Emerging Opportunities for Computer Games, VR/AR and the Internet of Things

Walt Scacchi

Institute for Virtual Environments and Computer Games

and

Donald Bren School Information and Computer Sciences University of California, Irvine Irvine, CA 92697-3445 USA

Overview

- Background
- Sample of R&D projects at UCI involving Computer Games, Virtual/Augment Reality (VR/AR), and/or Internet of Things (IoT)
 - (informal) STEAM education, military command and control, medicine, smart manufacturing, collaborative virtual environments, and more.
- Emerging R&D opportunities along the way

Informal Classical Music Learning Game Environment: SFSKids.org (STEM+Arts=STEAM)

Discover Music

Under the Sea of Knowledge.

Play with Music

Above the Musical Skies

Perform Music

In the Instrument Garder

Conduct Music

At the Symphony Hall



Compose Music

Atop the Mountain of Muses

BEAM game prototype for play-based learning of optical/beam physics

Yampolsky, M. and W. Scacchi, (2016). Learning Game Design and Software Engineering through a Game Prototyping Experience: A Case Study. *Proc.* 5th Games and Software Engineering Workshop, Intern. Conf. Software Engineering, Austin, TX, 17 May 2016.

Ultimate BEAM game challenge: learning to play with quantum teleportation

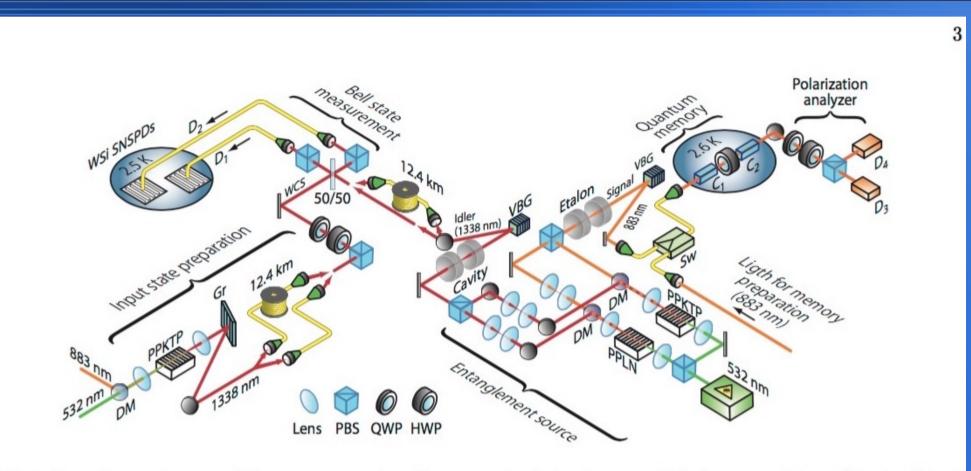


FIG. 1. Experimental setup. The system comprises the source of polarization-entangled photons at 883 nm (the signal) and 1338 nm (the idler) using filtered spontaneous parametric down conversion from two nonlinear waveguides (PPLN and PPKTP)

The Virtual/Augmented Reality Spectrum

- Hallucinations via brain injury or psychoactive substances
- Dreams and lucid dreaming
- Imagined physical, everyday socio-cultural worlds
- Symbolic worlds: literary, cosmological, musical, gustatory, etc.
- Cinema, theater, concert venues
- Panorama, cyclorama ("circlevision"/360° video), dome venues
- Head-Mounted Displays (+audio,+ haptics?) for PCs, consoles, or mobile devices (smartphones, tablets)
- CAVE room, wall, or table-top interactive visualization
- Volumetric video and mixed reality
- Physically tangible fantasy worlds (Disneyland, Burning Man)

The Virtual/Augmented Reality Legacy

- What is a virtual (augmented) reality?
 - Computer-mediated immersive presentation that encapsulates one or more senses that renders (overlays) a virtual world (objects) for play, work, or learning activities
 - VR/AR is:
 - Embodied as technological mechanisms
 - Engaged and rendered as interactive content
 - Recognized as immersive and present user experience ("it's like being there")
 - VR is <u>not</u> one technology, content, or experience

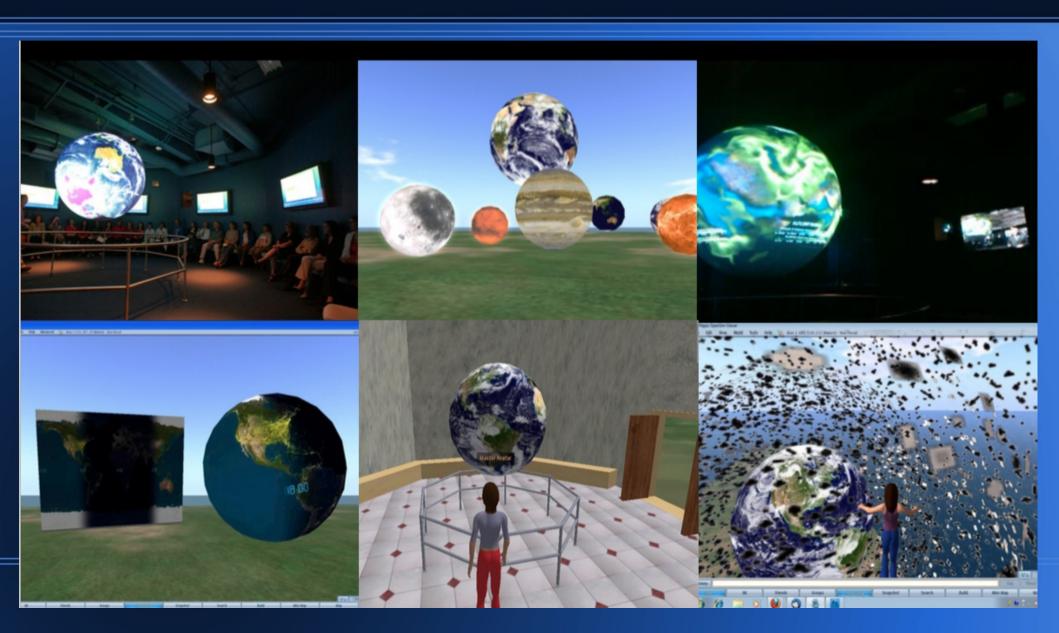
Networked Things for Games and VR/AR

- Things either as sensors, effectors, controllers, or actuators.
- Things are most interesting when integrated with embedded computation.
- Things are singular or networked (app area, local-area, or cloud).
- IoT enables physical environments to be treated as digital platforms open to computational thinking, modeling/simulator apps, and app ecosystems.

Games, Virtual Worlds, VR/AR and IoT Projects

- Game-based virtual worlds (GBVW) for research, education/training and healthcare applications [Sca12].
- Networked AR and body-worn sensors for Smart Workers (Advanced Manufacturing).
- Massively multi-user virtual worlds for STEM research/education using hypergrids (multi-VR world interoperation platform) [DVL15, Lop11].

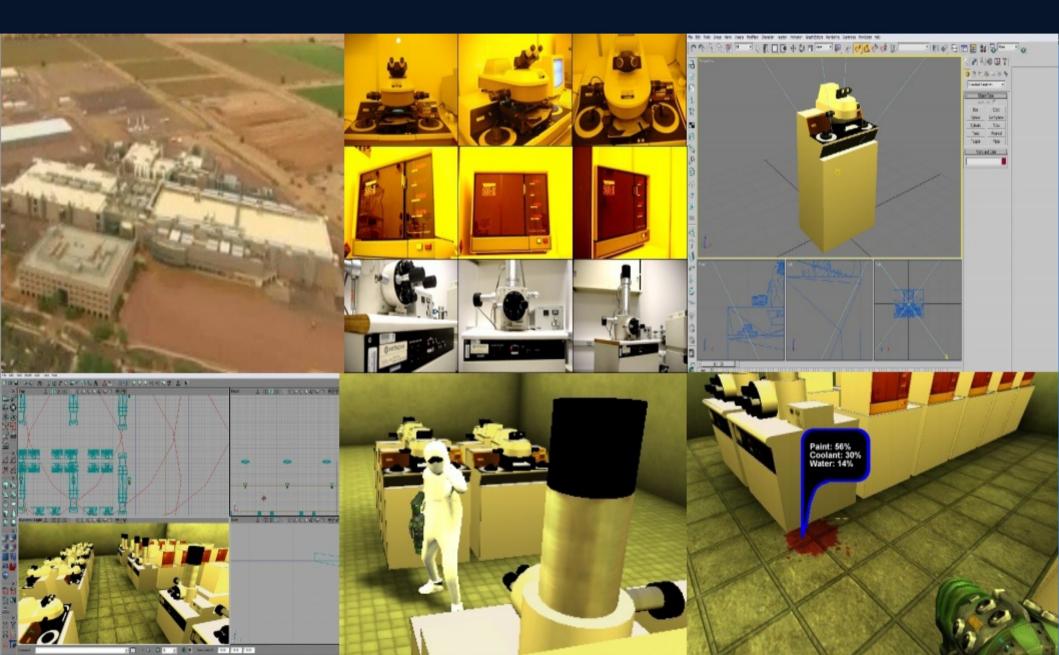
Embedded sensor network-based science learning game environment for K-6th students and families



Scacchi, W., Nideffer, R., and Adams, J. (2008). Collaborative Game Environments for Informal Science Education: DinoQuest and DinoQuest Online, *IEEE Conf. Collaboration Technology and Systems*, (CTS 2008), Irvine, CA 229-236, May 2008.

Online science learning game for informal life science education for K-6th grade students with virtual things [Sca10]

Planetary science data visualization and "spherecasting" support for NOAA Science on a Sphere interoperation in a networked GBVW platform (OpenSim).


DECENT: GBVW for experimentation in secure decentralized command and control

OpenSim: Large Group Virtual Research Conferences

FabLab: Semiconductor fabrication operations and diagnostics training game world [Sca10]

FabLab semi-fab operations training game: "gowning process"

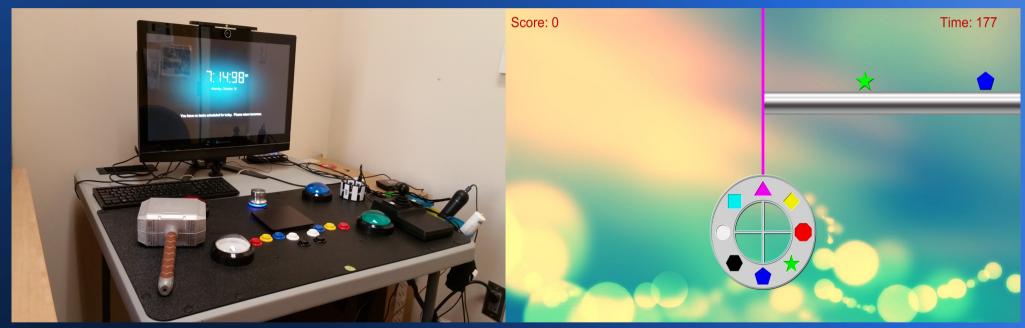
Suit made of ultra clean material

> Battery pack for air filter system

> 2 pairs of gloves nylon & latex

> > 2 pieces of foot gear disposible shoe covers & outer booties

Future: IoT-based AR for Smart Workers in Smart Manufacturing (Calit2)



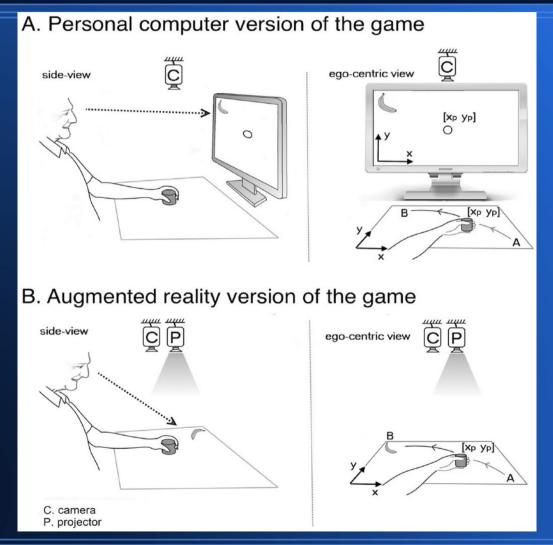
UCI Stroke Telerehabilitation game console

Images: W. Scacchi and Cramer Neural Repair Group, Neurology Dept, UCI School of Medicine

Stroke Telerehabilitation game console and a sample game (for dial rotation movement)

Human motor control things: Game console buttons (large, small), continuous dial, Myo armband, touchpad, joystick, WiiMote, PS Eye, finger and grip pressure sensors.

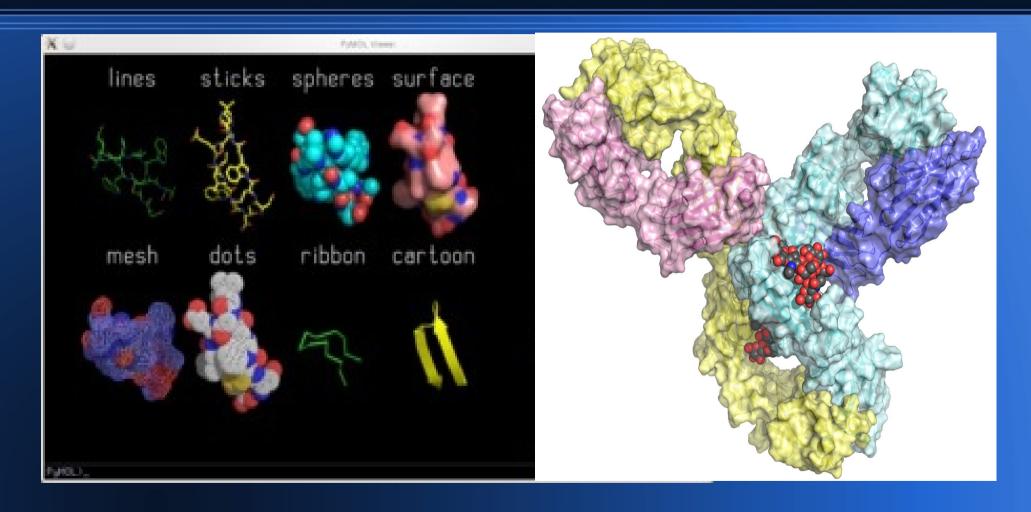
All devices integrated to act like PC mouse/keyboard inputs.


40 consoles currently deployed in nationwide clinical trial.

Extension candidate: AR Stroke Rehab Game Interface

Features: (a) 1st person view, (b) functional tasks with high ecology and affordance, (c) mirror neural activation,(d) embodied action observation/priming, (e) explicit motor imagery, (f) playful interaction experience and (g) safety.

Extension candidate: PC versus AR stroke rehabilitation game play UI/UX efficacy



AR user interface associated with ~20% improved therapeutic movement accuracy (positional score), reaction times, and 15% less movement variability vs. PC UI.

Future: GBVWs transforming STEAM education (e.g., via personal virtual labs)

Future: VR/AR+IoT (haptics) for Computational Molecular Design?

Sources:(Left) *PyMOL*; (Right) Scapin, G. Yang, X. Prosise, W.W., *et al.* (2015). Structure of full-length human anti-PD1 therapeutic lgG4 antibody pembrolizumab, *Nature Structural & Molecular Biology*, **22**,953–958, doi:10.1038/nsmb.3129

Future: UCI eSports and eSports Arena (opening Fall 2016)

Conclusions: Into the Future

- Game-based virtual worlds, VR/AR concepts, techniques, and IoT technologies will *transform* STEAM research and education.
 - More personal, more participatory, more open.
- IoT-based industrial internet will further extend the reach of GBVW and VR/AR applications to transform health care, manufacturing and workforce development.

Research Collaborators

Faculty

Robert Nideffer (RPI), Thomas Alspaugh, Jill Berg, Yunan Chen,
Steve Cramer, Garnet Hertz (Emily Carr U), Alfred Kobsa, G.P. Li,
Jung-Ah Lee, Crista Lopes, Gloria Mark, Allison MacKenzie
(Chapman), Bonnie Nardi, Andrea Nicholas, David Redmiles,
Richard Taylor, and many others.

Research Staff

Craig Brown (NomNom Games), Lucy Dodakian (Neurology),
 Yuzo Kanomata (IGB), Vu Le (Neurology), Kari Nies (ISR), Alex
 Szeto (American Honda, ISR), and others.

Students

UCI Video Game Developers Club and others

Acknowledgements

- National Science Foundation: grants #0808783
 (Decentralized Virtual Activity Systems), #1041918
 (Workshop on The Future of Research on Computer
 Games and Virtual Worlds) and #125659 (Creating a
 Framework for Prototyping Science Missions).
- Naval Postgraduate School grant #N00244-12-1-0004 (Streamlining the Process of Acquiring Secure Open Architecture Software Systems).
- No review, approval or endorsement implied.
- More information at: http://www.ics.uci.edu/~wscacchi

Additional References

[DVL15] Debeauvais, T., Valadares, A., and Lopes, C. (2015). RCAT: A Scalable Architecture for Massively Multiuser Online Environments, in K. Cooper and W. Scacchi (Eds.), *Computer Games and Software Engineering*, CRC Press, Francis & Taylor, Baco Raton, FL.

[Lop11] Lopes, C.V., (2011). Hypergrid: Architecture and Protocol for Virtual World Interoperability, *IEEE Internet Computing*, 15(5), 22-29, Sept-Oct 2011.

[Sca10] Scacchi, W. (2010). Game-Based Virtual Worlds as Decentralized Virtual Activity Systems, in W.S. Bainbridge (Ed.), *Convergence of the Real and the Virtual*, 225-236, Springer, NY.

[Sca12] Scacchi, W. (Ed.), (2012). The Future of Research in Computer Games and Virtual Worlds: NSF Workshop Report, Technical Report UCI-ISR-12-8, University of California, Irvine, Irvine, CA.

Additional References

[Sca15] Scacchi, W. (2015). Repurposing Game Play Mechanics as a Technique for Developing Game-Based Virtual Worlds, in K. Cooper and W. Scacchi (Eds.), Computer Games and Software Engineering, CRC Press, Francis & Taylor, Baco Raton, FL.

[Sca16] Scacchi, W. (2016). Game-Based Stroke Telerehabilitation: Challenges in Scaling to National Clinical Trials, *US-UK Workshop on Serious Games for Health*, Philadelphia, PA, 22 March 2016.

[ScA13] Scacchi, W. and Alspaugh. T.A. (2013). Challenges in the Development and Evolution of Secure Open Architecture Command and Control Systems, *Proc. 18th. Intern. Command and Control Research and Technology Symposium*, Paper 098, Alexandria, VA, June 2013.

[SNA08] Scacchi, W., Nideffer, R., and Adams, J. (2008). Collaborative Game Environments for Informal Science Education: DinoQuest and DinoQuest Online, *IEEE Conf. Collaboration Technology and Systems*, (CTS 2008), Irvine, CA 229-236, May 2008.