D

The Nex’r\ﬂ\\lins’rream

Programming Language:
A Game Developer’s Perspective

Tim Sweeney
Epic Games

4



Outline

= Game Development
- Typical Process
= What's in a game?
- Game Simulation
- Numeric Computation
- Shading
= Where are today's languages failing?

- Concurrency
- Reliability



Game Development




Game Development: Gears of War

= Resources
- ~10 programmers
- ~20 artists

- ~24 month development cycle
- ~$10M budget

= Software Dependencies
- 1 middleware game engine
- ~20 middleware libraries
- OS graphics APIs, sound, input, etc

AQ'



Software Dependencies

Gears of War
Gameplay Code
~250,000 lines C++, script code

Unreal Engine 3
Middleware Game Engine
~250,000 lines C++ code

) Ogg Speex wXx ZLib
DirectX OpenAL Vorbis | | o ocn | |Widgets| | Data
Graphics Audio Music Codec Window | | Compr- °ee
Codec Library ession

49“



Game Development: Platforms

= The typical Unreal Engine 3 game will
ship on:

- Xbox 360
- PlayStation 3

- Windows

= Some will also ship on:

- Linux

- MacOS



What's in a game?

The obvious:

= Rendering

= Pixel shading

= Physics simulation, collision detection
= Game world simulation

= Artificial intelligence, path finding

But it's not just fun and games:

= Data persistence with versioning, streaming

= Distributed Computing (multiplayer game simulation)
= Visual content authoring tools

= Scripting and compiler technology

= User interfaces




Three Kinds of Code

= Gameplay Simulation
= Numeric Computation
= Shading

|




Gameplay Simulation



Gameplay Simulation %‘

= Models the state of the game world as
interacting objects evolve over time

= High-level, object-oriented code
= Written in C++ or scripting language
= Imperative programming style

= Usually garbage-collected

¢



Gameplay Simulation - The Numbers

= 30-60 updates (frames) per second
= ~1000 distinct gameplay classes

- Contain imperative state
- Contain member functions
- Highly dynamic
= ~10,000 active gameplay objects

= Each time a gameplay object is updated, it
ypically touches 5-10 other objects



Numeric Computation

= Algorithms:
- Scene graph traversal
- Physics simulation
- Collision Detection
- Path Finding

- Sound Propagation
= Low-level, high-performance code
= Written in C++ with SIMD intrinsics
= Essentially functional

__f=>- Transforms a small input data set to a small output data
@ set, making use of large constant data structures.






Shading

= Generates pixel and vertex attributes
= Written in HLSL/CG shading language
= Runs on the GPU

= Inherently data-parallel
- Control flow is statically known

- "Embarassingly Parallel”
- Current GPU's are 16-wide to 48-widel



Shading in HLSL

& xacc-ide

File Edit View Project Tools Window Help
test.fx |

//pixel shader

float backProjectionCut: register(c2);
float Ka: register(c3);

float Kd: register(c4);

float Ks: register(cs);

float4 modelColor: register(c@);

float shadowBias: register(cl);

[SERN S T

o~ oo s

5 |sampler ShadowMap: register(s@);
10 |sampler SpotLight: register(sl);

27 // The depth of the fragment closest to the light

28 float shadowMap = tex2Dproj(ShadowMap, shadowCrd);

29 // A spot image of the spotlight

30 float spotLight = tex2Dproj(SpotLight, shadowCrd);

31 // If the depth 1s larger than the stored depth, this fragment
32 // 1s not the closest to the light, that is we are in shadow.

33 // Otherwise, we're 1i1t. Add a bias to avoid precision issues.

34 float shadow = (depth < shadowMap + shadowBias);

o oot ——— e - S — - - At oo

11

12 [float4 main(float3 normal: TEXCOORD®,

13 float3 lightvec: TEXCOORDI,

14 || float3 viewVec: TEXCOORD2,

15 float4 shadowCrd: TEXCOORD2) : COLOR

16 | {

17 normal = normalize(normal);

18 // Radial distance

19 float depth = length(lightvec);

20 // Normalizes light vector

21 lightVec /= depth;

23 // Standard lighting

24 float diffuse = saturate(dot(lightVec, normal));
25 float specular = pow(saturate(dot(reflect(-normalize(viewvec), normal), lightVec)), 16);
26




Shading - The Numbers

= Game runs at 30 FPS @ 1280x720p
= ~H,000 visible objects

= ~10OM pixels rendered per frame

- Per-pixel lighting and shadowing requires multiple
rendering passes per object and per-light

= Typical pixel shader is ~100 instructions long
= Shader FPU's are 4-wide SIMD
~5OO GFLOPS compute power



Three Kinds of Code

Game Numeric Shading
Simulation | Computation
Languages C++, C++ CG, HLSL
CPU Budget R§4.PTing 90% n/a
Lines of Code 250,000 250,000 10,000
FPU Usage 0.5 GFLOPS |5 GFLOPS 500 GFLOPS

AQ'




What are the hard problems?

Performance

- When updating 10,000 objects at 60 FPS, everything is
performance-sensitive

Modularity
- Very important with ~10-20 middleware libraries per game
Reliability

- Error-prone language / type system leads to wasted effort
finding trivial bugs

- Significantly impacts productivity
= Concurrency

- Hardware supports 6-8 threads
=" . .
‘QQ\ - C++ is ill-equipped for concurrency



|

e
C
n
forma

r

Pe




Performance

= When updating 10,000 objects at 60 FPS,
everything is performance-sensitive

= But:
- Productivity is just as important

- Will gladly sacrifice 10% of our performance
for 10% higher productivity

- We never use assembly language

= There is not a simple set of "hotspots” to
. _optimizel

That's alll



|

® y
ularit
d
Mo



Unreal's game framework

Gameplayjk
module package UnrealEngine;

| class Actor

Base class of (
gameplay int Health;
obiects _—~ void TakeDamage (int Amount)
) {
Health = Health - Amount;
Members if (Health<O0)

Die() ;

}

class Player extends Actor

{

string PlayerName;
~ ASYE" socket NetworkConnection;




4$E21'

Game class hierarchy

Generic Game Framework

Actor
Player
Enemy
Inventoryltem
Weapon

Game-Specific Framework Extension

Dragon
Troll

Sword
Crossbow




Software Frameworks

= The Problem:
Users of a framework
need to extend the functionality
of the framework's base classes!

= The workarounds:
- Modify the source

..and modify it again with each new version

- Add references to payload classes, and
dynamically cast them at runtime to the

appropriate types.



Software Frameworks

= The Problem:
Users of a framework
want to extend the functionality
of the framework's base classes!

= The workarounds:
- Modify the source

..and modify it again with each new version

- Add references to payload classes, and
dynamically cast them at runtime to the
appropriate types.

__g=v These are all error-prone:
S\ can the compiler help us here?




What we would like to write...

Base Framework

Extended Framework

package Engine;

class Actor

{
int Health;

}

class Player extends Actor

{
}

class Inventory extends Actor

{

}

The basic goal:
X

Package GearsOfWar extends Engine;

class Actor extends Engine.Actor

{

// Here we can add new members
// to the base class.

}

class Player extends Engine.Player

{

// Thus virtually inherits from
// GearsOfWar.Actor

}

class Gun extends GearsOfWar.Inventory

{
}

To extend an entire software framework's class
hierarchy in parallel, in an open-world system.




Reliabilit
Or:
If the compiler doesn't beep,
my program should work




Dynamic Failure in Mainstream Languages

Example (C#):
Given a vertex array and an index array, we
read and transform the indexed vertices into
a hew array.

Vertex[] Transform (Vertex[] Vertices, int[] Indices, Matrix m)
{
Vertex[] Result = new Vertex[Indices.length];
for(int i=0; i<Indices.length; i++)
Result[i] = Transform(m,Vertices[Indices[i]])
return Result;

What can possibly go wrong?

;‘Q'



Dynamic Failure in Mainstream Languages

May contain indices
outside of the range of
the Vertex array

May be NULL

May be NULL May be NULL

Vertex[] Transform (Vertex[] Vertices| |int[] Indices| |[Matrix m)

{

Vertex[] Result = new Vertex[Indices.length];
for (int i=0; i<Indices.length; i++)

Result[i] = ansform(m,Vertices[Indices[i]]) ;
return|\Result;

Will the compiler
realize this can't fail?

Our code is littered with runtime failure cases,

Yet the compiler remains silent!



Dynamic Failure in Mainstream Languages

Solved problems:
= Random memory overwrites

= Memory leaks

Solveable:

= Accessing arrays out-of-bounds
= Dereferencing null pointers

= Integer overflow

= Accessing uninitialized variables

50% of the bugs in Unreal can be traced to these problems!

)

49'



What we would like to write...

@1 index buffer containing natural numbers less than n

CAn array of exactly known size

Universally quantify over
all natural numbers

Transform{n:nat} (Vertices: [n]Vertex, Indices:[]nat<n, m:Matrix) : []Vertex=
for each(i in Indices)
Transform(m,Vertices[i])

The only possible failure mode:

E Haskell-style array
comprehension divergence, if the call to
Transform diverges.




How might this work?

= Dependent types

. — e
int The Integers j
nat
nat<n The Natural Numbers

The Natural Numbers less than n,
where n may be a variable!

1 2 f - 2 ®
- Fum(n:nat,xs: [n]lint)=.. OMplicit type/value dependencyj

a=Sum(3,[7,8,9]) Qetween function parameters

Sum{n:nat} (xs: [n]lint)=..
a=Sum([7,8,9])

;‘Q'




How might this work?

= Separating the "pointer to 1" concept

from the ' op’rnonalfaluzjf_f_chep’r
Xxp:“*int A pointer to an integer

x0:?int
Xpo: ?Aint \l\\L An optional mteger
An optional pointer to an mtegerj

= Comprehensions (a la Haskell),
for safely traversing and generating
colf

Successors(xs:[]int) : []int=
foreach(x in xs)
x+1

AQ'



How might this work?

A guarded casting mechanism for cases
where need a safe "escape™

Here, we cast i to

type of natural numbers bounded by
the length of as,
and bind the result to n

We can only access i
within this context

GetElement (as:[]string, i:int) :string=
if (n:nat<as.length=i)
as[n]

“Index Out of Bounds”

=

If the cast fails, we
execute the else-branch

All potential failure must be explicitly
andled, but we lose no expressiveness.



Analysis of the Unreal code

= Usage of integer variables in Unreal:

- 90% of integer variables in Unreal exist to index into arrays

* 80% could be dependently-typed explicitly,
guaranteeing safe array access without casting.

» 10% would require casts upon array access.
- The other 10% are used for:
+ Computing summary statistics
* Encoding bit flags
» Various forms of low-level hackery
= "For" loops in Unreal:
- 40% are functional comprehensions

- 50% are functional folds

49'



Accessing uninitialized variables

= Can we make this work?

class MyClass

{
const int a=c+1l;
const int b=7;
const int c=b+1l;

}

MyClass myvalue = new C; // What is myvalue.a?

This is a frequent bug. Data structures are often rearranged,
changing the initialization order.

= Lessons from Haskell:
- Lazy evaluation enables correct out-of-order evaluation

- Accessing circularly entailed values causes thunk reentry (divergence),
rather than just returning the wrong value

@E@sson from Id90: Lenient evaluation is sufficient to guarantee this



Dynamic Failure: Conclusion

Reasonable type-system extensions could statically eliminate all:
= QOut-of-bounds array access

= Null pointer dereference

= Integer overflow

= Accessing of uninitialized variables

See Haskell for excellent implementation of:
- Comprehensions
- Option types via Maybe
- Non-NULL references via IORef, STRef
~@i9' - QOut-of-order initialization



Integer overflow

The Natural Numbers

data Nat = Zero | Succ Nat

Factoid: C# exposes more than 10 integer-like data
types, none of which are those defined by
(Pythagoras, 500BC).

In the future, can we get integers right?

ASSEE"



Can we get integers right?

Neat Trick:

In a machine word (size 2"), encode an integer +2"! or a pointer to a
variable-precision integer

Thus "small” integers carry no storage cost

Additional access cost is ~5 CPU instructions

But:

A natural number bounded so as to index into an active array is
guaranteed to fit within the machine word size (the array is the proof
of this!) and thus requires no special encoding.

Since ~80% of integers can dependently-typed to access into an
array, the amortized cost is ~1 CPU instruction per integer operation.

This could be a viable
tradeoff



|

Concurrency

¢



The C++/Java/C# Model:
"Shared State Concurrency”

* The Idea:

- Any thread can modify any state at any
time.

- All synchronization is explicit, manual.

- No compile-time verification of
correctness properties:

- Deadlock-free

N :Ea' * Race-free



The C++/Java/C# Model:
"Shared State Concurrency”

= This is hard!

= How we cope in Unreal Engine 3:

- 1 main thread responsible for doing all work we
can't hope to safely multithread

- 1 heavyweight rendering thread
- A pool of 4-6 helper threads

» Dynamically allocate them to simple tasks.

- "Program Very Carefully!"
= Huge productivity burden

@Cales poorlyfhe-thread coumts ror way!



Three Kinds of Code: Revisited

= Gameplay Simulation
- Gratuitous use of mutable state
- 10,000's of objects must be updated
- Typical object update touches 5-10 other objects

= Numeric Computation
- Computations are purely functional

- But they use state locally during computations

hading

- Already implicitly data parallel



Concurrency in Shading

= Look at the solution of CG/HLSL:

- New programming language aimed at
"Embarassingly Parallel” shader programming

- Its constructs map naturally to a data-parallel
implementation

- Static control flow (conditionals supported via
masking)



Concurrency in Shading

Conclusion: The problem of data-parallel concurrency is effectively solved(!)

S A

~ "\9‘
Q\ "Proof”: Xbox 360 games are running with 48-wide data shader
programs utilizing half a Teraflop of compute power...



Concurrency in Numeric
Computation

= These are essentially pure functional algorithms, but they
operate locally on mutable state

= Haskell ST, STRef solution enables encapsulating local
heaps and mutability within referentially-transparent code

= These are the building blocks for implicitly parallel
programs

= Estimate ~80% of CPU effort in Unreal can be parallelized

thi . .
s way In the future, we will write these

algorithms using referentially-
~@9’ Transparent constructs.



Numeric Computation Example:
Collision Detection

A typical collision detection algorithm takes a line
segment and determines when and where a point
moving along that line will collide with a (constant)
geometric dataset.

struct vec3

{
float x,y,z;

};
struct hit
{
bool DidCollide;
float Time;
vec3 Location;
};

hit collide(vec3 start,vec3 end);

Vec3 = data Vec3 float float float
Hit = data Hit float Vec3
collide :: (vec3,vec3)->Maybe Hit

4@'



Numeric Computation Example:
Collision Detection

= Since collisionCheck is effects-free, it may be
executed in parallel with any other effects-free
computations.

= Basic idea:

- The programmer supplies effect Wilen
A pure function
- N 11 N (the default)
The combiler verifies the annotqgtione==__

collide (start:Vec3,end:Vec3) :?Hit —

Effectful functions require
print(s:string) [#imperative] :void —

— explicit annotations

- Many viable implementations (Haskell's Monadic effects,
effect typing, 8tch concurrent world, imperative is

Ny the wrong default!



Concurrency in Gameplay Simulation

This is the hardest problem...

= 10,00's of objects

= Each one contains mutable state

= Each one updated 30 times per second

= Each update touches 5-10 other objects

Manual synchronization (shared state concurrency)
1S
hopelessly intractible here.
Solutions?

X . . .
N - Rewrite as referentially-transparent functions?
- Message-passing concurrency?



Concurrency in Gameplay Simulation:
Software Transactional Memory

See "Composable memory transactions”;
Harris, Marlow, Peyton-Jones, Herlihy

The idea:

= Update all objects concurrently in arbitrary order,
with each update wrapped in an atomic {...} block

= With 10,000's of updates, and 5-10 objects touched per
update, collisions will be low

= ~2-4X STM performance overhead is acceptable:
if it enables our state-intensive code to scale to many threads,
it's still a win
 _f= Claim: Transactions are the only plausible
.\ solution to concurrent mutable state



Three Kinds of Code: Revisited

Game Numeric Shading
Simulation | Computation
Languages C++, C++ CG, HLSL
CPU Budget R$9.PTing 90% n/a
Lines of Code 250,000 250,000 10,000
FPU Usage 0.5 GFLOPS |5 GFLOPS 500 GFLOPS
Parallelism Software Implicit Implicit Data
Transactiona | Thread Parallelism
| Memory Parallelism

)

49“




Parallelism and purity

Physics, collision detection,
scene traversal, path finding, ..

—

\ Game World State

\ Graphics shader programs

Data Parallel Subset

Purely functional core

Software Transactional Memory




Musings

On th
e Next
Main
tream Programmi
ing Lan
guage



Musings

There is a wonderful correspondence between:
= Features that aid reliability

= Features that enable concurrency.

Example:
= Outlawing runtime exceptions through dependent types
- Out of bounds array access
= Null pointer dereference
- Integer overflow
Exceptions IRgEe AU g FUS B LB EIRVERY, PiRESP™

=" :
Ny evolve simultaneously



Language Implications

Evaluation Strategy
= Lenient evaluation is the right default.

= Support lazy evaluation through explicit
suspend/evaluate constructs.

= Eager evaluation is an optimization the compiler may
perform when it is safe to do so.

AQ'



Language Implications

Effects Model
= Purely Functional is the right default

= Imperative constructs are vital features
that must be exposed through explicit
effects-typing constructs

= Exceptions are an effect

Why not go one step further and define

_— partiality as an effect, thus creating a

~Q§\ foundational language subset suitable
| for proofs?



Performance - Language Implications

Memory model

- Garbage collection should be the only option

Exception Model

- The Java/C# "exceptions everywhere" model
should be wholly abandoned

- All dereference and array accesses must be statically
verifyable, rather than causing sequenced exceptions

- No language construct except "throw" should

generate an exception



Syntax

Requirement:
= Must not scare away mainstream programmers.

. .
Lots of options. C Family: Least scary,
int f{nat n}(int[] as,natrange<n> i) but it's a messy legacy

{ _
return as[i];

}

f :: forall n::nat. ([int],nat<n) -> int ;H“ke” family: Quite scary :-) ’

f (xs,i) = xs !'!' i ]

f{n:nat} (as:[]int,i:nat<n)=as[i] | r Pascal/ML fqmily: j
T ———___ Seems promising




|

Conclusion

. )
4@'



A Brief History of Game Technology

4= 1972 Pong (hardware)

.

1980 Zork (high leyelinterocaiiod

1993 DOOM (¢) WFF

1998 Unreal (C++, Java-style script| e

2005-6 Xbox 360, PlayStation 3
with 6-8 hardware threads

2009 Next console generation. Unification of the

Pl o W S N



The Coming Crisis in Computing

= By 2009, game developers will face...
= CPU's with:
- 20+ cores

- 80+ hardware threads

- >1 TFLOP of computing power
= GPU's with general computing capabilities.
= Game developers will be at the forefront.

~_If we are to program these devices
roduc’rively, you are our only hope!




|

p
S’
stion

e

u

Q



|

S
p Slide
Ku

C

Ba




The Genius of Haskell

= Algebraic Datatypes

- Unions done right
Compare to: C unions, Java union-like class
hierarchies

- Maybe
C/Java option types are coupled to
pointer/reference types

= TO, ST

- With STRef, you can write a pure function that
- __, uses heaps and mutable state locally, verifyably
‘@\ guaranteeing that those effects remain local.



The Genius of Haskell

= Comprehensions

Sorting in C

Sorting in Haskell

sort [] []
sort (x:xs) = sort [y | y<-xs, y<x ] ++
[x 1 ++

sort [y | y<-xs, y>=x]

int partition(int y[], int £, int 1);
void quicksort(int x[], int first, int last) {
int pivIndex = 0;
if(first < last) {
pivIindex = partition(x,first, last);
quicksort(x,first, (pivIndex-1));
quicksort (x, (pivIndex+1) ,last) ;

}

}
int partition(int y[], int £, int 1) {

int up,down, temp;

int cc;
int piv = y[£f];
up = £;
down = 1;
do {
while (y[up] <= piv && up < 1) {
up++;
}
while (y[down] > piv ) {
down--;

}
if (up < down ) {
temp = y[up];
yl[up] = yl[down];
y[down] = temp;
}
} while (down > up);
temp = piv;
y[f] = yldown];
y[down] = piv;
return down;




Why Haskell is Not My Favorite
Programming Language

= The syntax is ... scary

= Lazy evaluation is a costly default
- But eager evaluation is too limiting
- Lenient evaluation would be an interesting default
= Lists are the syntactically preferred
sequence type

- In the absence of lazy evaluation, arrays seem
preferable

AQ'



Why Haskell is Not My Favorite
Programming Language

= Type inference doesn't scale

- To large hierarchies of open-world
modules

- To type system extensions

- Tn euetom-

f(x,y) = xty ERROR - Cannot infer instance
a=f (3,”4") «es | *** Instance : Num [Char] :):)1)
*** Expression : £ (3,"4")
f(int x,int y) = xty Parameter mismatch paremter 2 of call to f:
a=£(3,”74") °e Expected: int
Got: A

49“



