniques [Choi and Scacchi
2001, Noll and Scacchi 2001, Scacchi 2001a,b, Scacchi and Boehm 1998]. These
research efforts are complementary to emerging practices for E-Government [DG.O
2002, DGRC 2002] that have realized greatest success in applications addressing
procurement and acquisition [Nissen 1997, Scacchi 2001b, Steyaert 2001]. Thus the
potential exists for modeling, analyzing, simulating, redesigning, and ultimately
continuously improving the iterative, incremental, and ongoing practice of major system
acquisition processes, as well as other forms or venues for E-Government processes and
services.

Elsewhere, we have learned that radical change in acquisition practices will not occur
simply by making available new technological alternatives [Nissen, Snider, and Lamm
1998]. Instead, we have found that transformation and sustained improved on acquisition
processes and practices will most likely occur when members of the acquisition
workforce community are active participants in the transformation effort, and when they
are empowered and motivated out of personal and professional interests [cf. Kim 2000,
Scacchi 2001]. Such a situation may need to be both bottom-up (action initiated by
acquisition specialists) and top-down (management commitment of resources and
empowerment of acquisition specialists to make changes) [cf. Scacchi 2001]. Thus, the
lesson here is to pursue a course of action that combines or enables the capabilities of the
acquisition workforce community to take advantage of the new technologies for
acquisition support, as they participate in redesign and transform acquisition processes
and practices.

Open Source Software Development Practices

Open source is not the same concept as "open systems". Open source is a broader, more
encompassing technique for exposing access to the underlying functionality, operation, or
interoperation of a software system. Open systems traditionally refer to a technology
scheme that provides customers, external developers, or end-users to access the internal
functions of a complex system via "public interfaces." These interfaces take the form of
open, accessible connectors or plug sockets. The structure of these interfaces denote the
points of contact through which pre-specified types of program data, control signals, and
error messages flow in or out.

In open source software (OSS), the source code, as well as its surrounding documents and
artifacts, all serve as the public interface to the system. Access to system functionality is
not limited to functions calls through "application programming interfaces" (APIs).
Access to functionality, as well as the ability to enhance, restructure, tune, debug, or re-
host system functionality is realized through access to open source code, documents, and
artifacts. An open system may consist of hardware, software, and network system
components. Subsequently, the potential exists for making all of the components
functionality accessible through public interfaces that consist of the components "source
code", documents, and artifacts. Figure 3 provides a view of the layers of software,
hardware, and network components that can be found in an open source, open system. As
Figure 3 suggests, an open system can itself be composed out of open source
components.

With this in mind, we now turn to examine the products, processes, and support
environments for OSS.

Open Source Software Products

OSS program code is the typical focus of most open source development activities. These
computer programs are written in a programming language like C, C++, Perl, Python, or
others. Documents that specify or describe how these programs function or interoperate
are also products of open source software development. These documents may include
specification or design diagrams, end-user manuals, program installation scripts, threaded
email discussion forums, Web-based source code repositories, and other Web site
contents [Scacchi 2002b]. OSS development (OSSD) projects rely on diversity of
software informalisms [Scacchi 2002b] as information resources, documents, artifacts, or
products that can be browsed, cross-linked, and updated on demand. These informalisms
are socially lightweight information structures for managing, communicating, and
coordinating globally dispersed knowledge about who did what, why, and how. These
informalisms are easy to learn and use as semi-structured representations that capture
software requirements, system design, and design rationale. As OSS developers are
themselves end-users of their systems, then software system requirements and design take
less time to articulate and negotiate, compared to system acquisition projects that must
elicit requirements and validate system design with end-users who are generally not
software system specialists. Thus, a lesson learned from these observations is that
practitioners of open acquisition should be both users and developers of system
acquisition practices, and these practitioners should be provided with the ability to easily

1

G Displayhianager

nitra- Application
Senipting

hiozilla: Application
Program

niter- Application

Griome Ewlution:
FApplication Program

iMiord Periedt:
Application Program

:
>

| hiiddleware 1 | hiiddleware

ScriptingCsh

iy

Local Seners
(File Serwer, Prirtar

Physical Device

1

Linux: Operating
System

Physical Device

!
“etwork protoco

{TCPAP,
e _lIOP HTTP,.3

Figure 3. An example view of an open system of software and hardware
components, that may also be found in open source formats.

create, modify, share, and discuss informal descriptions of open acquisition products,
practices and outcomes. We recognize the opportunity for the templates or electronic
forms needed to better support the DoD 5000.2-R procedures might themselves be treated
and supported as informalisms for open acquisition.

OSS concepts can apply to any product that can be produced with or through the use of
computing systems that can be networked together. As seen next, these products can also
include the source code to processes for technical work or business operations involved
in system acquisition, if these processes can be specified in a form that can be compiled
or interpreted for automated or interactive execution in a networked computing
environment.

Open Source Processes

OSS programs emerge as the result of technical activities that are arranged and ordered in
a manner that can be described as a process—an OSSD process. This process may be ad
hoc, difficult to describe and repeat, or it could be more structured and follow a pre-
articulated scheme or formal process. In any case, it is reasonable to describe how the
OSS products are developed, used, and evolved as processes. Furthermore, these
processes may be descriptive, proscriptive, or prescriptive. Descriptive processes describe
what occurred, by whom, when, where, etc. Proscriptive processes describe what could
be done at certain points or in response to some event or condition. Last, prescriptive
describe how software development activities are suppose to be done, perhaps supported
by some means or mechanism that checks for compliance with the process prescription.
In any of these forms, processes can be codified into computational models that can be
analyzed, simulated, and iteratively refined by process users in many different ways [Noll
and Scacchi 2001, Scacchi 2000, 2002a, Scacchi and Mi 1997, Scacchi and Noll 1997].
Examples will follow in a later section.

OSSD projects enact "Internet time" development practices, much like Microsoft,
Netscape, and others [Cusumano 1999, MacCormack 2001] follow when market
conditions demand rapid response to substantial competitive threats [cf. Meyers 1993].
Internet time efforts emphasize minimizing time to market and delivery of incremental
improvements in functionality, instead of complete well-engineered functionality that
gives rise to much less frequent product releases. Internet time development also focuses
on collecting feedback from early users as a way to determine which incremental
functionality, and which perceived errors in available functionality matters most, as a
way to determine emerging or shifting system requirements [Truex, Baskerville, and
Klein 1999].

OSSD projects are iteratively developed, incrementally released, reviewed and refined by
OSS developers working as peers in an ongoing agile manner [cf. Cockburn 2001]. These
methods ensure acceptable levels of quality, coherence, and security of system-wide
software via continuous distributed peer review, testing and profiling. OSSD efforts are
hosted within decentralized communities of peers [Scacchi 2001, 2002, Sharman 2002]
that are interconnected via Web sites and OSS repositories. Community oriented OSSD
also gives rise to new kinds of requirements for community building, community

10

software, and community information sharing systems (Web site and interlinked
communication channels for email, forums, and chat). In contrast, most system
engineering projects associated with major system acquisition efforts are targeted for a
centralized corporate setting, where access and visibility may be restricted to local
participants. OSSD standards [Freericks 2001] reinforce best practices are apparently
easier to access and follow due to their Web-based deployment, and a long history of
community oriented participation in developing implementation-oriented standards in an
open source manner. These compare favorably to the institutionally oriented processes
used to develop software engineering and acquisition standards that are much more
cumbersome and often less effective at ensuring system quality.

Open Source Support Environments

OSS emerges from the efforts of software developers who are typically distributed across
space and time. They do not work in a single or central workplace, and often there is no
formal management hierarchy in place to schedule, plan, and coordinate who does what,
with what resources, etc. Instead open source developers contribute their effort to projects
that they find interesting, significant, or otherwise professionally compelling. Open
source developers generally have regular paid jobs, though they may or may not be paid
to work on an open source project. Thus, traditional organizational models for how to
motivate employees or how to organize and manage technical staff may not apply.
Nonetheless, open source development projects thrive, as it now appears that tens of
thousands of OSSD projects are underway.'

OSSD projects are "organized" as a loosely knit community of interested developers and
end-users who work and interact online via Web-based computing environments [Scacchi
2002b]. These environments provide access to a global information infrastructure that
includes routine support for email and discussion forums (electronic bulletin board), Web
sites for posting or sharing open source artifacts, centrally administered multi-version
source code directories, software extension schemes and mechanisms (e.g., multi-
application scripting languages, like Perl and Python, for creating interoperating
systems), and more [Scacchi 2002]. Developing trust, "geek fame", and being recognized
by peers for making technical contributions [Pavlicek 2000] are part of the "glue" that
binds open source developers together with their global information infrastructure to
create the productive units or virtual organizations [Noll and Scacchi 1999] that populate
the world of OSSD. These virtual organizations are thus part of what must be reproduced
and enacted in the world of open government and open acquisition.

OSSD tools are inexpensive/free, comparatively easy to use and learn. These tools are
freely available at little/no cost. They are both given and received as public goods or gifts
[Bergquist 2001]. The most widely used OSS tools support concurrent version control
and repository management, Web servers and browsers, communication applications

! For example, the Web portal site, www.sourceforge.net, identifies more than 40,000 registered open
source development projects and more than 400,000 open source developers. 15% of these projects are
identified by their developers as "stable" systems suitable for production application, or "mature" systems
being sustained and incrementally evolved to improve their usability, system performance, and to expand
the diversity of platforms on which they operate.

11

http://www.sourceforge.net/

(threaded email discussion forums, instant messaging), bug/issue reporting and resolution
tracking, and various code development tools (text editors, integrated development
environments, etc.). Access to and availability of OSS tools is generally not a problem or
barrier to participation in an OSSD project.

Faster and better OSSD conditions in tend to drive down the cost of developing software,
at least in terms of schedule and budget resources. Most OSSD projects are voluntarily
staffed who want to work on the project, who will potentially commit their own time and
effort, and who find personal and professional benefit from the OSSD development
efforts [Scacchi 2002]. Minimal management or governance forms [Sharman 2002] are
used to direct OSSD efforts, compared to the more rigidly hierarchical, managed,
planned, staffed, controlled, and budgeted project activities typical for traditional system
engineering efforts associated with major acquisition programs.

Research Strategy

In order to explore, develop, and demonstrate the concept of open acquisition, we need a
scheme that articulates and integrates relevant concepts, techniques, and tools that span
the background issues already described. This means we seek to identify results from
research into system acquisition, virtual system acquisition, E-Government, and studies
of OSSD to lay the foundation for how open acquisition might be realized and
demonstrated. The results of most interest are those that identify problems, opportunities,
or challenges in acquisition and OSS products, processes and support environments. With
this we can then develop and demonstrate/prototype an approach to open acquisition, as
well as lay out a research agenda for further study.

Among the problems we found in looking at system acquisition in the context of the DoD
5000 model and mandatory procedures, most outstanding was the lack of standard
electronic forms or templates that could be used to capture information that represents
progress through the acquisition life cycle process. Similarly, we found the acquisition
process was in a complex, highly nested narrative form that is not amenable to automated
support. Subsequently, we also found there are essentially no automated support tools or
environments which enable acquisition products to be disseminated in standardized
electronic forms, instantiated, tracked and managed across a community of users who
might be connected by the Web.

OSSD informalisms appear to be suitable candidates for the products of acquisition.
Web-based process modeling notations may also serve as semi-structured informalisms
that can be designed to be enactable via a Web-based process modeling and enactment
environment. Web-based tools and environments have been previously demonstrated to
be suitable to support the participative redesign of procurement and acquisition processes
appropriate for E-Government applications. Tools from virtual system acquisition
research also enable the distributed modeling and simulation [Kuhl, Weatherly, and
Dahlmann 1999] of complex acquisition processes into process architectures that can be
prototyped for enactment and review over the Web [Choi and Scacchi 2001]. Web-based
community portals and other freely available OSS applications and tools are also

12

essential elements that provide an opportunity for entry into the dispersed community of
(acquisition workforce) users as developers and maintainers of their own (acquisition)
OSS products, processes, and support environments.

Participative redesign of acquisition processes requires the processes be described in
accessible open source notations, that can be modeled, analyzed, simulated, prototyped
and redesigned in a distributed, iterative, and peer-reviewed manner [cf. Scacchi and Mi
1997, Scacchi and Noll 1997]. This is similar in kind with how OSS is developed,
deployed, reviewed, and redesigned. Thus, we need an open source process modeling
notation that is capable of supporting acquisition products, as well as simulating and
enacting acquisition processes, in a manner that can be supported by process-directed,
Web-based tools or environments.

With these concepts, techniques, and tools in mind, we can now provide the results of a
small exploratory study that seeks to put this research strategy into a demonstrable
prototype form.

Prototyping Study and Results

Our goal at this point is to present the results of an exploratory study that seeks to
demonstrate the concepts, techniques, and tools for open acquisition. The study combines
research results from system acquisition, virtual system acquisition, E-Government, and
open source software development, following the research strategy above.

In this study, we propose a candidate process modeling language, PML [Noll and Scacchi
2001] to serve as an OS process modeling notation for specifying open acquisition
processes. Exhibit 1 provides an example of a PML specification for a process for
submitting proposals, proposal budgets, and certifications in response to a request for
proposals [Nissen 1997], in this case, which appear within a Broad Agency
Announcement (BAA). The exhibit presents an excerpt from the process, since the
complete specification of this process is a few pages in length. What is presented reveals
key features of a process model specification. These include the naming of the process,
its component (process step) actions that denote where user-interaction occurs. It also
identifies the required (input) and provided (output) resources for each process
component, and the user (agent) roles for each process component. Then it includes a
script that specifies input forms and outputs (products) that denote informalisms
associated with each process step. PML thus offers a notational scheme that can specify
acquisition processes. However, it may be clear that PML is not a natural language, thus
it does require some technical skill for developing a process description in a form suitable
for process modeling. Thus, it seems that perhaps a more visual scheme for graphically
modeling of processes that automatically constructs the PML notation from a process
flow-chart built visual process editing tool with may be needed to facilitate a more
diverse set of users [cf. Scacchi and Mi 1997].

13

process Proposal Submit {
action submit_proposal {
agent { Principallnvestigator }
requires { proposal }
provides { proposal.contents == file }
script {"<p>Submit proposal contents.\
<p>BAA to which this proposal responds: \
<input name='baa' type="string' size=16>\
<p>CBD source for this BAA: \
<input name='cbd' type='string' size=50>\

Proposal title: <input name='title' type='string' size=50>\

Submitting Institution: <input name="institution' type='string' size=25>\

Principal Investigator: <input name='PI' type='string' size=20>\
Email: <input name='Plemail' type='string' size=20>\

Contact: <input name='contact' type='string' size=20>\
Email: <input name='contactEmail' type='string' size=12>\

Proposal contents file: <INPUT NAME="tile' TYPE='file">"
}
b

action submit_budget {
agent { Principallnvestigator }
requires { proposal }
provides { proposal.budget == file }
script {"<p>Submit budget.\

Proposal title: <input name='title' type='string' size=50>\

Budget file: <INPUT NAME='file' TYPE="file">\

Email address of contact: <input name='user id' type='string"™>"

}
b

action submit_certs {
agent { Principallnvestigator }
requires { proposal }
provides { proposal.certs == file && proposal.certifier == user _id }
script {"<p>Submit electronically signed certifications.\

File containing signed certifications: <INPUT NAME='file' TYPE="file">\
<p>User ID of signature: <input name="user id' type='string™"

b
b

Exhibit 1. An excerpt from an acquisition process specified in a candidate open source
process modeling language (Noll and Scacchi 2001).

14

Figure 4 provides a display of an electronic form that is used to capture information about
a proposal being submitting a part of the modeled acquisition process.

PML Engine - Mozilla {Build 1D: 2001112009}

. File Edit View Search Go Bookmarks Tasks Help Debug O

Q 0 @ Q S5 hitp:/ A ics uci edus~wscacchi/DAU-Den’ :l [;Qlﬁﬂﬂft—h] I Q:go

et |

Action submit proposal

Submit proposal contents.

B to which this proposal responds: [N00244-01-R-0033

CBD source for this BA A
|http:,.“Meb.nps.naw.milf”menissenfearpfF\(DDfF\HOOEﬁAﬂa.ch

Proposal title:

IEprDring Open Software systerns Acquisition Processes and Architectures
Submnitting Institition:

|| Ilnstitute Software Research, University of Califarnia, [rvine

i Principal Invesigator: I\Nalt Scacchi Ermnail }wsc:ac:u:hi@iu:s.uu:i.edu
Cantact: IKiana Fallah Ernal: kaallah@iu:s.uu:i.edu

Proposal contents file: IH:\perusals\,DAU—EARP Browse. .. |

anE.l clear |

Mext Task | Exec: executing root

Ezxec: executing proposal subtnit
Exec: ezecuting subtmit proposal

[= & | Document: Done [0.211 2ecs) | = (=]

Figure 4. An electronic form that captures information required for an proposal
submission process as part of a mandatory acquisition procedure

This electronic form captures data such as the BAA solicitation number, the BAA source
document, and other information provided by the proposal submitter. Information in the
lower part of the screen provide navigation control buttons for the end-user (e.g., a
proposal author or submitter) to signal progress in moving to complete the specified
process step. In addition, in the lower right, a record of activities being tracked by the
process support system is also reported to the user. This information is optional, but
provides a scheme for documenting what activities were performed, and it is
comparatively easy to add timestamps that would make for a more complete audit trail.

15

Figure 5 displays the output that result for the processing of the form from Figure 4. This
"product" represents information that is uploaded into a target database management
system that collects and stores the proposal submission data. This display is optional in
that it displays what information is uploaded, rather than how it might be reformatted for
end-user display or reporting purposes.

PML Engine - Mozilla {Build 1D: 2001112009} | _ (O] x]
. File Edit View Seach Go Bookmarks Tasks Help Debug G4

Q O @ O |r\} http:#ﬁwwm.iu:s.uci.edu!”w&cacchi:’DAU-Den'_.l [*G’._Seamh] | ng
I

Result

|

3..’

subtmit_proposal

baa=100244-01-F-0033

CBD-source = hitpfweb nps navy mil'~menissenfearpFYOOTFYOOBAA doc
title = Ezploring Cpen Software systemns Aceuisition Processzes and Architectures
ihstitution = Institute Software Eesearch, University of Califormia, Trvine

PI ="Walt Scaccht

Plemal = wscacchi@ics uci edu

contact = Kiana Fallah

» contactEmail = kallahi@ics uci edu

o file = H'proposals\DATT-EARP-200 \DATT-Proposal-01-Final doc

—= .
* ¥ ¥ ¥ ¥ ¥ ¥

e

Mext Task | Ezec: executing root

Ezec: executing proposal submit
Exec: executing submit proposal
subrmitF orm: submitting submit_proposal

[& &5 | Document: Done 01 secs) | I | — I =5

Figure 5. A display of outputs collected from the electronic form in Figure 4 for
transfer into a remote database management system supporting acquisition
processes.

16

Other process actions depicted in Exhibit 1 follow a similar pattern of presenting
electronic forms for capturing mandatory acquisition information about the submission of
budget and certification documents. These actions are not shown. Figure 6 jumps to a
later point in the acquisition process where a Program Manager has the opportunity to
select a proposal for a funding award, if the proposal is acceptable and can be
subsequently justified and approved [cf. Scacchi and Noll 1997]. So a Program Manager
would select proposals for review from among those available (though in this example,
only one proposal is available for review or selection). The Program Manager would then
"click" on the proposal (hyperlink) chosen for review.

PML Engine - Mozilla {Build 1D: 2001112009} H=] E2
» File Edit Miew Seach Go Bookmarks Tasks Help Debug 04

| G @ @ Q % http:f‘f‘www‘l.iu:s.uu:i.eduf‘"wscacchi.v'D.-’-'l.U-Den'_.I [’@hﬁeaﬂ:h] I Cgo

- |

Action MakeTechnicalSelection

Resources

s DATT Proposal TCT ISR 2001-2003
¢ Other proposals would listed here

dong | clear |

Exec: executing root -]
m Exec: executing Predward ToBe =
Exec: executing PostSolicitation
Exec: executing ProcessPropF orfdoward =
Exec; executing EvaluateProposal
Exec: executing MakeTechnicalZelection =
M & oF | Document: Done (016 secs] :_.ﬂﬁé'

Figure 6. A form for selecting from a list of pending proposals awaiting review and a
decision to select for funding by an acquisition Program Manager.

17

Figure 7 displays the result of clicking on the proposal the Program Manager has chosen
to review from those on the preceding list. The PM can now browse and read the text of

the proposal prior to making a selection decision. In this manner, it may be possible or
convenient for a PM to be able to browse multiple proposals concurrently by viewing
each one in a separate window. Such a choice would be at the discretion of the PM use

PML Engine - Mozilla {Build ID: 2001112009} [_ O]

. File Edit “Wiew Search Go Bookmarks Tazkz Help Debug G4

G O @ Q I_r\\P hittp: A Awie] ice uci. edud ~wscacchi/DAU -Den I['CL_SEEICI'I] Cgo
i

=

T.

PROPOSAL NUMEBER:

Submitted to
DAY EXTERHAL ACQUISITION RESEARCH PROGRAM (FY 2001)
In Response to 3Jolicitation: HO0244-01-R-0033

THE PRIMNCIPAL INVESTIGATOR and Co-Principal Investigator:

Ticle Firsrc Name MI Last Name
br. Walter 8. Scacchi (PI}
Professor Richard H. Taylor {(Co-PI}
Phone Number (including Area Code): 949-824-4031 (Scacchi), 949-824-6429 (Taylor
Fax Nunber: 949-824-1715
2 E-mail Address: Wscacchidics.uci.edu, Taylor@dics.uci.edu
Department/Division: Institute for Software Research
| Institution: University of California at Irvine
L Street/P.0. Box
Institute for Software Research
ICS Dept.
Bm. C5444
Irvine, CA 92697-3425
City, S3tate Zip Code

Proposal Title: Exploring Open Software Systems Acyguizition Processes and Archite

Liife

[1]

1]] |k

Exec: executing root

MI Exzec: executing Predward ToBe

Ezec: executing PostSolicitation

Ezec: executing ProcessPropFor Award
Ezec: executing EvaluateProposal

Ezec: executing WakeTechnical5election

[& % EH Document: Done [0.411 secs) ==

1w

I 1]

Figure 7. A display that provides a Program Manager user with the source text to a

proposal submitted for review and selection decision by the PM.

18

With these examples in mind, we can summarize the capabilities that have been
demonstrated and displayed in Exhibit 1 and Figures 4 through 7.

First, the "source code" in Exhibit 1 seeks to convey that acquisition processes can be
specified using a process modeling notation. Such a notation, in this case PML, may be a
suitable candidate for use as an open source notation for specifying open acquisition
processes.

Second, Figure 4 demonstrates the capability to specify electronic forms, such as those
that are mandatory for acquisition. Though such an example may not seem too
compelling, the forms or templates required by the mandatory DoD 5000.2-R [2001]
procedures could be described in a common notation that could serve as open source
approach for implementing acquisition guideline standards [cf. Freericks 2001]. Thus,
PML supports the specification of electronic forms, artifacts (e.g., reports, screen
displays, hypertext links, etc.), and other informalisms that might be products of open
acquisition processes.

Third, the electronic forms and the sequences in which they appear are part of the overall
workflow that is implied in the DoD 5000 model and directives. The order in which these
forms are presented to the appropriate role-specific end-user, is subject to change over
time, much like the content and diversity of forms used to collect the mandatory reporting
data. The forms and the presentation sequence, when specified in an open source process
modeling notation, can therefore be subject to distributed review and redesign within the
acquisition workforce community.

Fourth, Figures 4 through 7 point to the ability to develop and deploy process-directed
environments that can model, prototype, or enact open acquisition processes. In this
regard, PML becomes the source code language for "programming" open acquisition
processes that can be coded, browsed, reviewed, and executed by members of the
acquisition workforce community. This of course is a technical task that not all members
of the acquisition workforce may choose to master, but for those who do, they become
the community members who are empowered to develop, code, review, or redesign open
acquisition processes. As noted above, the availability of other tools, like a visual process
model editor, may make this task simpler or easier to learn and master.

Fifth, Figures 4 through 7 also convey the capability that the process-directed
environment for modeling, prototyping, and enacting open acquisition processes is Web-
based. This is demonstrated by the use of a common Web browser as the user interface to
the process environment. This of course implies that any information that might be
accessible on the World Wide Web, such as the Defense Acquisition Deskbook [2001],
can also be accessed or integrated into an open acquisition process Web environment.
Furthermore, in these examples, we use the Mozilla Web browser, which is itself a large
open source program that is available for use on a variety of computing platforms, as well
as subject to continuous improvement from a very large community of Mozilla users
distributed around the world. Therefore, the process-directed environment for supporting

19

and enacting open acquisition products and processes can be accessed essentially
anywhere acquisition workforce community members may be.

Sixth, as found in related research in virtual system acquisition, a PML-like language for
specifying acquisition process models, could also be targeted for performance analysis
through distributed simulation [Choi and Scacchi 2001, Kuhl, Weatherly, and Dahlmann
1999]. Such a capability for distributing the simulation of open acquisition processes, is
to enable a broader range of acquisition workforce community members to participate in
running and reviewing the results of given simulation run. This serves to insure that
sophisticated acquisition process redesign tools and techniques are available on a global
basis, if needed.

Seventh, a more primitive version of PML and its Web-based process environment has
been used to support the redesign of contract management processes used within the
Acquisition Directorate at the Office of Naval Research [Scacchi 2001]. In that setting,
staff members from acquisition workforce at ONR Headquarters were empowered by
senior management to redesign their acquisition sub-processes by interacting with
developers capable of using the PML and its Web-based environment. ONR staff from
other ONR field offices across the U.S. could at their convenience access and provide
distributed peer reviews of the processes designed or redesigned by Headquarters staff, so
as to collectively improve the process forms and sequencing so that it met their needs.
This ability to participate in an open acquisition process redesign, distributed peer review
and refinement was judged to be a critical factor by the ONR acquisition workforce staff
in achieving the overall success that was realized. In their setting, the success was
measured by a drop in "procurement action lead time", the acquisition performance
metric used at ONR to measure process cycle time [cf. Meyers 1993], from weeks to days
and then to hours [Scacchi 2001].

Last, given the capabilities and accomplishments demonstrated in this exploratory study,
it should be clear more needs to be done before these results can be applied and deployed
for widespread use across the acquisition workforce community. In particular, in order to
succeed, we believe the acquisition workforce community needs to (a) be seeded with
start-up resources, capabilities, and personally and professionally motivated developers,
in order to (b) take over community ownership of open acquisition products, processes,
and support environments. This opinion is derived from some additional, yet preliminary
observations about what enables OSSD projects to succeed. The central observation
motivating this opinion comes from an ad hoc review of "stable" and "mature" OSSD
projects accessible from the www.sourceforge.com community portal Web site (cf.
Footnote 1). Here it seems that most sustained OSSD projects do not start from a blank
sheet, but instead start from an investment that provides a working system that its
community of developers and users find attractive and full of potential to be improved
and grow into something great. The exploratory study described here is merely a
demonstration of the approach and capability, rather than the effort needed to provide a
viable "seed" that the acquisition workforce community can take ownership of and grow
into something evermore useful, powerful, and capable. Nonetheless, the research results
presented here do being to show the direction for how to realize such potential.

20

http://www.sourceforge.com/

Discussion, Conclusions and Agenda

Prior studies of computing and bureaucratic reform in government operations indicate
modest success in improving operational efficiency, while more frequently reinforcing
the dominant political order as the overall outcome. More substantial transformation of
government operations and business processes like acquisition occurs through
participation, empowerment, engagement, and accountability of the people who get to
design or redesign their work processes and practices in a manner that can be supported
by their information systems. Complex systems need to be designed and evolved in a
manner that continually engages its developers as users, and enables end-users to act as
developers, builds and sustains community values via sharing and caring for the system.
Systems that are opaque or inaccessible to the capabilities and interests of their
developers, users, or maintainers, won't encourage or facilitate the emergence of a
community of interest that wants to support, sustain, and evolve the system. A
community of peers, or even a meritocracy, cannot emerge or be formed by
administrative order, command, or directive. Instead the participants must be able to
access and change things about a system's operation or function in a manner they find
socially empowering or personally satisfying.

Providing computer processable, open source representations of acquisition products
(artifacts), processes, and support environments enables participants to see and discuss
their existing as-is work practices, as well as identify problematic aspects and
opportunities for improvement. A process representation notation that accommodates the
open source specification of acquisition processes [Scacchi and Noll 1997, Scacchi 2001]
needs to be developed, shared, peer reviewed, and evolved by the acquisition community.
Providing an open source model of the to-be work processes that incorporates
improvements that participants empowers them to select among additional suggested
process redesigns that can mitigate or remove the problematic aspects they perceive. This
kind of process redesign capability was successfully demonstrated in a case study
performed within the acquisition directorate of the Office of Naval Research [Scacchi
2001].

Strategic assurances among the process owners, users, and system developers to work
together in different roles but as peers, encourages accountability and shared
responsibility, rather than suspicion, doubt, or bureaucratic obsfucation. Web-based
prototypes provided the opportunity for remote participants to review, comment on, and
identify further improvement with what the core developers achieved prior to their input.

Overall the transformation that occurred at ONR resulted from an open source, process
redesign effort that was supported with Web-based information system technology for E-
Government that could interpret and act on the process source representations [Scacchi
2001]. These results serve as the motivation and foundation for exploring how concepts
and practices for E-Government and open source system development can be explicitly
combined to create an evolving and continuously improving approach to open
acquisition.

21

The Research Agenda for Open Acquisition

This concept of open acquisition raises a number of important new questions for research
and further investigation. For example, would open acquisition allow for the
establishment of community Web portals or other open test-beds where alternative
system acquisition processes or practices might be (re)designed, prototyped, and
evaluated via collaborative experimentation and engagement [Scacchi and Boehm 1998,
Scacchi 2001]? Would open acquisition products (artifacts), processes, and IT support
environments enable more complete assessment of the financial and infrastructural
costs/benefits of new legislation that is created and imposed, but otherwise be unfunded?
Thus, the overall purpose of this paper was to introduce, motivate, describe, and provide
examples of the concept and enabling infrastructure for open acquisition of complex
software-intensive systems. This purpose in turns serves as a point of departure for
identifying some of the central topics that merit further research in order to advance the
deployment, and practice of open acquisition.

The research described in this article builds on and further refines a promising new
approach to the acquisition of large and complex software-intensive systems. This
approach is called virtual system acquisition. However, the technology roadmap and five-
year plan for research into virtual system acquisition [Scacchi and Boehm 1998], and the
spiral model on which it is based [Boehm and Hansen 2001], did not anticipate the
potential of open source system development, nor open acquisition processes and open
process support environments. Nonetheless, the roadmap as conceived and published in
1998 remains viable and timely. Thus progress along the R&D paths outlined in the
roadmap remains on course, and the research agenda for virtual system acquisition
remains in tact, though revised to accommodate open acquisition concepts and
techniques.

Open acquisition represents a combination of recent advances in virtual systems
acquisition research, E-Government and open source software development concepts to
create a new capability for open acquisition operations and processes. However, virtual
systems acquisition and open acquisition are not incompatible; quite the contrary. Virtual
systems acquisition and open acquisition are more a hand-in-glove relationship. Virtual
systems acquisition is based on modeling and simulating the emerging architectures of
software-intensive systems, and of the acquisition processes through which they are
acquired, engineered, and deployed.

Open acquisition points to the need and benefit for making the models and simulations
for virtual systems acquisition open source. Open source processes can enable the
continuous sharing, review, and improvement of both system (product) and (acquisition)
process by the community of practitioners, developers, end-users, and former participants
involved in major system acquisition efforts. These models of the target systems and
processes arising from open acquisition can be openly developed, shared, and improved
using web-based process support environments. These Web-based environments then
provide convenient access, while enabling rapid communication and timely update of
system and process models and simulations.

22

Thus, the remaining agenda for research into virtual systems acquisition points to the
need for exploratory development, prototyping, and experimental integration of an open,
Web-based virtual systems acquisition environment with commercial-off-the-shelf
software development and project management environments. These steps are in line
with, and represent the final stages of, the five-year plan for research originally outlined
by Scacchi and Boehm [1998]. That plan accounts for the contributions of government,
industrial, and academic experts about how to best improve the acquisition of complex,
software-intensive systems, as perceived in the mid-late 1990's. Beyond this, open
acquisition also enables new research efforts to be focused on exploration of open
government, as an extension and generalization of open acquisition, and on the
prototyping of a new Web-based test-bed” that enables large-scale modeling, simulation,
and related experimentation with complex systems and complex process architectures.
As such, open acquisition represents a promising contribution to a new vision for how the
acquisition of software-intensive systems might be dramatically improved.

References

BGen. (Ret.) F. Anderson, Smart Business 20/20: Preparing for the Future -- DAU
Business Plan for 2000-2001, November 2000.

ARO, Implementing Acquisition Reform in Software Acquisition, Navy Acquisition
Reform Office, http://www.acg-ref.navy.mil/turbo/refs/software.pdf, 1999.

M. Bergquist and J. Ljungberg, The power of gifts: organizing social relationships in
open source communities, /nfo. Systems J., 11(4), 305-320, October 2001.

C.D. Brown, C. Grant, D. Kotchman, R. Reyenga, and T. Szanto, Building a Business
Case for Modeling and Simulation, Acquisition Review Quarterly, 311-328, Fall 2000.

B. Boehm and W. Hansen, The Spiral Model as a Tool for Evolutionary Acquisition,
CrossTalk, 2-11, May 2001.

M. Cusumano and D.B. Yoffie, Software Development on Internet Time, Computer,
32(10), 60-69, October 1999.

J.S. C. Choi and W. Scacchi, Modeling and Simulating Software Acquisition Process
Architectures, Journal Systems and Software, 59(3), 343-354, 15 December 2001.

P. Clements. Software Product Lines: A New Paradigm for the New Century. Crosstalk:
The Journal of Defense Software Engineering, 12(2), 20-22, February 1999.

? For example, a national computing grid of networked open acquisition service providers and community
Web portals. This kind of Web-based information infrastructure collectively enables geographically and
temporally dispersed communities of acquisition experts and practitioners to continuously improve system
acquisition processes, practices, and work environments, all of which are in line with the vision for a new
generation of acquisition workers [Anderson 2000].

23

http://www.dau.mil/news/sb20-20_1.pdf
http://www.dau.mil/news/sb20-20_1.pdf
http://www.acq-ref.navy.mil/turbo/refs/software.pdf

A. Cockburn, Agile Software Development, Addison-Wesley Inc., Boston, MA, 2002.

DD(X) Information System, http://sc21.crane.navy.mil, 1997-2002.

(DG.O) Digital Government.Org, http://www.diggov.org, 2002.

(DGRC) Digitial Government Research Center, http:/www.isi.edu/dgrc/, 2002.

DoD 5000 Acquisition Model, Defense Acquisition Deskbook, http://web2.deskbook.osd.mil/,
31 January 2001.

DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs
(MDAPS) and Major Automated Information System Acquisition Programs, Office of the
Secretary of Defense, 10 June 2001.

C. Freericks, Open Source Standards on Software Process: A Practical Approach, /EEE
Communications Magazine, 116-123, April 2001.

S. Glaseman, Comparative Studies in Software Acquisition, Lexington Books, D.C. Heath
and Co., Boston, MA 1982.

A.J. Kim, Community Building on the Web: Secret Strategies for Successful Online
Communities, Peachpit Press, Berkeley, CA, 2000.

F. Kuhl, R. Weatherly, J. Dahmann, Creating Computer Simulation Systems: An
Introduction to the High Level Architecture, Prentice Hall, 1999.

A. MacCormack, R. Verganti, and M. Iansiti, Developing Products on Internet Time: The
Anatomy of a Flexible Development Process, Management Science, 47(1), January 2001.

C. Meyer. Fast Cycle Time: How to Align Purpose, Strategy, and Structure for Speed,
Free Press, New York, 1993.

B.C. Meyers and P. Oberndorf. Managing Software Acquisition: Open Systems and
COTS Products, Addison-Wesley, Boston, MA, 2001.

N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Language and Environment for
Architecture-Based Software Development and Evolution. Proc. 21st Intern. Conf.

Software Engineering, 44-53, Los Angeles, CA, May 1999.

P. Mi and W. Scacchi. A Meta-Model for Formulating Knowledge-Based Models of
Software Development. Decision Support Systems, 17(3), 313-330. 1996.

M.E. Nissen. Reengineering the RFP Process through Knowledge-Based Systems.
Acquisition Review Quarterly, 4(1), 87-100, Winter 1997 .

24

http://sc21.crane.navy.mil/
http://www.diggov.org/
http://www.isi.edu/dgrc/
http://web2.deskbook.osd.mil/

M.E. Nissen, K.F. Snider and D.V. Lamm. Managing Radical Change in Acquisition.
Acquisition Review Quarterly, 5(2), 89-106, Spring 1998.

J. Noll and W. Scacchi. Supporting Software Development in Virtual Enterprises. J.
Digital Information, 1(4), February 1999.

J. Noll and W. Scacchi. Process-Oriented Hypertext for Organizational Computing, J.
Network and Computer Applications, 24(1), 39-61, 2001.

R.C. Pavlicek, Embracing Insanity: Open Source Software Development, SAMS Press,
Indianapolis, IN, 2000.

W. Scacchi. Experience with Software Process Simulation and Modeling, J. Systems and
Software, 46:183-192, 1999.

W. Scacchi, Understanding Software Process Redesign using Modeling, Analysis and
Simulation, Software Process--Improvement and Practice, 5(2/3), 183-195, 2000.

W. Scacchi. Redesigning Service Procurement for Internet-based Electronic Commerce:
A Case Study, J. Information Technology and Management, 2(3), 313-334, 2001.

W. Scacchi, Software Development Practices in Open Software Development
Communities, position paper presented at the I*. Workshop on Open Source Software
Engineering, Toronto, Ontario, May 2001a.

W. Scacchi. Process Models in Software Engineering, in J. Marciniak (ed.), Encyclopedia
of Software Engineering, 2nd. Edition, 993-1005, Wiley, 2001b.

W. Scacchi. Understanding the Social, Technological, and Policy Implications of Open
Source Software Development, paper presented at the NSF Workshop on Open Source
Software, Arlington, VA, January 2002a.

W. Scacchi. Understanding the Requirements for Developing Open Source Software
Systems, IEE Proceedings on Software, 149(1), 24-39, 2002b.

W. Scacchi and B.E. Boehm. Virtual System Acquisition: Approach and Transition.
Acquisition Review Quarterly, 5(2), 185-215, Spring 1998.

W. Scacchi and P. Mi. Process Life Cycle Engineering: A Knowledge-Based Approach
and Environment. Intern. J. Intelligent Systems in Accounting, Finance, and

Management, 6(1), 83-107, 1997.

W. Scacchi and J. Noll. Process-Driven Intranets: Life-Cycle Support for Process
Reengineering. IEEE Internet Computing, 1(5), 42-49, September-October 1997.

25

R.M. Schooff, Y.Y. Haimes, and C.G. Chittister. A Holistic Management Framework for
Software Acquisition, Acquisition Review Quarterly, Winter 1997.

S.Sharman, V. Sugurmaran, and B. Rajagopalan, A Framework for Creating Hybrid-
Open Source Software Communities, /nfo. Systems J., 12(1), 7-25, 2002.

SA-CMM, Software Acquisition Capability Maturity Model, Software Engineering
Institute, Carnegie-Mellon University, Pittsburgh, PA. 2000.
http://www.sei.cmu.edu/arm/SA-CMM.html

J. Steyaert, (Deputy associate administrator, Office of Information Technology, GSA),
View From the Top: What Government is Doing, Solution Series Conf. On E-
Government, 24 April 2001. Webcast version at http://www.gen.com/webcast/070201gen.html

R.G. Struth, Systems Engineering and the Joint Strike Fighter: The Flagship Program for
Acquisition Reform, Acquisition Review Quarterly, 221-232, Summer 2000.

D. Truex, R. Baskerville, and H. Klein, Growing Systems in an Emergent Organization,
Communications ACM, 42(8), 117-123, 1999.

J. Verville and A. Halingten. Acquiring Enterprise Software: Beating Vendors at Their
Own Game, Prentice-Hall, Upper Saddle River, NJ, 2001.

26

http://www.sei.cmu.edu/arm/SA-CMM.html
http://www.gcn.com/webcast/070201gcn.html

	Irvine, CA 92697-3425 USA
	The research described in this report was supported by the Defense Acquisition University through contract N487650-27803. No endorsement implied. Mark Ackerman at the University of Michigan, as well as Mark Bergman and Margaret Elliott at the UCI Institu
	Open Acquisition: Combining Open Source Software Development with System Acquisition
	Abstract
	Introduction
	Background
	The Acquisition of Software-Intensive Systems
	Open Source Software Development Practices
	Open Source Software Products
	Open Source Processes
	Open Source Support Environments

	Research Strategy
	Prototyping Study and Results
	Discussion, Conclusions and Agenda
	The Research Agenda for Open Acquisition

	References

