
The Next Mainstream
Programming Language:
A Game Developer’s Perspective

The Next MainstreamThe Next Mainstream
Programming Language:Programming Language:
A Game DeveloperA Game Developer’’s Perspectives Perspective

Tim SweeneyTim Sweeney
Epic GamesEpic Games

Outline
 Game Development

– Typical Process

 What’s in a game?
– Game Simulation
– Numeric Computation
– Shading

 Where are today’s languages failing?
– Concurrency
– Reliability

Game Development

Game Development: Gears of War

 Resources
– ~10 programmers
– ~20 artists
– ~24 month development cycle
– ~$10M budget

 Software Dependencies
– 1 middleware game engine
– ~20 middleware libraries
– OS graphics APIs, sound, input, etc

Software Dependencies

Gears of War
Gameplay Code

~250,000 lines C++, script code

Gears of War
Gameplay Code

~250,000 lines C++, script code

Unreal Engine 3
Middleware Game Engine
~250,000 lines C++ code

Unreal Engine 3
Middleware Game Engine
~250,000 lines C++ code

DirectX
Graphics

DirectX
Graphics

OpenAL
Audio

OpenAL
Audio

Ogg
Vorbis
Music
Codec

Ogg
Vorbis
Music
Codec

Speex
Speech
Codec

Speex
Speech
Codec

wx
Widgets
Window
Library

wx
Widgets
Window
Library

ZLib
Data

Compr-
ession

ZLib
Data

Compr-
ession

…

Game Development: Platforms

 The typical Unreal Engine 3 game will
ship on:
– Xbox 360

– PlayStation 3

– Windows

 Some will also ship on:
– Linux

– MacOS

What’s in a game?
The obvious:
 Rendering
 Pixel shading
 Physics simulation, collision detection
 Game world simulation
 Artificial intelligence, path finding

But it’s not just fun and games:
 Data persistence with versioning, streaming
 Distributed Computing (multiplayer game simulation)
 Visual content authoring tools
 Scripting and compiler technology
 User interfaces

Three Kinds of Code

 Gameplay Simulation

 Numeric Computation

 Shading

Gameplay Simulation

Gameplay Simulation

 Models the state of the game world as
interacting objects evolve over time

 High-level, object-oriented code

 Written in C++ or scripting language

 Imperative programming style

 Usually garbage-collected

Gameplay Simulation – The Numbers

 30-60 updates (frames) per second

 ~1000 distinct gameplay classes
– Contain imperative state

– Contain member functions

– Highly dynamic

 ~10,000 active gameplay objects

 Each time a gameplay object is updated, it
typically touches 5-10 other objects

Numeric Computation
 Algorithms:

– Scene graph traversal

– Physics simulation

– Collision Detection

– Path Finding

– Sound Propagation

 Low-level, high-performance code

 Written in C++ with SIMD intrinsics

 Essentially functional
– Transforms a small input data set to a small output data

set, making use of large constant data structures.

Shading

Shading

 Generates pixel and vertex attributes

 Written in HLSL/CG shading language

 Runs on the GPU

 Inherently data-parallel

– Control flow is statically known

– “Embarassingly Parallel”

– Current GPU’s are 16-wide to 48-wide!

Shading in HLSL

Shading – The Numbers

 Game runs at 30 FPS @ 1280x720p

 ~5,000 visible objects

 ~10M pixels rendered per frame
– Per-pixel lighting and shadowing requires multiple

rendering passes per object and per-light

 Typical pixel shader is ~100 instructions long

 Shader FPU’s are 4-wide SIMD

 ~500 GFLOPS compute power

Three Kinds of Code

FPU Usage

Lines of Code
CPU Budget

Languages

500 GFLOPS5 GFLOPS0.5 GFLOPS

10,000250,000250,000
n/a90%10%

CG, HLSLC++C++,
Scripting

ShadingNumeric
Computation

Game
Simulation

What are the hard problems?

 Performance
– When updating 10,000 objects at 60 FPS, everything is

performance-sensitive

 Modularity
– Very important with ~10-20 middleware libraries per game

 Reliability
– Error-prone language / type system leads to wasted effort

finding trivial bugs
– Significantly impacts productivity

 Concurrency
– Hardware supports 6-8 threads
– C++ is ill-equipped for concurrency

Performance

Performance

 When updating 10,000 objects at 60 FPS,
everything is performance-sensitive

 But:
– Productivity is just as important

– Will gladly sacrifice 10% of our performance
for 10% higher productivity

– We never use assembly language

 There is not a simple set of “hotspots” to
optimize!

That’s all!

Modularity

Unreal’s game framework

package UnrealEngine;

class Actor
{

int Health;
void TakeDamage(int Amount)
{

Health = Health – Amount;
if (Health<0)

Die();
}

}

class Player extends Actor
{

string PlayerName;
socket NetworkConnection;

}

Gameplay
module

Base class of
gameplay
objects

Members

Game class hierarchy

 Actor
 Player
 Enemy
 InventoryItem
 Weapon

 Actor
 Player
 Enemy
 Dragon
 Troll
 InventoryItem
 Weapon
 Sword
 Crossbow

Generic Game Framework

Game-Specific Framework Extension

Software Frameworks

 The Problem:
 Users of a framework
 need to extend the functionality
 of the framework’s base classes!

 The workarounds:
– Modify the source

 …and modify it again with each new version

– Add references to payload classes, and
dynamically cast them at runtime to the
appropriate types.

Software Frameworks
 The Problem:

 Users of a framework
 want to extend the functionality
 of the framework’s base classes!

 The workarounds:
– Modify the source

 …and modify it again with each new version

– Add references to payload classes, and
dynamically cast them at runtime to the
appropriate types.

– These are all error-prone:
Can the compiler help us here?

What we would like to write…

package Engine;

class Actor
{

int Health;
…

}
class Player extends Actor
{

…
}
class Inventory extends Actor
{

…
}

Base Framework
Package GearsOfWar extends Engine;

class Actor extends Engine.Actor
{

// Here we can add new members
// to the base class.
…

}
class Player extends Engine.Player
{

// Thus virtually inherits from
// GearsOfWar.Actor
…

}
class Gun extends GearsOfWar.Inventory
{

…
}

Extended Framework

The basic goal:
To extend an entire software framework’s class
hierarchy in parallel, in an open-world system.

Reliability
Or:

If the compiler doesn’t beep,
my program should work

Dynamic Failure in Mainstream Languages

Vertex[] Transform (Vertex[] Vertices, int[] Indices, Matrix m)
{

Vertex[] Result = new Vertex[Indices.length];
for(int i=0; i<Indices.length; i++)

Result[i] = Transform(m,Vertices[Indices[i]]);
return Result;

};

Example (C#):
Given a vertex array and an index array, we
read and transform the indexed vertices into
a new array.

What can possibly go wrong?

Dynamic Failure in Mainstream Languages

Vertex[] Transform (Vertex[] Vertices, int[] Indices, Matrix m)
{

Vertex[] Result = new Vertex[Indices.length];
for(int i=0; i<Indices.length; i++)

Result[i] = Transform(m,Vertices[Indices[i]]);
return Result;

};

May be NULL May be NULL

May contain indices
outside of the range of

the Vertex array

May be NULL

Array access
might be out

of boundsWill the compiler
realize this can’t fail?

Could dereference
a null pointer

Our code is littered with runtime failure cases,

Yet the compiler remains silent!

Dynamic Failure in Mainstream Languages

Solved problems:

 Random memory overwrites

 Memory leaks

Solveable:

 Accessing arrays out-of-bounds

 Dereferencing null pointers

 Integer overflow

 Accessing uninitialized variables

50% of the bugs in Unreal can be traced to these problems!

What we would like to write…

Transform{n:nat}(Vertices:[n]Vertex, Indices:[]nat<n, m:Matrix):[]Vertex=
 for each(i in Indices)
 Transform(m,Vertices[i])

Universally quantify over
all natural numbers

An array of exactly known size

An index buffer containing natural numbers less than n

Haskell-style array
comprehension

The only possible failure mode:

divergence, if the call to
Transform diverges.

How might this work?

 Dependent types

 Dependent functions

 Universal quantification

int
nat
nat<n

Sum{n:nat}(xs:[n]int)=..
a=Sum([7,8,9])

Sum(n:nat,xs:[n]int)=..
a=Sum(3,[7,8,9])

The Integers

The Natural Numbers

The Natural Numbers less than n,
where n may be a variable!

Explicit type/value dependency
between function parameters

How might this work?

 Separating the “pointer to t” concept
from the “optional value of t” concept

 Comprehensions (a la Haskell),
for safely traversing and generating
collections

xp:^int
xo:?int
xpo:?^int

A pointer to an integer

An optional integer

An optional pointer to an integer!

Successors(xs:[]int):[]int=
foreach(x in xs)

x+1

How might this work?

A guarded casting mechanism for cases
where need a safe “escape”:

All potential failure must be explicitly
handled, but we lose no expressiveness.

GetElement(as:[]string, i:int):string=
 if(n:nat<as.length=i)

as[n]
 else

“Index Out of Bounds”

Here, we cast i to
type of natural numbers bounded by

the length of as,
and bind the result to n

We can only access i
within this context

If the cast fails, we
execute the else-branch

Analysis of the Unreal code

 Usage of integer variables in Unreal:
– 90% of integer variables in Unreal exist to index into arrays

• 80% could be dependently-typed explicitly,
guaranteeing safe array access without casting.

• 10% would require casts upon array access.

– The other 10% are used for:
• Computing summary statistics

• Encoding bit flags

• Various forms of low-level hackery

 “For” loops in Unreal:
– 40% are functional comprehensions

– 50% are functional folds

Accessing uninitialized variables

 Can we make this work?

This is a frequent bug. Data structures are often rearranged,
changing the initialization order.

 Lessons from Haskell:
– Lazy evaluation enables correct out-of-order evaluation

– Accessing circularly entailed values causes thunk reentry (divergence),
rather than just returning the wrong value

 Lesson from Id90: Lenient evaluation is sufficient to guarantee this

class MyClass
{

const int a=c+1;
const int b=7;
const int c=b+1;

}
MyClass myvalue = new C; // What is myvalue.a?

Dynamic Failure: Conclusion

Reasonable type-system extensions could statically eliminate all:

 Out-of-bounds array access

 Null pointer dereference

 Integer overflow

 Accessing of uninitialized variables

See Haskell for excellent implementation of:
– Comprehensions

– Option types via Maybe

– Non-NULL references via IORef, STRef

– Out-of-order initialization

Integer overflow

The Natural Numbers

Factoid: C# exposes more than 10 integer-like data
types, none of which are those defined by
(Pythagoras, 500BC).

In the future, can we get integers right?

data Nat = Zero | Succ Nat

Can we get integers right?

Neat Trick:

 In a machine word (size 2n), encode an integer ±2n-1 or a pointer to a
variable-precision integer

 Thus “small” integers carry no storage cost

 Additional access cost is ~5 CPU instructions

But:

 A natural number bounded so as to index into an active array is
guaranteed to fit within the machine word size (the array is the proof
of this!) and thus requires no special encoding.

 Since ~80% of integers can dependently-typed to access into an
array, the amortized cost is ~1 CPU instruction per integer operation.

This could be a viable
tradeoff

Concurrency

The C++/Java/C# Model:
“Shared State Concurrency”

 The Idea:

– Any thread can modify any state at any
time.

– All synchronization is explicit, manual.

– No compile-time verification of
correctness properties:
• Deadlock-free

• Race-free

The C++/Java/C# Model:
“Shared State Concurrency”

 This is hard!
 How we cope in Unreal Engine 3:

– 1 main thread responsible for doing all work we
can’t hope to safely multithread

– 1 heavyweight rendering thread
– A pool of 4-6 helper threads

• Dynamically allocate them to simple tasks.

– “Program Very Carefully!”

 Huge productivity burden
 Scales poorly to thread countsThere must be a better way!

Three Kinds of Code: Revisited

 Gameplay Simulation
– Gratuitous use of mutable state

– 10,000’s of objects must be updated

– Typical object update touches 5-10 other objects

 Numeric Computation
– Computations are purely functional

– But they use state locally during computations

 Shading
– Already implicitly data parallel

Concurrency in Shading
 Look at the solution of CG/HLSL:

– New programming language aimed at
“Embarassingly Parallel” shader programming

– Its constructs map naturally to a data-parallel
implementation

– Static control flow (conditionals supported via
masking)

Concurrency in Shading
Conclusion: The problem of data-parallel concurrency is effectively solved(!)

“Proof”: Xbox 360 games are running with 48-wide data shader
programs utilizing half a Teraflop of compute power...

Concurrency in Numeric
Computation

 These are essentially pure functional algorithms, but they
operate locally on mutable state

 Haskell ST, STRef solution enables encapsulating local
heaps and mutability within referentially-transparent code

 These are the building blocks for implicitly parallel
programs

 Estimate ~80% of CPU effort in Unreal can be parallelized
this way In the future, we will write these

algorithms using referentially-
transparent constructs.

Numeric Computation Example:
Collision Detection

A typical collision detection algorithm takes a line
segment and determines when and where a point
moving along that line will collide with a (constant)
geometric dataset.

struct vec3
{

float x,y,z;
};
struct hit
{

bool DidCollide;
float Time;
vec3 Location;

};
hit collide(vec3 start,vec3 end);

Vec3 = data Vec3 float float float
Hit = data Hit float Vec3
collide :: (vec3,vec3)->Maybe Hit

Numeric Computation Example:
Collision Detection

 Since collisionCheck is effects-free, it may be
executed in parallel with any other effects-free
computations.

 Basic idea:
– The programmer supplies effect annotations to the compiler.

– The compiler verifies the annotations.

– Many viable implementations (Haskell’s Monadic effects,
effect typing, etc)

collide(start:Vec3,end:Vec3):?Hit

print(s:string)[#imperative]:void

A pure function
(the default)

Effectful functions require
explicit annotations

In a concurrent world, imperative is
the wrong default!

Concurrency in Gameplay Simulation

This is the hardest problem…
 10,00’s of objects
 Each one contains mutable state
 Each one updated 30 times per second
 Each update touches 5-10 other objects

Manual synchronization (shared state concurrency)
is

hopelessly intractible here.

Solutions?
– Rewrite as referentially-transparent functions?
– Message-passing concurrency?
– Continue using the sequential, single-threaded approach?

Concurrency in Gameplay Simulation:
Software Transactional Memory

See “Composable memory transactions”;
Harris, Marlow, Peyton-Jones, Herlihy

The idea:
 Update all objects concurrently in arbitrary order,

with each update wrapped in an atomic {...} block
 With 10,000’s of updates, and 5-10 objects touched per

update, collisions will be low
 ~2-4X STM performance overhead is acceptable:

if it enables our state-intensive code to scale to many threads,
it’s still a win

Claim: Transactions are the only plausible
solution to concurrent mutable state

Three Kinds of Code: Revisited

500 GFLOPS5 GFLOPS0.5 GFLOPSFPU Usage
Implicit Data
Parallelism

Implicit
Thread
Parallelism

Software
Transactiona
l Memory

Parallelism

Lines of Code
CPU Budget

Languages

10,000250,000250,000
n/a90%10%

CG, HLSLC++C++,
Scripting

ShadingNumeric
Computation

Game
Simulation

Parallelism and purity

Software Transactional Memory

Purely functional core

Physics, collision detection,
scene traversal, path finding, ..

Data Parallel Subset

Graphics shader programs
Game World State

Musings
On the Next Maintream Programming Language

Musings
There is a wonderful correspondence between:

 Features that aid reliability

 Features that enable concurrency.

Example:

 Outlawing runtime exceptions through dependent types

– Out of bounds array access

– Null pointer dereference

– Integer overflow

Exceptions impose sequencing constraints on concurrent execution.Dependent types and concurrency must
evolve simultaneously

Language Implications

Evaluation Strategy

 Lenient evaluation is the right default.

 Support lazy evaluation through explicit
suspend/evaluate constructs.

 Eager evaluation is an optimization the compiler may
perform when it is safe to do so.

Language Implications

Effects Model

 Purely Functional is the right default

 Imperative constructs are vital features
that must be exposed through explicit
effects-typing constructs

 Exceptions are an effect

Why not go one step further and define
partiality as an effect, thus creating a
foundational language subset suitable

for proofs?

Performance – Language Implications

Memory model
– Garbage collection should be the only option

Exception Model
– The Java/C# “exceptions everywhere” model

should be wholly abandoned
• All dereference and array accesses must be statically

verifyable, rather than causing sequenced exceptions

– No language construct except “throw” should
generate an exception

Syntax

Requirement:

 Must not scare away mainstream programmers.

 Lots of options.
int f{nat n}(int[] as,natrange<n> i)
{

return as[i];
}

f{n:nat}(as:[]int,i:nat<n)=as[i]

f :: forall n::nat. ([int],nat<n) -> int
f (xs,i) = xs !! i

C Family: Least scary,
but it’s a messy legacy

Haskell family: Quite scary :-)

Pascal/ML family:
Seems promising

Conclusion

 A Brief History of Game Technology

1972 Pong (hardware)

1980 Zork (high level interpretted language)

1993 DOOM (C)

1998 Unreal (C++, Java-style scripting)

2005-6 Xbox 360, PlayStation 3
with 6-8 hardware threads

2009 Next console generation. Unification of the
CPU, GPU. Massive multi-core, data parallelism, etc.

The Coming Crisis in Computing

 By 2009, game developers will face…

 CPU’s with:
– 20+ cores

– 80+ hardware threads

– >1 TFLOP of computing power

 GPU’s with general computing capabilities.

 Game developers will be at the forefront.

 If we are to program these devices
productively, you are our only hope!

Questions?

Backup Slides

The Genius of Haskell

 Algebraic Datatypes
– Unions done right

Compare to: C unions, Java union-like class
hierarchies

– Maybe t
C/Java option types are coupled to
pointer/reference types

 IO, ST
– With STRef, you can write a pure function that

uses heaps and mutable state locally, verifyably
guaranteeing that those effects remain local.

The Genius of Haskell

 Comprehensions

sort [] = []
sort (x:xs) = sort [y | y<-xs, y<x] ++
 [x] ++
 sort [y | y<-xs, y>=x]

int partition(int y[], int f, int l);
void quicksort(int x[], int first, int last) {
 int pivIndex = 0;
 if(first < last) {
 pivIndex = partition(x,first, last);
 quicksort(x,first,(pivIndex-1));
 quicksort(x,(pivIndex+1),last);
 }
}
int partition(int y[], int f, int l) {
 int up,down,temp;
 int cc;
 int piv = y[f];
 up = f;
 down = l;
 do {
 while (y[up] <= piv && up < l) {
 up++;
 }
 while (y[down] > piv) {
 down--;
 }
 if (up < down) {
 temp = y[up];
 y[up] = y[down];
 y[down] = temp;
 }
 } while (down > up);
 temp = piv;
 y[f] = y[down];
 y[down] = piv;
 return down;
}

Sorting in Haskell

Sorting in C

Why Haskell is Not My Favorite
Programming Language

 The syntax is … scary

 Lazy evaluation is a costly default
– But eager evaluation is too limiting

– Lenient evaluation would be an interesting default

 Lists are the syntactically preferred
sequence type
– In the absence of lazy evaluation, arrays seem

preferable

Why Haskell is Not My Favorite
Programming Language

 Type inference doesn’t scale

– To large hierarchies of open-world
modules

– To type system extensions

– To system-wide error propagation
f(x,y) = x+y
a=f(3,”4”)

f(int x,int y) = x+y
a=f(3,”4”)

ERROR - Cannot infer instance
*** Instance : Num [Char]
*** Expression : f (3,"4")

Parameter mismatch paremter 2 of call to f:
 Expected: int
 Got: “4”

…

…
???

