
CS146

Software Tools and System Programming
Using Linux & Unix as an example

Wayne Hayes



CS146 2

Course Goals

• Using Unix for software development 
(Bourne Shell/bash, scripting, filters, awk, 
make, compilers, debuggers)

• Basic understanding of Unix systems 
programming (system call interface, Unix 
kernel)
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About these slides

These slides derive much of their content 
from the originals by David A. Penny and 
the modifications made by Wayne Hayes, 
for a similar course at University of 
Toronto.  Sean M. Culhane’s ideas were 
also used.  The original LaTeX slides were 
converted to PowerPoint by Arthur Tateishi.
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Section #1

Basic UNIX Structure
and

OS Concepts
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What is UNIX good for?
• A generic interface to computing equipment
• Supports many users running many programs at the same time, 

all sharing (transparently) the same computer system
• Promotes information sharing
• Geared for high programmer productivity. “Expert friendly”
• Generic framework allows flexible tailoring for users.
• Services include:

File system, Security, Process/Job Scheduling, 
Network services/abstractions.



CS146 6

History
• Ken Thompson working at Bell Labs in 1969 wanted a small 

MULTICS for his DEC PDP-7
• He wrote UNIX which was initially written in assembler and 

could handle only one user at a time
• Dennis Ritchie and Ken Thompson ported an enhanced UNIX to 

a PDP-11/20 in 1970
• Ritchie ported the language BCPL to UNIX in 1970, cutting it 

down to fit and calling the result “B”
• In 1973 Ritchie and Thompson rewrote UNIX in “C” and 

enhanced it some more
• Since then it has been enhanced and enhanced and enhanced and 

…
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Computer Hardware
• CPU - Central Processing Unit carries out the instructions of a program
• Memory - used for “small” information storage (e.g. < 4GB) 
• I/O devices - used for communicating with the outside world such as 

screen, keyboard, mouse, disk, tape, modem, network
• Bus - links CPU, I/O, and Memory

MemoryCPU Screen

Mouse KeyboardDisk
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Machine Language
• CPU interprets machine language programs:

1100101 11111111 11010000 00000000
1010001 01011101 00000010 00000000
1100101 00000000 11111111 00100100

• Assembly language instructions bear a one-to-one correspondence 
with machine language instructions

MOVE   FFD0, D0           % b = a * 2
MUL    #2, D0
MOVE   D0, FFDC
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Compilation
• High Level Language (HLL) is a language for expressing algorithms 

whose meaning is (for the most part) independent of the particular 
computer system being used

• A compiler translates a high-level language into assembly language
(object files).

• A linker translates assembly language programs (object files) into a 
machine language program (an executable)

• Example:
– create object file “fork.o” from C program “fork.c”:

gcc -c fork.c -o fork.o
– create executable file “fork” from object file “fork.o”:

gcc fork.o -o fork
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UNIX Kernel

UNIX system services

UNIX kernel in C

computer

Applications Programs

• A large C program that implements a general interface to a computer 
to be used for writing programs:

fd = open(“/dev/tty”, O_WRONLY);
write(fd, “Hello world!”, 12);



CS146 11

UNIX system services

UNIX kernel in C

C and libc

computer

C Application Programs

libc - C Interface to UNIX system services
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Shell

UNIX system services

UNIX kernel in C

computer

SH

• The shell (sh) is a program (written in C) that interprets commands 
typed to it, and carries out the desired actions.

• The shell is that part of Unix that most users see. Therefore there is a 
mistaken belief that sh is Unix.

• sh is an applications program running under Unix
• Other shells exists (ksh, csh, tcsh, bash)
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UNIX system services

UNIX kernel in C

Tools and Applications

computer

SH

vi            cat          more       date          gcc          gdb          … 



Common Unix Commands
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• ls options: -l, -a, -A, -t, -S, -r, -F
• less(1), wc, mv (rename), with options -i, -f (NO BACKUP!)
• cd, pwd, mkdir, rmdir, rm (-rf), which, du, df
• When using “rm”, be careful with accidental spaces!! “rm –rf *_.c”
• basic shell globbing vs. regular expressions
• Filters: [ef]grep, sed, tr, awk, diff (incl. stdin as “-”)
• Editors: vi/vim, emacs
• People + Processes: who, w, last, ps, uptime, top, kill, time, date
• Archivers: (un)zip, tar, gzip, xz, 7zip (slow but best compression)
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Section #2

UNIX File Abstraction
and

File System Organization
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What is a File?
• A file is the most basic entity in a UNIX system.
• Several different kinds of files:

– Regular
– Directory
– Character Special
– Block Special
– Socket
– Symbolic Link

• They are accessed through a common interface (i.e. you need only 
learn how to use one set of systems calls to be able to access any sort 
of file.)
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Regular Files
• A regular file is a named, variable length, sequence of bytes.
• UNIX itself assumes no special structure to a regular file beyond this.
• Most UNIX utility programs, however, do assume the files have a 

certain structure.
• e.g.

$ cat > file
hello world!
^D
$ ls -l file
-rw-r--r-- 1    wayne 13  May  8  16:44   file
$ cat file
hello world!
$ od -cb file
0000000   h   e   l   l   o       w   o   r   l   d   !  \n

150 145 154 154 157 040 167 157 162 154 144 041 012

0000015
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Regular Files (cont.)
• Regular files are used to store:

– English Text
– Numerical Results
– Program Text
– Compiled Machine Code
– Executable Programs
– Databases
– Bit-mapped Images
– etc...
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Directories & Filenames

• Directories are special kinds of files that contain references to other 
files and directories.

• Directory files can be read like a regular file, but UNIX does not let 
you write to them.

• There are two ways of specifying a filename
– absolute: /homes/u1/wayne/file
– relative: cs146/accounts

• With an absolute pathname the search for the file starts at the root
directory.

/

homes

u1

wayne

file cs146

accounts
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Relative Pathnames
• With a relative pathname the search for the file starts at the current 

working directory.
• Every process under UNIX has a CWD. This can be changed by means 

of a system call.
• e.g.

$ pwd
/homes/u1/wayne
$ cd cs146
$ pwd
/homes/u1/wayne/cs146
$ cd /
$ pwd
/
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Device Files

• All forms of I/O in UNIX go through the file interface.
• To write to a terminal’s screen, for instance, you just write to the 

appropriate device file:
$ cat > /dev/ttya
Hi guy!^D

• This will cause the text “Hi guy!” to appear on a screen.
• To read from a terminal’s keyboard you just read from the appropriate 

device file:
$ cat /dev/ttya

• The same holds true for disks, tapes, mice, tablets, robot arms, the 
computer’s ram memory, etc…
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Block Special & Character Special 
Device Files

• There are three kinds of interfaces to devices in UNIX:
• block interface
• character interface
• Line interface

• If input and output are buffered in fixed-size blocks within the 
operating system, the device has a block special file as its interface.

• If the input and output are unbuffered, the device has a character 
special file as its interface.

• In-between the two is the line-buffered, which is what the standard 
terminal (keyboard + screen) uses.
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Sockets & Pipes
• Pipes are special files used to pass bytes between two processes.

• Sockets are similar, but are used to connect two processes on different 
machines across a network.

Process
A

Process
B

Pipe

write read
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File Permissions
• Every user of the system has a login name.
• The file /etc/passwd associates a UID, GID, and password with each 

login name.
• When a file is created, the UID and GID of the creator are 

remembered.
• Every named file has associated with it a set of permissions in the form 

of a string of bits.
Owner Group Others
r w x s r w x s r w x

mode regular/device directory
r read list contents
w write create and remove
x execute query and chdir
s setuid/gid (see “man chmod”)
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Inodes
• Each distinct file in UNIX has an inode that refers to it.
• An inode contains:

– type of file
– time of inode last modified
– time file data last written
– time file data last read
– creator’s user ID
– creator’s group ID
– number of directory links
– file size
– pointers to disk blocks containing data
or the major and minor device ID
– permission bits
– sticky bit
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Mounting
• A file system is contained on a disk.
• File systems are mounted onto existing filenames:

/

/etc /homes /usr /tmp/bin

disk

/homes/u1 /homes/u2

/homes/u1/wayne

/homes/u2/cs146h/at209pau

disk disk

/homes/u2/cs146h
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Hard Links & Symbolic Links
• Directory files contain (filename, i-number) pairs.
• Each such entry is called a link.
• A file can have more than one link.
• Regular links (hard links) are not allowed to cross file systems.
• A different kind of link, a symbolic link, contains the pathname of the 

linked to file.
• Symbolic links can cross file systems. /

u1 u2

cs146hwayne

a209smit a209foob
symLinkFile

file linkToFile
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Section #3

UNIX Processes
and

Shell Internals
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The Shell

• A UNIX shell is a program that interprets commands
– It translates commands that you type into system calls.

• The shell is a tool that is used to increase productivity by providing a 
suite of features for running other programs in different configurations 
or combinations.

• We will be discussing “sh”, otherwise known as the Bourne Shell.
– Other shells exist:

• csh - The C Shell
• ksh - The Korn Shell
• bash - The GNU Bourne-Again Shell.



CS146 30

File Descriptors
• In UNIX, all read and write system calls take as their first argument a 

file descriptor (not a filename).
• To get a file descriptor you must perform an open or a creat system 

call.
int fd;

fd = open(pathname, rwmode);

• You are given the lowest numbered free file descriptor available 
(starting from 0).

• The open and creat system calls allocate resources within the 
operating system to speed up subsequent file access.

• When a program is done with a file it should call close:
close(fd);

• When a process terminates execution, all its open files are 
automatically closed.
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Fork

• The fork system call is used to create a duplicate of the currently 
running program.

• The duplicate (child process) and the original (parent process) both 
process from the point of the fork with exactly the same data.

• The only difference between the two processes is the fork return value.

Process
A

Process
A #2

Process
A #1

fork
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Fork example
int i, pid;
i = 5;
printf( “%d\n”, i );
pid = fork();

if( pid != 0 )
i = 6; /* only the parent gets to here */

else
i = 4; /* only the child gets to here */

printf( “%d\n”, i );
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Exec
• The exec system call replaces the program being run by a process by a 

different one
• The new program starts executing from its beginning

• Variations on exec: execl(), execv(), etc. which will be 
discussed later in the course

process A

running

program X

process A

running

program Y

exec(“Y”)
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Exec example

PROGRAM X
int i;
i = 5;
printf( “%d\n”, i );

exec( “Y” );

i = 6;
printf( “%d\n”, i );

PROGRAM Y
printf( “hello” );
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Processes and File Descriptors

• File descriptors belong to processes. (Not programs!)
• They are a process’ link to the outside world.

process
A

0
1

2

3

4
5
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PIDs and FDs across an exec

• File descriptors are maintained across exec calls:

process A
running

program X
3

process A
running

program Y
3

exec(“Y”)

/etc/termcap /etc/termcap
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PIDs and FDs across a fork
• File descriptors are maintained across fork calls:

process A
#2

3

process A
#1

3

/etc/hosts

fork
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Fork: PIDs and PPIDs

• System call: int fork()
• If fork() succeeds, it returns the child PID to the parent and returns 

0 to the child; if it fails, it returns -1 to the parent (no child is created)

• System call: int getpid()
int getppid()

• getpid() returns the PID of the current process, and getppid()
returns the PID of the parent process (note: ppid of 1 is 1)

• example (see next slide …)
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PID/PPID example
#include <stdio.h>
int main( void )
{

int pid;
printf( "ORIGINAL: PID=%d PPID=%d\n", getpid(), getppid() );
pid = fork();
if( pid != 0 )

printf( "PARENT: PID=%d PPID=%d child=%d\n", 
getpid(), getppid(), pid );

else
printf( "CHILD:  PID=%d PPID=%d\n", getpid(), getppid() );

printf( "PID %d terminates.\n\n", getpid() );
return( 0 );

}
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Initializing UNIX
• The first UNIX program to be run is called “/etc/init”
• It forks and then execs one “/etc/getty” per terminal
• [NEW] It may also start sshd and listen for ssh connections, as well as 

starting the X-window system, which we’ll discuss later.
• getty and sshd set up a login terminal, prompt for a login name, and 

then exec “/bin/login”
• login prompts for a password, encrypts a constant string using the 

password as the key, and compares the results against the entry in the 
file “/etc/passwd” (or /etc/shadow on newer systems)

• If they match, “/usr/bin/bash” is exec’d
• When the user exits from their login shell, the process dies.  Init finds 

out about it (via the wait system call), and forks another getty or sshd 
process for that terminal
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Initializing UNIX

init init

init

init

getty

init

login

init

sh

• The first UNIX program to be run is called “/etc/init”
• It forks and then execs one “/etc/getty” per terminal
• [NEW] It may also start sshd and listen for ssh connections, as well as 

starting the X-window system, which we’ll discuss later.
• getty and sshd set up a login terminal, prompt for a login name, and 

then exec “/bin/login”
• When the user exits from their login shell, the process dies.  Init finds 

out about it (via the wait system call), and forks another getty or sshd
process for that terminal
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Standard Streams
• The forked inits open the terminals they are assigned to 3 times.
• The result is that when sh is eventually started up, the first three file 

descriptors (0, 1, 2) are pre-assigned, and refer to the login terminal.

Descriptor Name Purpose
0 Standard Input Read Input
1 Standard Output Write Results
2 Standard Error Report Errors

• sh reads its commands from the standard input
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How sh runs commands
> date
Fri Oct  1 12:03:53 PDT 2010

• When a command is typed csh forks and then execs the typed command:

• After the fork and exec, file descriptors 0, 1, and 2 still refer to the 
standard input, output, and error in the new process

• By UNIX programmer convention, the executed program will use these 
descriptors appropriately

csh csh

csh

csh

date

csh
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duplicate:
fork()

How sh runs (cont.)

parent process running shell,
PID 34, waiting for child

child process running shell, PID 35

parent process running shell,
PID 34, awakens

wait for child:
wait()

process running shell,
PID 34

child process running utility, PID 35

child process terminates PID 35

terminate:
exit()

signal

differentiate:
exec()
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I/O redirection
$  cat < f1 > f2

• After the fork, but before the exec, sh can redirect the standard input, 
output, or error streams (or any other stream for that matter):

while(not end of standard input) {
print(stdout, “% “);

read_cmd(stdin, command);

pid = fork();

if (pid == 0) {

/* The child executes from here */

if (inputRedirected) {

close(stdin);

open(inputFile, O_RDONLY);

}

if (outputRedirected) {

close(stdout);

creat(outputFile);

}

exec(command);

} else

/* parent: wait for child to terminate */

} /* end while */



CS146 46

Pipes

$  ls /u/cs146h | cat

• For a pipeline, the standard output of one program is connected to the 
standard input of the next program.

• Pipelines can be (almost) arbitrarily long.
• Commands in a pipeline are run concurrently!
• The output of a pipeline could be produced using temporary files, but

– pipes are implemented in RAM, which is faster than disk.
– you would lose on the store-and-forward delays
– programs requiring little CPU can produce lots of I/O, so why not run 

them concurrently rather than wait for one to finish before starting the 
next one?

– you might fill up the disk with large intermediate files.
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Exec arguments
$ echo hello world!
hello world!

• The exec system call has a parameter (not shown previously) that is 
used to pass command line arguments to the executed commands:

char * argv[4];

argv[0] = “echo”;
argv[1] = “hello”;
argv[2] = “world!”;
argv[3] = NULL; /* (char*) 0 */

exec(“/bin/echo”, argv);
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Environment Arguments
• The exec system call has another parameter (not shown previously) 

that is used to pass the state of the environment to executed 
commands:

char * envp[2];
envp[0] = “TERM=xterm”;
envp[1] = NULL;

exec(“/bin/echo”, argv, envp);

• sh may be told to pass these environment parameters to executed 
programs by way of the export command.

% TERM=xterm; export TERM



CS146 49

Section #4

Bourne Shell
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Shell Communications
• Pre-opened file descriptors:

$ cat < f   > g

• Exec (command line) arguments:
$ grep ‘hello’   f

• Environment parameters:
$ PRINTER=lw; export PRINTER
$ lpr  document
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Basic Redirection
• Direct output from file descriptor n to file f:

n > f $  2>err  ls   1>foo
If n is absent, the default is the standard output (1).

• Append output from file descriptor n to the end of file f:
n >> f $ cat x >> f

If n is absent, the default is the standard output (1).

• Direct input to file descriptor n from file f:
n < f $ 3<bar  foo

If n is absent, the default is the standard input (0).

• Redirect standard output (1) from program 1 to the standard input (0) 
for program 2:

p1 | p2 $ ls | grep foo
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Advanced Redirection:
“Here” Documents

n << word
n << -word

• The shell input is read up to a line that is the same as word, or to an 
end-of-file.

• The resulting document becomes the input on file descriptor n 
(defaults to the standard input, 0).

• If a minus sign (-) is appended to the <<, all leading TABs are 
stripped.

# put “hello world!” into file f.
cat > f  <<-END

hello world!
END
# done
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Advanced Redirection:
dup’ing & close’ing

n<&m n>&m n<&- n>&-
• dup system call:

int fd1, fd2;
fd1 = open(“file” O_RDWR);
fd2 = dup(fd1);

• At the end of this sequence, fd1 and fd2 both refer to exactly the same 
thing.

• The phrase, n>&m or  n<&m , causes file descriptor n to be a 
dup of the (pre-opened) file descriptor m.

• The phrase, n<&- or  n>&- closes file descriptor n.

• The shell checks that n is open for input(<), or output(>), respectively.
• The defaults for absent n are stdout (1) for >, and stdin (0) for <.
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Filename Generation
(globbing)

• Words on the command line are expanded if they contain one of the 
characters “*”, “?”, “[“.

• The word is replaced with a sorted list of filenames that match the 
given pattern.

• If no matching filenames are found, the word is left unchanged.
* Matches any string (including null).
? Matches any single character.
[…] Matches any one of the enclosed characters.
[x-y] Matches any character lexically between the pair.
[!…] Matches any character not enclosed.

• The character “.” at the start of a filename or immediately following a 
“/” as well as the character “/” itself, must be matched explicitly.
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Shell Variables:
setting and unsetting

• The shell maintains an internal table that gives string values to shell 
variables.

• A shell variable is initially assigned a value(set), or subsequently has 
its value changed, by a command of the form variable=value.

$  x=3  y=4

• A shell variable is removed by the built-in command unset.
$ unset x

• A shell variable can be exported to the environment of commands that 
are executed.
$ export x
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Shell Variables:
retrieving

• The value of a shell variable may be substituted in a command by a 
“$” phrase.

$var The value of var is substituted.
${var} The value of var is substituted. (The braces are required only 

when var is followed by a letter, digit, or underscore.)
${var:-w} If var is set and non-null, substitute its value, otherwise 

substitute w.
${var:=w} If var is not set or is null, set it to w. The value of var is 

substituted.
${var:?w} If var is set and non-null, substitute its value, otherwise print 

w and exit from the shell. (Default message if w is absent.)
${var:+w} If var is set and non-null, substitute w, otherwise substitute 

nothing.
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Shell Variables:
positional parameters

• Shell variables that are composed of a single digit are positional 
parameters.

$0 0th positional parameter.
$1 1st positional parameter.
…
$9 9th positional parameter.

$# The number of positional parameters as a decimal (base 10) string.

$* All the positional parameters, starting with $1, are substituted (separated 
by spaces).

$@ Similar to $*. However they differ when quoting is used (later).
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Shell Variables:
the “set” command

• The command
$  set

will print out the values of all shell variables.
• The command

$ set a  b  c
will set positional parameters 1, 2, and 3 to “a”, “b”, and “c” 
respectively.

• The set command with arguments starting with “+” or “-” will turn on 
and off the shell options. e.g.

$  set -x
will cause all commands and their arguments to be printed as they are 
executed.

• These options may also be set when invoking the shell.
$ sh -x foo
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Shell Variables:
pre-set

• The following shell variables are pre-set.

$- The options supplied to the shell on invocation or by the set
command.

$? The exit status returned by the last command executed in the 
foreground as a string in decimal notation.

$$ The process ID of this shell.
$! The process ID of the last background command invoked.
$PATH The directories to search in order to find a command.
$PS1 Primary prompt string.
$PS2 Secondary prompt string.
$MAILCHECK

How often to check for mail.
$IFS Internal field separator.



CS146 60

Environment Parameters
• The environment, a list of name-value pairs, is passed to the shell and 

to every command that the shell invokes.
• When the shell starts up, it makes a shell variable out of each name-

value pair.
• Shell variables and environment parameters may be bound together by 

means of the export command.
• Entries in the environment may be modified or added to by binding an 

existing or yet to exist shell variable. Subsequent changes to that 
variable will be reflected in the environment list.

• Entries may be deleted by performing an unset on the corresponding 
shell variables.

• The environment for any simple command may be augmented by 
prefixing it with one or more assignments to parameters. e.g.

$ X=5  Y=6  fooscript
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Environment Parameters
used by sh

HOME Default argument for cd. (set by login)
PATH The search path for commands.
CDPATH the search path for cd.
MAIL File where the user’s mail arrives. (set by login)
MAILCHECK How often to check for mail.
MAILPATH Set of files to check for mail. (used in preference to 

MAIL if set)
PS1 Primary prompt string.
PS2 Secondary prompt string.
IFS The characters that separate arguments on a command 

line.
SHELL If set and value contains an “r”, the shell becomes a 

restricted shell. (set by login)
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Command Substitutions

• The standard output for a command enclosed in a pair of back-quotes 
(``) may be used as part or all of a word.

• Trailing newlines are removed.
$ echo `pwd`
/homes/u1/wayne
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Quoting
• The following characters have a special meaning to the shell:

;  &  (  )  |  ^  <  >  NL  SPACE  TAB

• A single character may be quoted by preceding it with a backslash(\).
• A backslash(\) character followed by a newline is ignored.
• All characters enclosed between single quotes (‘) are quoted (except 

for (‘).
• Inside double quote marks(“) shell variable substitution and command 

substitution occurs. (“\” is used to quote the characters \ ‘  “  and $.

$*     =   $1 $2 … $n
“$*”   =   “$1 $2 … $n”
“$@”   =   “$1” “$2” … “$n”
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Putting it all Together
• Whenever a command is read, either from a shell script or from the 

terminal, the following sequence of substitutions occur:
1) Comments

A word beginning with the “#” causes the word and all the following characters up 
to the end of the line to be ignored.

2) Command substitution
Commands enclosed in back-quotes are executed.

3) Parameter substitution
All “$” references are expanded.

4) Blank interpretation
The results up to here are scanned for characters in IFS and split into distinct 
arguments. Explicit nulls are retained (“”), implicit ones are removed.

5) Filename expansion
Each argument is then filename expanded.

6) I/O Redirection
I/O redirection is now separated from command line arguments.
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Section #5

Shell Scripting
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Shell Scripting: 1
• “ls -F” is much more useful than simple “ls”. It tells you concisely 

what each file is without the bother of doing “ls -l” all the time.
• We want it to be so that when we type “ls”, we get “ls -F”.

– $HOME/bin/ls
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Shell Scripting: 1(a)
$HOME/bin/ls

ls –F

2 Things Wrong
1. Since this script version of ‘ls’ was probably run as 

the first ‘ls’ in the PATH, the ‘ls’ in the script will 
run the script again. Infinite recursion.

2. Arguments are being ignored. That means ‘ls /etc’ 
would not work as expected.
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Shell Scripting: 1(b)
$HOME/bin/ls

exec /bin/ls –F “$@”

A corrected version would call /bin/ls to avoid the infinite 
loop. The “$@” variable will pass the arguments to the 
real ‘ls’. The ‘exec’ avoids the shell waiting around for 
the completion of ‘ls’.
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Shell Scripting: 1(c)
The Bourne Shell has a function syntax that can solve 
our problem elegantly. It can be added to the .profile 
startup file so it is loaded for login shells.

$HOME/.profile
ls () { /bin/ls –F “$@”; }

– In other shells, there is an alias command used like
alias ls ls –F

or
alias ls=“ls –F”
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Shell Scripting: 2
• We want to set the shell prompt to be ‘machine-> ’
• I logon to many different machines. Often several at once from the 

same workstation. I want only one .profile file.
• Program “hostname” will give you the machine in the form:

– machinename.domainname
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Shell Scripting: 2(a)
• The first approach demonstrates the use of IFS and set but it is quite 

convoluted. Using set in shell scripts has the notable drawback that 
arguments are destroyed and hence must be parsed first or saved for 
later.

• $HOME/.profile

oldIFS=$IFS
IFS=’.’; set `hostname`; PS1=“$1-> ” ; export PS1
IFS=$oldIFS; unset oldIFS
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Shell Scripting: 2(b)
• The following version can be considered simpler. It sends the output of 

hostname through sed with a substitution command.
PS1=`hostname | sed ’s/\..*//’`; export PS1

• The sed command is explained as follows:
s - sed command for substitution
/ - delimiter for regular expression
\ - escape character for following character
. - a period. Normally, sed interprets periods as the regular expression for 

“any character”. The previous backslash overrides that.
. - match any character. This one was not escaped.
* - match zero or more of the previous expression. In this case it means 

match zero or more of “any character”.
/ - separator between the regular expression and replacement part of the 

substitute command
/ - the end of the replacement string. We’re replacing with nothing.

• So the sed command has been asked to find a period followed by any 
number of characters and replace it with nothing.
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Shell Scripting: 3
• When I logon, I want to a polite greeting, customized to the time of 

day.
Good morning, Wayne!
Good afternoon, Wayne!
Good evening, Wayne!
Good god! What are you doing up so early?

• The date command will print out the current date and time.
$ date
Mon Jan 30 10:09:27 EST 2008
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Shell Scripting: 3(a)
$HOME/bin/greet
# Mon Jan  3 10:09:27 EST 2008
set `date`; IFS=’:’; set $4; hour=$1
if [ $hour –lt 9 ]; then

echo “Good god! What are you doing up so early?”
elif [ $hour –lt 12 ]; then

echo “Good morning, Wayne!”
elif [ $hour –lt 18 ]; then

echo “Good afternoon, Wayne!”
else

echo “Good evening, Wayne!”
fi

• Time could be parsed easier using cut.
hour=`date | cut –c12-13`
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Shell Scripting: 3(b)
• Date has some nice options including the ability to format the output in 

various ways.  Yes, it does pay to read the man pages.

case `date +%H` in
0[0-8] ) echo “Good god…”;;
09 | 1[01] ) echo “Good morning, Wayne!”;;
1[2-7] ) echo “Good afternoon, Wayne!”;;
* ) echo “Good evening, Wayne!”;;

esac

• I can have the greet command run upon login by adding a line to my 
.profile to run greet.
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Shell Scripting: 4
• List all regular files in a subtree.
• This is a recursive script that demonstrates the use of $0 to run itself 

without knowing the name of the script.
$HOME/bin/dtfiles

PATH=/bin:/usr/bin:$HOME/bin:$PATH
cd $1
for i in *
do

if [ -f $i ]; then
echo $i

elif [ -d $i ]; then
$0 $i

fi 
done

• With no arguments, the shell script should work on your $HOME 
directory. To make it work on the current directory by default, we 
could change the ‘cd’ command to read: cd {$1:-.}
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Shell Scripting: 5
• n! is “n factorial”
• Mathematically,

n! = n * (n-1) * (n-2) * … * 2 * 1

• The shell scripting language does not have arithmetic. However, the 
expr(1) utility can do arithmetic by reading and parsing strings.

• Here are two versions of shell scripts to compute n factorial. Which do 
you think is better? I recommend that you try both and see.

• When evaluating how to decide which script is better, consider the 
number of processes forked, the number of active processes during the 
run, what sorts of commands are used, how many temporary files are 
needed, maintainability, etc.



CS146 78

Shell Scripting: 5(a)
#!/bin/sh

if [ $# -ne 1 ]; then
echo “Usage: $0 n” >&2; exit 1

fi

# Check to make sure the argument is a number
If echo $1 | grep ‘^[0-9][0-9]*$’ >/dev/null 2>&1; then

:
else

echo “Usage: $0 n” >&2; exit 1
fi

If [ $1 –eq 0 ]; then
echo 1

else
m1=`expr $1 – 1`
expr $1 \* `$0 $m1`

fi



CS146 79

Shell Scripting: 5(b)
#!/bin/sh
if [ $# -ne 1 ]; then

echo “Usage: $0 n” >&2; exit 1
fi

# Check to make sure the argument is a number
If echo $1 | grep ‘^[0-9][0-9]*$’ >/dev/null 2>&1; then

:
else

echo “Usage: $0 n” >&2; exit 1
fi

fact=1
number=$1
Until [ $number = 0 ]
do

fact=`expr $fact \* $number`
number=`expr $number – 1`

done
echo $fact
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Section #6

UNIX Program Execution
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UNIX kernel

C Program Execution

computer

System call library

Compiled C program

Standard libraries
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EXECVE
execve(name, argv, envp)

0xfffc02  

0xa0bf58  

0xa0bf34

/ b i n / e c h o \0

e c h o \0 H e l l o \0

W o r l d  ! \0

T E R M = x t e r m \0

0xfffd00  

0xfffd05

0xfffa0b

NULL

0xfffd24  

NULL

argv

envp

name
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Executable Files

• execve will fail unless the file to execute has the appropriate execute 
permission bit turned on.

• The file must also be in one of the correct formats.

• There are two general classes of executable files:
1) Executable object files (machine code and data).
2) Files of data for an interpreter (usually ascii).
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Interpreter Files

• The UNIX kernel, during an execve, reads the first few bytes of a file 
it is asked to execute.

• Interpreter files begin with a line of the form:
#! interpreter  arguments
e.g.
#!/bin/sh  -x

• The kernel executes the named interpreter with the name of the 
original (data) file as one of the arguments.

e.g.
execv(“foo”, <“foo”, “a”, “b”, “c”>)

is transformed into:
execv(“/bin/sh”, <“sh”, “-x”, “foo”, “a”, “b”, “c”>)

• This should explain why so many UNIX commands use ‘#’ for a 
comment line indicator.
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Executable Object Files
• An executable object file has the following 7 sections:

1) header
– magic number
– text size (executable code)
– data size (global/static non-zero initialized)
– bss size  (global/static, zero-initialized)
– symbol table size (variable names, if present)
– entry point (where in the text above to start execution)
– text relocation size (executable code that can be moved upon linking)
– data relocation size (same as above but for data)

2) text (machine code)
– zero filled to nearest page (e.g. 8K) boundary

3) initialized data
– zero filed to nearest page boundary
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Executable Object Files (cont.)

4) text relocation information
– address
– size (byte, half-word, word)
– symbol number

5) data relocation information
– same as above

6) symbol table
– index into string table
– type of symbol
– value

7) string table (only present if debugging information present)
– size in first four bytes
– zero-terminated strings



CS146 87

Executable Object File Format

header
0

32

a_text

data

text

bss (0-filled)

text relocation

data relocation

symbol table

string table

table size + 4

8K aligned

8K aligned

a_text + a_data

x + a_trsize

x + a_trsize + a_drsize

x + a_trsize + a_drsize + a_syms
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Virtual Memory Image

header

0

a_text

data

text

bss (0-filled)

8K aligned

8K aligned

a_text + a_data

a_text + a_data + a_bss

8k
Blank page   (page zero)

2G

4G

System Space

Heap grows explicitly
by calls to sbrk()

Stacks grows implicitly
when addressed

Stack
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“Hello world!”
(in 68000 assembly language)

.text
movl #13, sp@- | # bytes to write
pea msg | address
movl #1, sp@- | standard output
movl #0, sp@-
movl #4, sp@- | WRITE
trap #0

addw #20, sp | clean the stack

movl #0, sp@- | exit code
movl #0, sp@-
movl #1, sp@- | _EXIT
trap #0

.data
msg:.ascii “Hello world!\12\0”

$ as hello.s
$ ld a.out
$ ./a.out
Hello world!
$
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“Hello world!”
(in C using only system call library)

char msg[] = “Hello world!\n”;

int
main(void)
{

int bytesWritten;
bytesWritten = write(1, msg, 13);
return 0;

}

$ gcc hello.c
$ ./a.out
Hello world!
$
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libc
• libc contains the object code for:

– the interfaces to system calls
– the standard libraries

• For example, the file “write.s” is that part of the source for the system 
call interface library that interfaces to the write system service.
err:  jmp cerror

.globl _write
_write:

movl #4, sp@- # WRITE system call
trap #0
jcs err
rts
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Error Statuses Returned from System Calls
• Every system call returns a status.
• If the status is negative then the system call interface library will call 

the routine cerror.
• Cerror will store the error status (returned by the system call in a 

general purpose register) into a global variable called errno.

extern int errno;
main()
{

int fd;
fd = open(“foo”, 0, 0);
if (fd == -1)

fprintf(stderr, “Error 
on open: %d\n”, errno);

}

Error on open: 2

#include <stdio.h>
#include <errno.h>
main()
{

int fd;
fd = open(“foo”, 0, 0);
if (fd == EOF)

perror(“foo”);
}

foo: No such file or directory
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“Hello world!”
(in C using standard I/O library)

#include <stdio.h>

main()
{

printf(“Hello world\n”);
}

$ gcc hello.c
$ ./a.out
Hello world!
$
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Section #7

C Storage Model
Compilation and Linking
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Setting Aside Storage

• Every data element must have the appropriate number of bytes set 
aside for it in the process’s memory.

• Insofar as variables are concerned, those bytes are either allocated on 
the stack, or in the heap.

• You tell the C compiler to set aside storage for you by means of a 
declarations:
int i;
unsigned short j;

stack

heap

text
init. data
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Stack Data
• Each time that a C function is called, extra stack space is implicitly 

allocated.
• This stack space contains the automatic variables (also called local 

variables) for that function.
• Local variables are all variables declared within a {} block.
• When a function returns, that stack space is implicitly de-allocated and 

later re-used.
/* Pathological Example */
main(int argc, char *argv[],

char *envp[])
{

int x = 1;
int y = 2;

add(x, y);
printSum();

}

add(int i, int j)
{

int k = i + j;
}

printSum()
{

int a, b, c;
printf(“%d\n”, c); // or maybe a

}
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Example explained #1
• Stack just prior to call to “add”:

Stack pointer x = 1

y = 2

return addr

argc = 1

argv

envp

Argument and
Environment

String

main’s
activation
record
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Example explained #2
• Stack just after call to “add”:

Stack pointer k = 3

return addr

add’s
activation
record

x = 1

y = 2

return addr

argc = 1

argv

envp

main’s
activation
record

j = 2

i = 1
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Example explained #3
• Stack just prior to call to “printSum”:

Stack pointer

3

Junk (return addr)

x = 1

y = 2

return addr

argc = 1

argv

envp

main’s
activation
record

2

1
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Example explained #4
• Stack just after to call to “printSum”:

Stack pointer c = 3

return addr
printSum’s
activation
record

x = 1

y = 2

return addr

argc = 1

argv

envp

main’s
activation
record

a = 1

b = junk (old addr)
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Heap Data
• The heap is divided into three parts:

– initialized data
– zero-initialized data
– dynamically allocated data

• Space for initialized and zeroed data is allocated for each declaration 
appearing outside of any function (or for in-function declarations 
prefaced by static):
int i, j = 3;
main()
{

static int k = 2;
i = k + j;

}

• Space for dynamically allocated data is allocated explicitly by calls to 
the library function malloc.
main()
{

int *p = malloc(sizeof(int));
*p = 3;

}
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Storage Class
• There are various ways of specifying which storage class an object 

belongs to:
– If an object is declared within a {…} block with no storage class 

specification, or the auto storage class specification, they are stored on the 
stack.

– If an object declared within a block has the storage class specifier 
register, it is either kept on the stack or in a CPU register if that is 
possible.

– If an object within a block has the storage class specifier static, it is stored 
in the heap, but is still semantically local to that block.

– If an object is declared outside of all blocks, it is stored in the heap.
– If an object is declared outside of all blocks, and has the specifier static, it 

is local to that file.
– If an object declared outside of all blocks has the specifier extern, or no 

specifier, it is visible throughout the program.
– If declared extern, no space is allocated. It is assumed that space has been 

allocated elsewhere (i.e. without the keyword extern) and will be resolved 
by the linker.
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C Compilation
• There are four main phases of C compilation

(1) Preprocess
(2) Scan & Parse
(3) Code Generation
(4) Linking
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Preprocess
• The preprocessor (cpp) handles macros, #include, and conditional 

compilation.
foo.h

#define DEBUG 1
#define ADD(a,b) ((a) + (b))
int x;
extern void printi(int);

foo.c:
#include “foo.h”
void main()
{

int y, z;
x = ADD(y, z);

#if DEBUG
printi(x);

#endif
}

After preprocessing:

int x;
extern void printi(int);
void main()
{

int y, z;
x = ((y) + (z));
printi(x);

}
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Scan
• The scanner separates input into logical tokens - no meaning is 

assigned yet.

int ; extern void printi ( int ) ; voidx

main ) { int y , z ; x = ( ( y ) +

( z ) ) ; ( ) ;xprinti

(

}
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Parse
• The parser derives meaning from the stream of tokens. Syntax 

checking also occurs here.
• x is a global integer initialized to zero (bss segment).
• main is a void subroutine with no parameters.
• { marks the beginning of main.
• int y, z; defines two automatic, uninitialized integers.
• x = ((y) + (z)); is an expression described by a parse tree;

• printi(x); call printi with x as argument.
• } marks the end of main.

(y) (z)

+
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Code Generation
• Code generation takes the parsed program (i.e. the compiler now 

“understands” the program) and generates machine language. We’ll 
show it as assembly language. Some compilers generate text for an 
assembler instead of generating code directly.

• Assign x an address, say memory locations 100-103.
• Assign main a starting address, say 1000.
• 68000 assembly language representation of compiled code:

_x = 100
_main = 1000

add.l -8, sp ; 2 ints, y & z
move.l @sp, @_x ; x = y
add.l @sp(4), @_x ; perform addition y+z
move.l @_x, @-sp ; push x onto stack
jsr _printi ; unresolved link
add.l 12, sp ; clean stack
rts ; return from _main

• Actual machine language file is called object file “foo.o”
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Link
• Linking is the resolving of symbols in object files.
• Each object file has associated with it a list of <name, address> pairs 

called a symbol table.
• Names not defined in the file, called unresolved references, have a 

NULL address. The symbol table for foo.o is:
[ <_main, 1000>, <_x, 100>, <_printi, 0> ]

Note y, z do not appear since they are local to main().
• A library archive (file extension .a) is a collection of object (.o) files, 

each containing executable machine code, global data, and a symbol 
table. Library archives are maintained by ar(1).

• “Linking” entails combining multiple object and library files, resolving 
all unresolved references, and producing an a.out executable file.

• In our example, we assume _printi is resolved by a symbol in an object 
file in a standard library.

• Sometimes linking happens later, at runtime, using shared or 
dynamically linked libraries (DLLs in Windows, .so files in Unix)
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Link example
$ gcc -E foo.c # pre-process only, output to stdout
$ gcc -S foo.c # PP, scan, parse, produce assembly language file foo.s
$ gcc -c foo.c # PP, scan, parse, codegen, produce output file  foo.o
$ gcc foo.o # link foo.o to produce a.out
$ gcc foo.c # all 4 phases, produce a.out
$ gcc -c foo1.c # produce foo1.o
$ gcc -c foo2.c # produce foo2.o
$ gcc foo1.o foo2.o # link foo1.o and foo2.o to libraries to produce

# a.out
• If necessary, the linker moves addresses at link time to avoid address 

conflicts (e.g. foo1.o and foo2.o both claim address 100 for different 
variables)

• On some systems, the symbol table also includes type information, e.g. 
x is an int and printi is a function. Most modern UNIX systems do this.
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Makefiles
• A Makefile contains instructions telling make(1) what depends on 

what, and how to build things. Make(1) looks at timestamps and 
figures out how to build things that don’t exist or are out-of-date.

• Each section of a makefile looks like:
target1: [dependency list] # empty mean always rebuild

instructions # MUST be TAB indented.

• Sections are separated by blank lines. e.g.:
$ cat makefile

foo: foo1.o foo2.o
gcc -o foo foo1.o foo2.o

foo1.o: foo1.c foo.h
gcc -c foo1.c

foo2.o: foo2.c foo.h
gcc -c foo2.c

• Typing “make” causes the first target in the Makefile to be built. 
Typing “make foo1.o” causes a specific target to be built.
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Section #8

Standard Library

“Never code something that someone else has already coded better.”
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Standard Library

kernel
hardware

System call library

Application Program
Standard library

• There is more in the standard library than you might expect. (Read 
“man intro” and lookup the intro’s for sections starting with 3.)

• Library contains functions, variables, and macros.
• Some library calls perform system calls, others do not. The system 

calls interface routines themselves are not considered part of the 
standard library (See “man 2 intro”). They are simply C interfaces to 
the system calls.
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Standard Library
• Library is divided into a number of different parts (see /usr/include)

stdio User-level buffered file I/O
errno Checking return status of system 

calls
malloc Memory allocation
ctype Classifying ASCII-coded integers
string Operations on null-terminated 

strings
math Mathematical functions and macros
exit Normal and abnormal termination
getenv Accessing environment variables 

by NAME
qsort Sorting
bsearch Binary search
assert Diagnostics used for debugging
stdarg Accessing variable length function 

parameter lists
setjmp Non-local program control jumps

signal Handling UNIX signals (also called 
exceptions)

limits Implementation-dependent 
information

float Implementation-dependencies for 
floating point

random Random number generation
time Dealing with date and time
network Accessing networks
encrypt DES encryption
dbm Database routines (key-content 

pairs)
dir Directory operations
getopt Parse options in argv
regex Regular expression handlers
stty Setting terminal driver 

characteristics
system Performing shell commands
… and more ...
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Standard I/O
• Designed to make performing I/O convenient and efficient.
• I/O is done independently on independent streams.
• To use:

#include <stdio.h>

which defines (among other things):
FILE Stream struct
NULL No stream
EOF End-of-file or error return indicator

stdin Standard streams
stdout
stderr
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Opening & Closing Streams
• FILE *fopen(char *filename, char *mode)

– Opens “filename” for access according to “mode”.
– Mode can be one of  “r”, “w”, “a”, “r+”, “w+”, “a+”

• FILE *freopen(char *filename, char *mode, FILE *stream)
– Substitutes the named file in place of the open stream. The old stream is 

closed.
• FILE *fdopen(int fildes, char *mode)

– Opens a stream that refers to the given UNIX file descriptor (must 
currently be open).

• int fileno(FILE *stream)
– Returns the UNIX file descriptor associated with the stream.

• int fflush(FILE *stream)
– Causes any buffered data for the named stream to be written out.

• int fclose(FILE *stream)
– Flushes the stream, closes the file, and deallocates the FILE data structure.

• int exit(int status)
– Causes all open streams to “fclose”d calls _exit(status).
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Output Buffering Modes
• There are three kinds of output buffering modes for streams:

1) Unbuffered - Characters appears on the terminal or in the file as soon as 
they are written.

2) Block Buffered - Many characters are saved up and then written as a 
block.

3) Line Buffered - Characters are buffered until a newline is encountered or 
input is read from stdin.

• Normally all files are block buffered, except terminals which normally  
default to line buffered for stdout, and stderr which is always 
unbuffered.

• int setbuffer(FILE *stream, car *buf, int size)
– Specifies that “buf” be used rather than a malloc’d buffer on the first getc or putc and sets the buffer size to 

“size”. If “buf” is NULL, I/O will be unbuffered. Used after a stream is opened, but before it is read or written.

• int setbuf(FILE *stream, char *buf)
– Same as setbuffer(stream, buf, BUFSIZ).

• int setlinebuf(FILE *stream)
– Used to change stdout or stderr to line buffered. Can be called anytime.
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Unformatted Input
• int getc(FILE *stream)

– Returns the next character from “stream”. (macro - beware of side effects)
• int ungetc(int c, FILE *stream)

– Pushes the character “c” back onto “stream”. Returns c.
• int getchar()

– Identical to getc(stdin).
• int fgetc(FILE *stream)

– Same as getc, but not a macro.
• int getw(FILE *stream)

– Returns the next int from “stream”. (must check for errors)
• char *gets(char *s)

– Reads characters up to and including the next newline into “s” from stdin. The newline is 
replaced by a NULL character in s. Returns s. This is VERY dangerous (see Internet Worm).

• char *fgets(char *s, int n, FILE *stream)
– Reads n-1 characters or up to and including a newline from “stream” into “s”. Adds a null 

character onto the end. Returns s.
• int fread(void *ptr, size_t size, int nitems, FILE *stream)

– Reads “nitems” nto block pointed to by “ptr” from “stream”. Flushed stdout if stream is stdin. 
Returns # items read.
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Formatted Input
• int sscanf(char *s, char *format [, pointer] …)

– Parses “s” according to “format” placing the results into the variables pointed to. Returns 
number of input items parsed and assigned.

• int fscanf(FILE *stream, char *format [, pointer] …)
– Same as sscanf but read from “stream”.

• int scanf(char *format [, pointer ] …)
– Same as fscanf(stdin, format, …)

• “format” is composed of:
– Blanks, tabs, newlines: Match optional white space.
– Regular characters (not %): Must match input.
– % [*] [maxField] [convChar]: Conversion specification.

• The conversion characters are:
– % Matches a % characters
– d, D, ld, hd Decimal integer
– o, O, lo, ho Octal integer
– x, X, lx, hx Hexadecimal integer
– s Character string
– c Single character
– e, E, le
– f, F, lf Floating point number
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Low-Level Output
• int putc(char c, FILE *stream)

– Appends “c” to “stream”. Returns the character written. (macro)
• int putchar(char c)

– Same as putc(c, stdout)
• int fputc(char c, FILE *stream)

– Same as putc, but not a macro.
• int putw(int w, FILE *stream)

– Appends int “w” to “stream”. Returns the word written.
• int puts(char *s)

– Appends the null-terminated string “s” to stdout, and a newline character.
• int fputs(char *s, FILE *stream)

– Appends the null-terminated string “s” to “stream”.
• int fwrite(void *ptr, size_t size, int nitems, FILE *stream)

– Append at most “nitems” of data of type *ptr beginning at “ptr” to “stream”. Returns # of items 
written. (returns 0 for error)
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Formatted Output
• int sprintf(char *s, char *format [, pointer] …)

– Places “format” expanded using “args” into the string “s”.
• int fprintf(FILE *stream, char *format [, pointer] …)

– Same as sprintf but appends to “stream”.
• int printf(char *format [, pointer ] …)

– Same as fprintf(stdout, format, …)
• “format” is composed of:

– Regular characters that are copied verbatim
– Conversion specifications of the form

• % [flags] [fieldWidth] [.] [precision] [l] [type]
• Flags are:

– # Alternate form
– - Left alignment
– + Include a sign if appropriate
– space blank should be left before a positive number (i.e. leave space for the +)

• Types are:
– % Print a % character
– d, o, x Decimal, octal, or hex integer
– f Float or double
– e Float or double with exponent
– g Style d, f, or e whichever simplest gives full precision.
– c character
– s string
– u unsigned integer
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Positioning a Stream Pointer
• int fseek(FILE *stream, long offset, int whence)

– Sets the position of the next I/O on “stream”. The new position is at a 
signed “offset” from the beginning, current position, or the end-of-file, 
according as “whence” is 0 (SEEK_SET), 1 (SEEK_CUR), or 2 
(SEEK_END). This undoes an ungetc.

• long ftell(FILE *stream)
– Returns the current value of the file pointer for “stream”

• int rewind(FILE *stream)
– Same as fseek(stream, 0L, 0)
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Status Enquiries
• int feof(FILE *stream)

– Returns 0 iff no end-of-file was encountered.

• int ferror(FILE *strream)
– Returns 0 iff no error has occurred while readng or wrting this stream.

• void clearerr(FILE *stream)
– Resets the end-of-file and error indicators for this stream.
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String/Character Handling
• All “str” functions require input strings be terminated with a null byte.

• Some of the most common ones:
strlen, strcpy, strcmp, strcat

• memcpy not just for strings!

• Some function for testing/converting single characters (ctype.h):
isalpha, isdigit, isspace
toupper, tolower
atoi, atol
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Storage Allocation
• Dynamic memory allocation (heap storage!):

malloc, calloc, free, realloc
• An example:

#include <stdio.h>
#include <malloc.h>
struct xx *sp;
main() {

sp = (struct xx *) malloc( 5 * sizeof(struct xx) 
);

if( !sp ) // if (sp == NULL)
{

fprintf(stderr, “out of storage\n” );
exit( -1 );

}
}
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Date and Time Functions
• Most UNIX time functions have evolved from various sources, and are 

sometimes inconsistent, referring to time as one of:
– the number of seconds since Jan 1, 1970 (or Jan 1, 1900)
– the number of clock ticks since Jan 1, 1970 (or Jan 1, 1900)
– the broken down structure “struct tm” 

(see /usr/include/time.h)
– the broken down structure “struct timeval” 

(see /usr/include/sys/time.h)
• Some are intended for time/date, whereas others are intended for 

measuring elapsed time
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Environment Interfacing
• Reading environment variables: 

char * getenv(char *envname);
• Adding environment variables:

int putenv(char *string);
where string is of the form name=value.

• Executing a shell command:
system(“egrep 128 /etc/hosts | wc”);

(What are the disadvantages of running a command this way?)
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Convenient Subshells

• You can also execute a command via the shell  and have its output sent 
to a pipe instead of stdout:

FILE *rpipe, *wpipe;
rpipe = popen( “ls -atl”, “r” );
... // read stuff from rpipe ...
pclose( rpipe );
wpipe = popen (“cat > foo”, “w”);
... // write stuff to wpipe ...
pclose( wpipe);

• Note that popen(3) is a standard library call that provides a convenient 
method of taking advantage of the pipe(2) system call.
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Section #9

UNIX System Calls 
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UNIX System Calls
• Kernel primitives

– Processes and protection
– Memory management
– Signals
– Timing and statistics
– Descriptors
– Resource controls
– System operation support

• System Facilities
– Generic operations
– File system
– Interprocess communications
– Terminals and devices
– Process control and debugging
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Host & Process Identifiers
• A HOST refers to the name of the UNIX installation on which a 

program runs.

• Each UNIX host associated with it a 32-bit host-id, and a host name. 
These can be set (by the superuser) and returned by the calls:

– int status = sethostid(long hostid);
– long hostid = gethostid();
– int status = sethostname(char *name, int len);
– int len = gethostname(char *buf, int buflen);

• On each host runs a set of processes, each of which is identified by an 
integer called the process id.

– int pid = getpid();
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Process Creation & Termination
• A new process is created by making a logical duplicate of an existing 

process:
int pid = fork();

• The fork call returns twice, once in the parent process, where pid is the 
process identifier of the child, and once in the child process where the 
pid return value is 0.

• A process can overlay itself with the initial memory image of another 
program, passing the newly started program a set of parameters:

int status = execve(char *name, char **argv, char **envp);
(Note that including the types above like “char **” are not correct syntax.)

• A process may terminate by executing:
void exit(int status);

returning 8 bits (low-order) of exit status to its parent.
• A process may also terminate abnormally.
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Termination Reporting
• When a child process terminates, the parent process may elect to 

receive information about the event which caused termination of the 
child process.

int wait(union waitstatus *waitstatus)
• There are three possibilities:

1) No children
• ERROR

2) One or more dead children (zombies)
• Call returns immediately with the status of one of the zombies chosen at 

random (thus burying it).
3) No dead children

• Call blocks until there is one, then does #2.

• An additional non-blocking call returns the same information as wait, 
but also includes information about resources consumed during the 
child’s lifetime.

int wait3(union waitstatus *astatus, int options, struct ruasge *arusage);
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User & Group ID’s
• Each process in the system has associated with it a:

– real user id
– effective user id
– real accounting group id
– effective accounting group id
– set of access group ids

• These are returned by:
int ruid = getuid();
int euid = geteuid();
int rgid = getgid();
int egid = getegid();
int ngrps = getgroups(int gsetsize, int gidset[gsetsize]);

• The user and group id’s are assigned at login time using:
int status = setreuid(int ruid, int euid);
int status = setregid(int rgid, int egid);
int status = setgroups(int gsetsize, int gidset[gsetsize]);

• Unless the caller is superuser, ruid/gid must be equal to either the 
current real or effective user/group id.

• The setgroups call is restricted to the superuser.
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Process Groups
• Each process in the system is normally associated with a process 

group.
• The group of processes in a process group is referred to as a job, and 

manipulated by system software (such as the shell).
• The process group of a process is returned by:

int pgrp = getpgrp(int pid);
• When a process is in a specific process group it may receive software 

interrupts affecting the group (causing it to suspend or resume 
execution, to be interrupted, or to be terminated).

• The process group associated with a process may be changed by:
int status = setpgrp(int pid, int pgrp);

• Newly created processes are assigned process id’s distinct from all 
processes and process groups, and inherit pgrp.

• A non-superuser process may set its process group equal to its process 
id.

• A superuser process may set the process group of any process to any 
value.



CS146 135

Memory Management
• Each process begins with three logical areas of memory called text, 

data, and stack.
– The text area is read-only and shared.
– The data and stack areas are private to a process.

• The stack area is automatically extended as needed.

• The data area is extended and contracted on program request by the 
call:

void *newBreak = sbrk(int incr);

• The size is actually changed by units of pagesize, whose CPU-
dependent value is returned by:

int pagesize = getpagesize();
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Time Zones
• The system’s notion of the current UTC (Universal Coordinated Time, 

formerly Greenwich Mean Time), and current time zone is set and 
returned by:
#include <sys/time.h>
struct timeval {

long tv_sec; /* seconds since Jan 1, 1970 */
long tv_usec; /* and microseconds */

};
struct timezone {

int tz_minuteswest; /* of UTC */
int tz_dsttime; /* type of dst correction */

};
int status = settimeofday(struct timeval *tvp, struct timezone *tzp);

int status = gettimeofday(struct timeval *tvp, struct timezone *tzp);
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Inter-Process Communication (IPC)

• Data exchange techniques between processes:
– Data stream exchange: files, pipes, sockets
– Shared-memory model
– Signals

• Limitations of files for inter-process data exchange:
– Slow!
– One typically must finish writing a file before the other process 

reads it.
– Could create LARGE temporary files.

• Limitations of pipes:
– Two processes must be running on the same machine
– Two processes communicating must be “related”

• Sockets overcome these limitations but are more complicated(we’ll 
cover sockets later).
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dup(2) and dup2(2)
newFD = dup( oldFD );
if( newFD < 0 ) { perror(“dup”); exit(1); }

or, to force the newFD to have a specific number:

returnCode = dup2( oldFD, newFD );
if(returnCode < 0) { perror(“dup2”); exit(1);}

• In both cases, oldFD and newFD now refer to the same file
• For dup2(), if newFD is open, it is first automatically closed
• Note that dup() and dup2() refer to fd’s and not streams

– A useful system call to convert a stream to a fd is
int fileno( FILE *fp );
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pipe()
• The pipe() system call creates an internal system buffer and two file 

descriptors: one for reading and one for writing
• Pipes are FIFO(First In, First Out) constructs.

• With a pipe, typically you want the stdout of one process to be 
connected to the stdin of another process … this is where dup2()
becomes useful.

• Usage:
int fd[2], status;
status = pipe( fd );
/* fd[0] for reading; fd[1] for writing */
If(status < 0) perror(“pipe”);
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pipe()/dup2() example

/* equivalent to “sort < file1 | uniq” */
int fd[2];
FILE *fp = fopen( “file1”, “r” );
dup2( fileno(fp), fileno(stdin) );
fclose( fp );
pipe( fd ); // populates both fd[0] and fd[1]
if( fork() != 0 ) { // Parent

dup2( fd[1], fileno(stdout) );
close( fd[0] );  close( fd[1] ); // DON’T FORGET THIS!
execl( “/usr/bin/sort”, “sort”, (char *) 0 );  exit( 2 );

} else { // child
dup2( fd[0], fileno(stdin) );
close( fd[0] );  close( fd[1] );
execl( “/usr/bin/uniq”, “uniq”, (char *) 0 );  exit( 3 );

}
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Section #10

Debugger (gdb)
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Debugging
• A debugger is a program that runs other programs in a controlled 

environment so that you can execute the program line-by-line, view 
and modify variables, set breakpoints to stop execution at specified 
points in the code, and watchpoints which will stop execution 
anywhere when the value of a variable changes. As such, a debugger is 
perhaps more aptly called a bug finder.

• By default, an a.out file contains the symbol tables of all the object 
files it was made from.

• More info, like line numbers and variable types, can be inserted into an 
object(.o) file by compiling with debugging turned on (the -g flag for 
most UNIX compilers). These extra symbols are conveyed from the 
object file to the a.out executable.
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ptrace
• Debugging is initiated by the ptrace system call.

• Generally, the debugger does a fork, and the child enables itself to be 
debugged by calling ptrace. Without this, the parent would not be 
allowed to debug the child. Then the child exec’s the program to be 
debugged.

• Using ptrace, the parent can examine and modify any memory location 
of the child. By looking at the child’s symbol table (in the a.out file), 
the parent can examine the child’s memory that corresponds to 
variable names.
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How ptrace works
• A process that has executed ptrace(0) (e.g. the child of the debugger 

before it exec’s the program) treats signals differently than a normal 
process.

• It also has a writable text segment (text segment is usually readonly)
• It executes normally until it receives a signal, at which time it stops, 

and the parent is notified via the wait system call.
• The parent may then use ptrace to examine and modify the child’s 

memory (including the text segment).
• The child remains stopped until the parent orders it to continue by 

calling ptrace. The parent can clear the signal before continuing the 
child, so the child never actually “sees” the signal unless the parent 
wishes it.
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Breakpoints
• Since the parent can modify any memory location, it can change the 

code (text segment) of the child.

• For example, before (re)starting the child, the parent can insert code to 
generate a SIGSEGV at a specific location, for the sole purpose of 
stopping the child at the location.

• This called “inserting a breakpoint.”

• When the child executes that code, it gets a SIGSEGV, causing it to 
stop. The parent can then examine the child. To clear a breakpoint, the 
parent re-writes the original code before ordering the child to continue.



CS146 146

Examples
$ gcc -g foo.c # using “-ggdb” adds even more info
$ gdb a.out
(gdb) break main
Breakpoint 1 at 0x10453; file foo.c; line 9
(gdb) cond 1 (argc > 1)
(gdb) run bar
<break in function main(), line 9 of foo.c; argc=2, 

argv=<“a.out”, “bar”>
(gdb) print argc
$1 = 2
(gdb) print argv[1]
$2 = “bar”
(gdb) whatis argc
type = int
(gdb) cont
(continuing)
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Stack Frames
• A stack frame contains all the information pertinent to a function call -

local (automatic) variables, parameters, return address, etc.

• A new stack frame is created each time a function is called at run time 
and discarded when the function returns.

• After hitting a breakpoint, the debugger can examine the current stack 
frame (using ptrace), or any stack frame “above” it.

• The stack frame above the current one belongs to the function that 
called the current one, etc.

• The debugger can identify the function that called the current function 
by searching for the function that contains the return address in the 
stack frame.
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Other debugger commands
• backtrace - show the current list of stack frames
• step - execute a single piece of code (could be part of a line), 

descending into functions.
• next - execute a single line, call but do not descend into functions.
• [return] - re-execute the previous debugger command.
• help - get online help.

• gdb commands have shortforms(bt, s, n, b, p) which save on typing.

• Note that gdb is the GNU Debugger used for debugging programs 
written using gcc/g++ (the GNU C & C++ compilers). The classic 
compiler program cc (usually pre-ANSI K&R C)  uses the dbx
debugger. dbx has a different set of commands. Some systems have cc 
configured to point to gcc or some other vendor compiler.
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Section #12

X Window System
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What is X?
• The X Window System (it can correctly be called X11 or X) is all of 

these:
– a protocol between two processes
– a system that defines window operations, low-level graphical 

rendering commands, and input request commands
– a device-independent, portable window system
– a network-transparent window system
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X History
• At one time there was the “W” windowing package developed at 

Stanford (Paul Asente).
• X was developed jointly by MIT’s Project Athena and Digital 

Equipment Corporation, with others also contributing.
• X Version 10 Release 4 (X10.4) was released in 1986 but was soon 

superceded.
• X11R1 was released in Sept 1987.
• The current version is X11R6 but many are still using X systems based 

on X11R4 or X11R5.

• X is a network-based windowing system. It was designed to work 
between many different computers.
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X Servers
• The X Server is program that controls some of the “limited resources” 

on a machine: the display, keyboard, and pointer(eg mouse).
• A server:

– Allows access to the display by multiple clients
– Interprets network messages from clients
– Forwards user input to clients
– Handles [graphics] requests
– Allocates resources
– Maintains complex data structures (windows, cursors, fonts, 

graphics contexts)

• An X Server is somewhat unusual because it defines a display to have 
one or more screens.
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X Clients
• An X Client is any application that connects to the X server. Any 

program that uses the screen or gets information from the user is an X 
client.

• A client:
– Makes requests to the server (eg draw a line)
– Processes messages from the server (usually user events)

Workstation

X Server Client
Requests

User input
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X Client/Server Model

Server
Queue

Xlib
Queue

Server

Application

Network

Network
(requests)

(events)
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X Application Architecture
• Xt-based applications can deal directly with all the layers of X.

– the X library
– the Intrinsics
– and the widget set.

• Xlib-based applications can deal directly with the X library layer of X 
only.

• Motif is an Xt-based widget toolkit.

Application

Motif (widget set)

Xt Intrinsics

Xlib

OS and networking

Hardware platform

Xt-based applications

Xlib-based applications
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Widgets
• When using the Xt Toolkit, the ‘things’ in the toolkits are widgets.

– A widget is an interface object that conforms to the Toolkit Intrinsics API.
• It is a user interface building block; it has a particular job and knows 

how to do it.
• Examples of widgets:

– List
– Button
– Form/Layout
– Text Box
– Scrollbar
– Label
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X Window System Architecture

Workstation
X Server

Device Drivers

Client
Application

Xlib

Client
(Window Manager)

Xlib

Client
Application

Toolkit
Xlib

X Window System
protocol requests are
sent from Clients

Events and replies are
passed back to Clients
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Window Manager
• The window manager is just another X Client written using the X 

library. It is given special authority by convention to control the layout 
of windows on the display.
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XTerm
• Xterm is just another client app. It is NOT a shell.

• An Xterm creates a virtual terminal that a shell believes to be a 
character terminal like any other physical terminal hooked up via a 
serial cable.
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Section #13

Sockets, select(2), misc.



CS146 161

Sockets
• Sockets are an extension of pipes, with the advantages that the 

processes don’t need to be related, or even on the same machine.
• A socket is like the end point of a pipe -- in fact, the UNIX kernel 

implements pipes as a pair of sockets.
• Two (or more) sockets must be connected before they can be used to 

transfer data.
• Two main categories of socket types … we’ll talk about both:

– the UNIX domain: both processes on same machine
– the INET domain:  processes
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Connection-Oriented Paradigm

Create a socket
socket()

Assign a name to the socket
bind()

Establish a queue for connections
listen()

Extract a connection from the queue
accept()

SERVER

read()

write()

CLIENT

Create a socket
socket()

Initiate a connection
connect()

write()

read()

established
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Multiplexed I/O
• Consider a process that reads from multiple sources without knowing 

in advance which source will provide some input first
• Three solutions:

– fork a process for each input source, and each child can block on 
one specific input source (can be hard to coordinate/synchronize)

– alternate non-blocking reads on input sources (called “polling”, 
and it’s wasteful of CPU)

– use the select() system call … 
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select(2)
• Usage:

#include <sys/time.h>
#include <sys/types.h>
int select( int nfds,

fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout );

• where the three fd_set variables are file descriptor masks
• fd_set is defined in <sys/select.h>, which in included by 

<sys/types.h>
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select(2) cont.
• The first argument (nfds) represents the number of bits in the masks 

that will be processed. Typically, this is 1 + the value of the highest fd
• The three fd_set arguments are bit masks … their manipulation is 

discussed on the next slide
• The last argument specifies the amount of time the select call should 

wait before completing its action and returning:
– if NULL, select will wait (block) indefinitely until one of the file 

descriptors is ready for i/o
– if tv_sec and tv_usec are zero, select will return immediately
– if timeval members are non-zero, the system will wait the specified 

time or until a file descriptor is ready for i/o
• select() returns the number of file descriptors ready for i/o
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“FD_”  macros
• Useful macros defined in <sys/select.h> to manage the masks: 

void FD_ZERO( fd_set &fdset );
void FD_SET( int fd, fd_set &fdset );
void FD_CLR( int fd, fd_set &fdset );
int  FD_ISSET( int fd, fd_set &fdset );

• Note that each macro is passed the address of the file descriptor mask
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select(2)  example
#include <sys/types.h>
fdset rmask;
int fd;        /* a socket or file descriptor */
/* use socket() to assign fd to a socket */
FD_ZERO( &rmask );
FD_SET( fd, &rmask ); FD_SET( fileno(stdin), &rmask );

while(1) {
select( fd+1, &rmask, NULL, NULL, NULL );
if( FD_ISSET( fileno(stdin), &rmask))

/* read from stdin */
if( FD_ISSET( fd, &rmask))

/* read from descriptor fd */
FD_SET( fd, &rmask); FD_SET( fileno(stdin), &rmask 
);

}
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Section #13 A

Miscellaneous
(can be skipped if short on time)
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Creation & Removal
• Directory creation and removal:

int status = mkdir(char *path, int mode);
int status = rmdir(char *path);

• File creation:
#include <sys/file.h>
int fd = open(char *path, int flags, int mode);

mode:
O_RDONLY 000
O_WRONLY 001
O_RDWR 002
O_NDELAY 004 /* non-blocking*/

• Device creation
int status = mknod(char *path, int mode, int dev);

• File removal(except for directories):
int status = unlink(char *path);
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Process Priorities
• The system gives CPU scheduling priority to processes that have not 

used CPU time recently. Well, sort of.
• Process scheduling is a complex dance to try to second-guess the best 

allocation of CPU time to jobs to provide good interactive response 
and good throughput.

• It is possible to determine the current priority (an integer in the range   
-n to +n), or alter this priority by:

#define PRIO_PROCESS 0
#define PRIO_PGRP 1
#define PRIO_USER 2

int prio = getpriority(int which, int who);

int status = setpriority(int which, int who, int prio);
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Resource Utilization
• The resources used by a process are returned by:

#include <sys/resource.h>
int status = getrusage(int who, struct ruasge *rusage);

• The who parameter specifies whose resource usage is to be returned: 
those of the current process, or those of all terminated children of the 
current process.

• Resource usage information is returned concerning:
• user time
• system time
• max core resident set
• data mem size
• page reclaims
• page faults
• swaps
• block inputs
• signals received
• ...
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Resource Limits
• Resource usage may be controlled by:

#include <sys/resource.h>
struct rlimit {

int rlim_cur;
int rlim_max;

}

int status = getrlimit(int resource, struct rlimit *r);
int status = setrlimit(int resource, struct rlimit *r);

• Only the superuser can raise rlim_max.
• Other processes may alter rlim_cur within the range from 0 to 

rlim_max or (irreversible) lower rlim_max.
• The various resources whose limits may be controlled in this manner 

are:
- milliseconds of CPU time - maximum stack segment size 
- maximum file size - maximum core file size
- maximum data segment size - maximum resident set size
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System Support
• The UNIX file system name space may be extended by:

int status = mount(char *blkdev, char *dir, int ronly);
• A device may be made available for swappng or paging by:

int status = swapon(char *blkdev, int size);
• A file system not currently being used can be unmounted by:

int status = unmount(char *dir);
• All system cache buffers may be scheduled to be cleaned by:

sync();
• The system may be rebooted by:

reboot(int how);

• The system optionally keeps an accounting record in a file for each 
process that exists on the system. The accounting can be enabled to a 
file by:

int status = acct(char *path);
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Descriptors
• Descriptors are used to access resources such as files, devices, and 

communication links.

• A process access its descriptors indirectly through its own descriptor 
reference table, whose size is given by:

int nds = getdtablesize();

The entries in this tables are referred to by integers in the range 
0 .. nds-1.
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Managing Descriptors
• A duplicate of a descriptor reference may be made by:

int new = dup(int old);
The new descriptor reference is indistinguishable from the old one.

• A copy of a descriptor reference may be made in a specific slot by:
int status = dup2(int old, int new);

This causes the system to deallocate the descriptor reference count 
occupying slot new, if any, replacing it with a reference to the same 
descriptor as old.

• A descriptor reference deallocation may also be performed by:
int status = close(int old);
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Reading File Attributes
• Detailed information about the attributes of a file may be obtained wit 

the call:
#include <sys/stat.h>
int status = stat(char *path, struct stat *stb);
int status = fstat(int fd, struct stat *stb);

• The stat structure includes:
• file type
• protection
• ownership
• access times
• size
• hard link count

• If the file is a symbolic link, the status of the link itself may be found 
by:

int status = lstat(char *path, struct stat *stb);
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Modifying File Attributes
• Newly created files are assigned the user ID of the process that created 

it, and the group ID of the directory in which it was created.

• Ownership can be changed by:
int status = chown(char *path, int owner, int group);
int status = fchown(int fd, int owner, int group);

• The protection attributes associated with a file may be changed by:
int status = chmod(char *path, int mode);
int status = fchmod(int fd, int mode);

• The access and modify times on a file may be changed by:
int status = utime(char *path, struct timeval *tvp[2]);
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Links & Renaming
• Links allow multiple names for a file to exist. They exist 

independently of the file linked to.
• Two types of links exist:
• Hard Links

– A reference counting mechanism that allows files to have multiple names 
within the same file system.

– A hard link insures the target file will always be accessible even after its 
original directory entry is removed.

int status = link(char *path1, char *path2);
• Symbolic Links

– Cause string substitution during the path name interpretation process.
– A symbolic link does not insure that the target file will be accessible. In 

fact, a symbolic link to a non-existent file can be created.
int status = symlink(char *path1, char *path2);
int len = readlink(char *path, char *buf, int size);

• Atomic renaming of file system resident objects is done by:
int status = rename(char *old, char *new);
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Extension & Truncation
• Files are created with zero length and may be extended by writing to 

them.
• While a file is open the system maintains a pointer into the file 

indicating the current location in the file associated with the descriptor. 
This pointer may be moved by:

#include <sys/file.h>
int oldoffset = lseek(int fd, int offset, int whence);
#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2

• Files may have “holes” in them: void areas where data has never been 
written. Holes are treated as zero-valued bytes.

• Files may be truncated by:
int status = truncate(char *path, int newlen);
int status = ftruncate(int fd, int newlen);
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Checking Accessibility
• A process running may interrogate the accessibility of a file to the real 

user. This may be of particular interest to processes with different real 
and effective user ids.

#include <sys/file.h>
int accessible = access(char *path, int how);
#define F_OK 0
#define X_OK 1
#define W_OK 2
#define R_OK 3

• The presence or absence of advisory locks does not affect the result of 
access.
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Locking
• The file system provides basic facilities that allow cooperating 

processes to synchronize their access to shared files.
• The system does not force processes to obey the locks; they are of an 

advisory nature only.
• Locking is performed after on open call by:

#include <sys/file.h>
int status = flock(int fd, int how);
#define LOCK_SH 1 /* shared lock */
#define LOCK_EX 2 /* exclusive lock */
#define LOCK_NB 3 /* non-blocking */
#define LOCK_UN 4 /* unlock */

• If an object is currently locked by another process when an flock call is 
made, the called will be blocked until the current lock owner releases 
the lock, unless “how” is LOCK_NB, in which case the call is non-
blocking and informational only.
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Section #14

Signals
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Signals
• The system defines a set of signals that may be delivered to a process.
• A process may do one of three things with a signal:

– Handle
• The process specifies a handler function that is to be called on receipt 

of the signal. When the function returns, control is returned to the 
point in the program at which the signal occurred.

– Block
• Set mask to prevent delivery of signal until unmasked.

– Ignore
• If the signal occurs, no action is taken.

– Default
• If the signal occurs, the UNIX default action (which varies from 

signal to signal) is taken. This may be one of:
– Do nothing.
– Process termination (with or without core dump)
– Process suspension.
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Signal Types
• The various types of signals are (/usr/include/signal.h):

SIGFPE Floating point exception
SIGILL Illegal instruction
SIGSEGV Attempting access to addresses outside the currently assigned areas of memory.
SIGBUS Accesses that violate memory protection constraints.
SIGIOT I/O trap
SIGEMT Emulation trap
SIGTRAP Single-step trap
SIGINT Interrupt from keyboard (^C)
SIGQUIT Same as SIGINT but with a core dump  (^\)
SIGHUP “Hang up” - for graceful process terminations.
SIGTERM Terminate by user or program request.
SIGKILL Same as SIGQUIT but cannot be caught, blocked, or ignored.
SIGUSR1,SIGUSR2 User defined signals.

SIGALRM Alarm – timeout of a timer (used by alarm(2)) (wall-clock time)
SIGVTALM Alarm-timeout (CPU time)
SIGPROF Expiration of interval timers.
SIGIO If requested, occurs when I/O possible to a descriptor.
SIGURG Urgent condition.
SIGSTOP Causes suspension. Cannot be caught.
SIGTSTP Suspend by user request.
SIGTTIN Suspend because input attempted from terminal.
SIGTTOU Suspend because output attempted to terminal.
SIGCHILD Child process’ status has changed.
SIGXCPU Occurs when a process near its CPU time limit.
SIGXFSZ Occurs when limit on file size creation has been reached.
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Handling Signals
• A process changes the way a signal is delivered with:

#include <signal.h>
struct sigvec {

int (*sv_handler)(int signo, long code, struct sigcontext *scp);
int sv_mask;
int sv_flags;

};
int status = sigvec(int signo, struct sigvec *sv, struct sigvec *csv);

• Possible values for sv_handler are a function, SIG_IGN, or SIG_DEF.
• sv_mask specifies which additional signals are to be masked on receipt 

of this one (implicitly includes signo).
• Sv_flags indicate whether system calls should be restarted if the signal 

handler returns, and whether the signal handler should operate on the 
normal stack or an alternate stack.
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Signal Delivery
• When a signal condition arises for a process, the signal is added to a 

set of signals pending for the process.
• If the signal is not currently blocked by the process then it will be 

delivered.

• Signal delivery involves:
1) Adding the signal to be delivered and those signals specified in the 

sv_mask to a set of those masked (ie., blocked) for the process.
2) Saving the current process’ context
3) Placing the process in the context of the signal handling routine.

• The context of the signal handler is so arranged that if the function 
returns normally the original signal mask will be restored and the 
process will resume execution in the original context.
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Signal example
#include <stdio.h>
#include <stdlib.h>
#include <sys/signal.h>
int i=0;
void quit(int sigNum) {

fprintf(stderr, “\nInterrupt (signal=%d,i=%d)\n”, 
sigNum, i);
exit(123);

}
void main(void) {

signal(SIGINT, quit);
signal(SIGTERM, quit);
signal(SIGQUIT, quit);
while(1)

if ( i++ % 5000000 == 0) putc(‘.’, stdout);
}
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Blocking Signals
• Blocked signals are added to the mask.

• If masked signals occur then delivery is delayed until the signals are 
unblocked or unmasked.

• To add a set of signals to the mask:
– long oldmask = sigblock(long mask);

• To set the mask:
– long oldmask = sigsetmask(long mask);

• To mask a set of signals, wait for an unmasked signal, and then restore 
the original mask:
– int signo = sigpause(long mask);
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Sending Signals
• Signals may be sent either from the keyboard via the terminal driver or 

from another process:
– int status = kill(int pid, int signo);
– int status = killpgrp(int pgrp, int signo);

• Unless the process belongs to root (the superuser), it must have the 
same effective user id as the process receiving the signal.

• Signals are also sent implicitly from a terminal device to the process 
group associated with the terminal when certain input characters are 
typed (like ^C, ^\, ^Z, ^Y).
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Signal Stacks
• For applications that change stacks periodically, signal delivery can be 

arranged to occur on a stack that is independent of the one in use at the 
time of signal delivery.

struct sigstack {
void *ss_sp;
int ss_onstack;

};
int status = sigstack(struct sigstack *ss, *oss);
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Interval Time
• The system provides each process with three interval times:

– REAL - Real time intervals. SIGALRM is delivered when this timer 
expires.

– VIRTUAL - Virtual time runs only when the process is executing user 
code. SIGVTALRM is delivered when this timer expires.

– PROF - Profiled time runs when the process is executing user code or 
system code on behalf of that process. SIGPROF is delivered when this 
timer expires.

• A timer is set or read by:
struct itimerval {

struct timeval it_interval;
struct it_value; /* current value */

};
int status = getitimer(int which, struct itimerval *value);
int status = setitimer(int which, struct itimerval *v, struct itimerval *ov);
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Execution Profiling
• Execution profiling means gathering statistics on how long a process 

executes particular pieces of code.

• Profiling is turned on by:
– int status = profil(void *buf, int bufsize, int offset, int scale);

• This begins sampling of the program counter, with statistics 
maintained in the user provided buffer.



Advanced Shell Stuff
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Fork+exec are expensive; avoid shell loops that fork processes each iteration, eg:
for i in *; do if [ -s "$i" ]; then ls -l "$i"; fi; done # ls non-zero-sized files
vs.
for i in *; do [ -s "$i" ] && echo "$i"; done | xargs ls -l # bit better
vs.
ls -l | awk '$5{print}' # best: only two processes regardless of #files.

Large-scale renaming (eg., for backup):
for i in *.c; do b=`basename "$i" .c`; mv "$i" "$b-bak.c"; done
vs.
ls *.c | sed 's/\.c$//' | while read b; do mv "$b.c" "$b-bak.c"; done
vs.
ls *.c | awk '{sub("\.c$",""); printf "mv %s.c %s-bak.c\n",$0,$0}'



Common Unix Commands

CS146 194

• ls options: -l, -a, -A, -t, -S, -r, -F, -C
• less(1), wc, cp, mv (rename), with options -i, -f (NO 

BACKUP!)
• cd, pwd, mkdir, rmdir, rm (-rf), which, du, df
• When using “rm”, be careful with accidental spaces!! 

“rm –rf *_.c”
• basic shell globbing vs. regular expressions
• Filters: [ef]grep, sed, tr, cut, diff (incl. stdin as “-”)
• Editors: vi/vim, emacs
• People + Processes: who, w, last, ps, uptime, top, kill, 

time, date
• Archivers: (un)zip, tar, gzip, xz, 7zip (slow but best 

compression)



awk: the Swiss Army Knife of filters
Awk is a complete programming language designed 
for line-by-line processing of text files. It features 
regular expressions, math, loops, functions with 
parameters and return values, string manipulation… 
Most Unix filters could be implemented in awk:
• cat *.c  awk ‘{print}’ *.c
• grep ‘[0-9]G$’    awk ‘/[0-9]G$/{print}’
• cut –f2    awk ‘BEGIN{IFS=“\t”}{print $2}’
• wc  awk ‘{w+=$NF; c+=length($0)+1} 

END{print NR,w,c}’
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awk: Basic Outline
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• C-like syntax, including printf
• Like any Unix filter, it processes text files line-by-line
• INPUT: filenames, if given; otherwise standard input
• Code blocks are executed on any line that “matches” the 

Boolean expression immediately preceding it:
NF==7 {print “this line has 7 fields”}
/foo/ {print “this line has a foo in it”}
NF==1 && 1*$1>0{y=cos($1); print y}

{print “empty Boolean is always true”}
• Entire awk program is given on awk’s command line as the first 

argument (previous slide examples)



awk: built-in variables and functions
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• Lots of built-in variables, such as:
• NF = number of whitespace-separated “fields” on this line
• fields on the current line are $1, $2, $3,…, $NF
• current line number = NR  (number of “records”)
• ARGIND = integer argument index for current input file
• FILENAME = name of current input file (at ARGIND)
• ENVIRON[“HOME”]  your HOME directory
• PROCINFO[“pid”]  pid of awk

• Lots of built-in functions, such as:
• length(s): length of a string, or #elements in an array
• Math: basic + - * / % int(), but also floating point:

• sin(), cos(), tan(), exp(), log(), atan2(), sqrt(), rand(), 
srand(), sort(), index(), [g]sub(), and many more



awk: user-defined functions
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function fact(k) { # recursive factorial function
if(k<=0) return 1;
else return k*fact(k-1);

}
function max(a,b) {if(a>b) return a; else return b;}
function abs(x) {if(x<0) return –x; else return x;}
function ASSERT(condition, errMsg) {

if(!condition) {
print errMsg > “/dev/stderr”
exit(1)

}
}
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• Data types: strings, floats; associative arrays
• 0 and the empty string evaluate to “false”
• variables default to string type unless arithmetic is performed:

• “1” != “01”, but “1” == 1*”01”, because the “01” is 
automatically “promoted” to number when multiplied

• variables are created at the first reference, even if not assigned 
a value (in which case its value becomes the empty string “”)
• This applies to array elements too, so DO NOT check to 

see if an element exists with “if(array[i])”, because this will 
cause array[i] to come into existence (but empty).

• Instead, use “if(i in array)”, which doesn’t create anything.
• All arrays are associative, even if empty. To force a variable 

name to become an array even if you want it to be empty:
• delete A; A[0]=1; delete A[0]; 
• A is now explicitly an array but with zero elements.

awk data types, variables, etc



Awk #2: useful syntax/functions
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• if(element in array); also for(element in array)
• Careful of automatic creation: don’t do if(array[element])
• index, length, sub, gsub, isarray, (s in a)
• All variables are GLOBAL except function parameters… but you 

can declare more parameters than you actually expect… all such 
extra parameters become local variables. (I know… yuck), eg:

# exp(x) using Taylor series; call it with just (x)
function myExp(x,       term, sum, k) { # local vars

term=1; sum=0;
for(k=1; k<100; k++) { # 100 terms

sum += term
term *= x/k

}
return sum;

}
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Personal examples of mine:
• dog(1): like cat(1), but accepts single ‘.’ as EOF
• whoson(1): one-line solution to previous Ass’t question
• process_tree, find-init
• storing edge lists + computing degrees of nodes in graphs.

awk examples
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Section #15

Concurrency (beyond ICS53?)
Process Synchronization
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Circular Buffers
• A circular buffer is a method of implementing a first-in-first-out 

(FIFO) queue.
• Items are inserted into the queue at position in, and fetched from 

position out.
• The buffer “wraps around” at the endpoints, so the position after N-1 is 

position 0.
• These are also referred to as bounded buffers because no more than N 

items can be held at one time.

char  Fetch(void) {
if (used == 0)

ERROR(“buffer underflow!”);
char nextc = buffer[out];
out = (out + 1) % N;
--used;
return nextc;

}

char buffer[N];
int in=0, out=0, used=0;
void Insert(char c) {

if (used == N)
ERROR(“buffer overflow!”);

buffer[in] = c;
in = (in + 1) % N;
++used;

}
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The Producer-Consumer Problem
• Consider what happens if two processes have concurrent read-write 

access to the buffer.
• The Producer process inserts things into the buffer.
• The Consumer process removes things from the buffer.
• Unless we’re very lucky, there will be problems with the following.

/* Consumer Process */

while(1) {
next_val = Fetch();
consume_item(next_val);

}

/* Producer Process */

char val;
while(1) {

val = produce_item();
Insert(val);

}
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Critical Sections Again
Recall...
• A critical section is an area of code or data that depends on there being 

only one process inside at any one time for correct operation to take 
place. (e.g. a linked-list data structure or a circular buffer)

• Code that modifies a shared variable usually has the following form:
ENTRY SECTION

Critical Section
EXIT SECTION

Remainder Section

• Entry Section - The code that requests permission to modify the shared 
variable.

• Critical Section - The code that modifies the shared variable.
• Exit Section - The code that releases access.
• Remainder Section - The remaining code.
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Atomic Operations
• An Atomic Operation is an operation that, once started, completes in a 

logically indivisible manner. Most solutions of the critical-section 
problem rely on some form of atomic operation.

• On a machine with a single CPU, individual machine instructions are 
often atomic but necessarily so.

• Note that:
value = 5;

is a C statement and probably translates into several machine 
instructions.
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Two-Process Mutual Exclusion
(Wrong Algorithm #1)

• Assume there are two processes, 0 and 1.
• We will have a variable called turn which is -1 if it’s nobody’s turn, 

otherwise it’s 0 or 1.
• When a process wants to enter its critical section, it checks to see if 

turn is -1, then sets turn to itself.
• Both processes execute the same code below except the have different 

values of id.

shared int turn = -1;
/* Process 0 */
while(1) {

while(turn != -1) /* busy wait */;
turn = 0;
/* critical section */
turn = -1;
/* remainder section */

}

/* Process 1 */
while(1) {

while(turn != -1) /* busy wait */;
turn = 1;
/* critical section */
turn = -1;
/* remainder section */

}
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Two-Process Mutual Exclusion
(Wrong Algorithm #2)

• Idea: Don’t be greedy and take control. Be courteous by waiting for it 
to be given to you.

local const int id; /* initialized to 0 or 1, depening on which process */
shared int turn = 0; /* initialize to one of them */

/* Process 0 */
while(1) {

while(turn != id) /* wait */;

/* critical section */
turn = 1-id;
/* remainder section */

}

/* Process 1 */
while(1) {

while(turn != id)/* wait */;

/* critical section */
turn = 1-id;
/* remainder section */

}
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Two-Process Mutual Exclusion
(Wrong Algorithm #3)

• Idea: Check to see if the other process wants to enter its critical 
section. If not, then it’s OK to enter.

• When you want to enter, turn on a flag.

shared int want[2] = { 0, 0 };
local const int id =  /* initialized to 0 or 1 for process id*/

/* Process 0 */
while(1) {

want[id] = 1;
while(want[1-id]);
/* critical section */
want[id] = 0;
/* remainder section */

}

/* Process 1 */
while(1) {

want[id] = 1;
while(want[1-id]);
/* critical section */
want[id] = 0;
/* remainder section */

}
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Two-Process Mutual Exclusion
• Dekker first solved the problem in the early 1960’s but his solution 

allowed starvation to occur in the presence of contention.
• Peterson came up with a solution in 1981 that was simpler and didn’t 

suffer from starvation problems.
• Remember we are only assuming memory interlock for these 

algorithms.

• The idea combines the notions from the last two incorrect algorithms.
• When you want to enter your critical section, turn on your flag.
• Then offer turn to the other process. If it wants it, it gets it; otherwise 

you can take it.
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Peterson’s Algorithm
shared int want[2] = { 0, 0 };
shared int turn =0;
local const int id = /* initialized to 0 or 1 for process number */

/* Process 0   (id == 0) */
while(1) {

want[id] = 1;
turn = 1 - id;
while(want[1-id] && turn == 1-id);
/* critical section */
want[id] = 0;
/* remainder section */

}

/* Process 1  (id == 1)*/
while(1) {

want[id] = 1;
turn = 1 - id;
while(want[1-id] && turn == 1-id);
/* critical section */
want[id] = 0;
/* remainder section */

}
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The Test-and-Set Instruction
• Things are much easier when the hardware provides a mechanism to 

implement mutual exclusion without the need for Peterson’s algorithm.
• Test-and-Set is one such machine instruction that is available on some 

processors. It defined as an atomic operation that implements the 
following logical function:
int TestAndSet(int *p) {

int value = *p;
*p = 1;
return value;

}

• In assembly language, entering a critical section might look like:
loop:    tset busy

branch-if-zero critical section
jmp loop
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Mutexes
• We have seen how two processes can ensure mutual exclusion.
• Regardless of the implementation, it is often sufficient to assume the 

existence of a high level locking facility with a simple call interface.
– int MutexBegin(Boolean block); // block, or return FALSE if 

you’re not allowed to enter your critical section
– void MutexEnd(void);

• The above functions would be suitable for a single global lock.
• It is often better to organize things into localized locks.
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Process Synchronization
• Locking critical sections using mutexes works well for short 

operations. However it doesn’t work well for unbounded waiting.
• Recall the Producer/Consumer problem. If the consumer finds an 

empty buffer, it must wait until the producer can add to the buffer. The 
consumer doesn’t know how long it has to wait. With only 
MutexBegin/MutexEnd, it would have to spin in a busy loop to keep 
checking for more work.

• Condition Variables are used to sleep for some event or condition and 
wake-up when that condition is fulfilled.
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Semaphores
• A semaphore provides two operations:

– Wait  (down, P, lock)
– Signal  (up, V, unlock)

• Dijkstra proposed the semaphore concept in 1965.
• P and V are from the Dutch words passeren (to pass) and vrygeven (to 

release).

• A semaphore, s,  is a non-negative integer that is atomically updated 
using the P and V primitives. Note the fact that it is an integer with the 
special update properties.

• An analogy to marbles in a bowl. s is the number of marbles, P(s) tries 
to take a marble (it may have to wait), and V(s) puts one marble back 
(it might wake up another process doing a P(s)).
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Implementing Semaphores
void Signal(int *s) // up, unlock
{

MutexBegin();
*s = *s + 1;
MutexEnd();

}

void Wait(int *s) // down, lock
{

int blocked = true;
do
{

MutexBegin();
if (*s > 0)
{

*s = *s - 1;
blocked = false;

}
MutexEnd();

} while(blocked);
}

Exercise: 
MutexBegin() and MutexEnd() can 
be implemented using semaphores 
just as semaphores can be 
implemented using mutexes.
Try to do it.
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Other Primitives
• We have seen Mutexes and Semaphores.

• Other terms you will hear are Monitors and Message Passing.

• Message Passing works by having each thread/process send messages 
back and forth. Receiving a message is usually a blocking operation.

• Monitors are a higher level abstraction than message passing and 
semaphores. They associate a set of methods to the resource or data 
that requires access control.
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Programming Approaches
• Pipes

– We’ve seen this in the shell. It is essentially a chain of 
producer/consumer pairs.

• Work Crew
– A group of worker processes grab work from a pool of jobs.

• Client/Server
– A server process serves the requests of the client processes. 

(Remember the X Window System?)
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Section #16

UNIX Memory Management
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Memory Management
• The operating system must manage the memory resources of the 

system. It should try to do so efficiently.
• With virtual memory systems, it is up to the operating system to 

manage the allocation of information(code & data) between main 
memory (core memory, RAM, physical memory) and secondary 
storage (usually disks or servers on the network).

• The memory management subsystem in the kernel works with the 
Memory Management Unit (MMU) hardware.
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Virtual Memory
• Each application is given the illusion that it has a large main memory 

at its disposal.
• Each process has a process address space which maps to the physical 

address space of the computer.

Memory management and virtual memory advantages:
• The ability to run programs larger than physical memory
• Run partially loaded programs, thus reducing program startup time.
• Allow more than one program to reside in memory at one time.
• Allow sharing. For example, two processes running the same program 

should be able to share a single copy of the code in memory.
• Access control. One process shouldn’t be able to trample over another 

process’ memory.



CS146 222

Demand Paging
• Demand paging systems divide the physical and process address 

spaces into fixed-size pages (eg 4k or 8k).
• Each page is brought into or out of main memory as needed.
• Note that the page size is a power 2. Therefore, for any address, you 

can determine the page number and page offset with simple bit 
operations (shift or mask). (eg With 4k pages, 0xfe53c234 is page 
0xfe53c and page offset 0x234.)

in-core
not in-core

Physical
Memory

P1

P2

P3

P4
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Swapping Pages
• Swapping used to refer to swapping whole processes between disk and 

memory. With demand paging, we only send individuals pages of 
memory to the swap space (on disk).

• Dirty pages are memory pages modified so that they are irreplaceable 
now. Code pages are never dirty because they are read-only.

Main
Memory

Executable
File

Swap Area
on

Disk

Text and initialized
data

Dirty pages saved
before freeing

Subsequent faults on
outswapped pages

Stack and heap pages
allocated on first access

Uninitialized data pages
zero-filled on first access
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Copy-On-Write
• Copy-on-Write (COW) is a technique to save work on a fork.
• Fork() is VERY often followed immediately by an exec() call.
• Therefore, it would wasteful to make a full duplicate of the process in 

memory when it forks.
• The idea is to share all data pages until data is changed by either the 

parent or child (before a page is touched, the parent and child can share 
the page because it is identical for both of them).

• When the page is written-to, the kernel intercepts the operation and 
makes a copy of the page. Now parent and child have their own copies.

• Why don’t code pages undergo Copy-on-Write?
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mmap()
• mmap() maps a file (usually a disk file or /dev/zero) into a buffer in 

memory, so that when bytes are fetched from the buffer the 
corresponding bytes of the file are read

• Multiple processes can map the same file simultaneously.
• Usage:

caddr_t mmap( caddr_t addr, size_t len, int
prot, int flag, int filedes, off_t off 

);
– addr and off should be set to zero,
– len is the number of bytes to allocate
– prot is the file protection, typically 

(PROT_READ|PROT_WRITE)
– flag should be set to MAP_SHARED to emulate shared memory
– filedes is a file descriptor that should be opened previously
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mmap() example
char *ShareMalloc( int size )
{

int  fd;
char *returnPtr;
if( (fd = open( "/tmp/mmap", O_CREAT | O_RDWR, 0666 )) < 0 
)

Abort( "Failure on open" );
if( lseek( fd, size-1, SEEK_SET ) == -1 )

Abort( "Failure on lseek" );
if( write( fd, "", 1 ) != 1 ) 

Abort( "Failure on write" );
returnPtr = (char *) mmap(0, size, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, 0 );
If(returnPtr  == (caddr_t) -1 )

Abort( "Failure on mmap" );
return( returnPtr );

}
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Section #17

Source Code Revision Control
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Source Code Management
• Projects can involve many files that evolve over a long period of time.

• It is often necessary to keep track of the versions of the files and 
control changes from several people making updates.

• Many different systems: local-only (RCS—Revision Control System), 
or local+remote:

– SCCS—Source Code Control System
– CVS—Concurrent Versions System
– Preforce, git, etc.

• Source code management can be just as useful for documentation, 
reports, assignments, html files, and system configuration files.
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Advantages of Revision Control
• A good revision control system manages your changes for you.
• Many people make backup copies of their files or use filename 

conventions to handle versioning. These methods are prone to error. 
Note that a revision control system is NOT a replacement for a backup 
system!

• A revision control system keeps your changes, your comments about 
those changes, and the full history of your file in one place in an easily 
retrievable form, and does it efficiently because it can store just the 
differences instead of full copies of each version.
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Section #18

Security
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Security Topics
• Computer security should be a concern of everyone. Systems 

programmers need to be aware of it even more than most because they 
are more likely to be working on servers in a network environment, 
etc.

• Topics to discuss:
– Passwords
– Root v.s. user
– SUID
– Detecting security breaches. Cleaning up.
– Buffer overflows
– Security through obscurity
– Denial of service attacks
– Network firewalls
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Passwords
• Passwords are stored on the system as encrypted strings.
• When you type your password, the login process encrypts your 

password and compares the two encrypted strings.

• Encrypted passwords can be cracked. Therefore, it is beneficial to keep 
the encrypted passwords in a more secure place than /etc/passwd.

• Shadow passwords are passwords kept in /etc/shadow/ instead of 
/etc/passwd. A shadow-aware version of login looks in 
/etc/shadow/passwd for passwords in addition to the usually 
information kept in /etc/passwd. /etc/shadow has permissions for only 
root. Therefore, casual users cannot look at the encrypted passwords.

• Passwords for ftp, telnet, rcp, etc, are sent over the network as plain 
text => use ssh instead.

• If you EVER type your password in the clear over a network, it should 
be changed immediately. Some systems support expiry dates on 
passwords.
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Root v.s. User
• If you don’t need to run a program as the superuser (root), then don’t. 

(same goes for Windows: don’t run as Administrator unless necessary)

• That also applies to system daemons, etc. If you install a software 
package that needs to run a server process, see if you can create a new 
user to run it.

• Novice system administrators often make the mistake of logging in as 
root and doing everything as root. Think what happens if you type “rm 
-rf *” in the wrong directory.



CS146 234

Set User-ID Bit
• You can use the SUID permission on an executable to allow a program 

to run with the owner’s access instead of user that ran the program.
• Very simply. SUID shell scripts are prone to security holes. In more 

ways than you can imagine.
• Binary executables can have many security problems if they are SUID 

root. See Buffer Overflows later.
• Programs that are designed to be SUID root should be made to 

minimize the part of code that is root powerful and deals with external 
inputs.
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Detecting & Cleaning Security Breaks
• Detecting a break-in is not always easy to do. Sometimes the intruder 

can be exceptionally thorough by replacing commands such as cp, 
md5sum, or diff to detect a detection attempt and thwart it.

• Using checksum programs like sum(1) are unreliable because an 
intruder could have carefully crafted changes to the file so that the 
checksum matches. Byte-by-byte comparisons are the only real test.

• You need to ensure that everything you use comes from a trusted copy 
(CDROMs are good for this) and you need to be aware that other hosts 
on the network are not trusted hosts until they have been checked and 
cleaned. 

• Assuming you detect a break-in, how do you purge the system of back 
doors and viruses?
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Buffer Overflows
• The most famous buffer overflow example is the Internet Worm. The 

finger server, fingerd, used gets() for it’s input reading. gets() does not 
check the length of the line read. 

char line[512];
gets(line);

• If the intruder supplies a line of data longer than 512 bytes, that data 
will overwrite the stack frame and can cause fingerd to start running 
the intruder’s code. You should always use fgets() instead.

• Robert T. Morris inadvertently unleashed the Internet Worm in 1988 
and effectively shut down the entire Internet. The Worm didn’t control 
its propagation well enough and it choked the networks.

• Other potential buffer overrun calls: strcpy() and sprintf().
• Fingerd did not have to be running as root. This was simply foolish.
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Security through Obscurity
• Security by Obscurity is a technique used fairly regularly but generally 

ineffective. The idea is to limit information. For instance, hide an 
oddly named publicly writeable directory under a search-only 
directory(i.e. no read permission). Then tell only your friends the name 
of that directory.

• The problem with this approach is that no information is truly private 
and you have no explicit control or detection that something went 
wrong.

• For encryption algorithms, it can be quite serious. If someone said that 
they have a very secure encryption algorithm but the safety of the 
algorithm depends on it being kept secret, then it’s not very secure. 
Information leaks can occur and analysis usually cannot be prevented.
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Denial of Service Attacks
• A denial of service attack is any situation where a malicious person 

can overload your network or operating system to prevent legitimate 
users from using the system.

• Denial of service attacks can take many forms and UNIX is generally 
very poor about handling such attacks.

• Examples:
eatmem - a program that allocates and dirties more and more data pages until 

no more processes can run
network attacks - send a large volume of network packets to saturate the 

network bandwidth thus preventing others from communicating
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Firewalls
• A firewall isolates two regions so a fire can’t spread unchecked.
• A network firewall isolates an organization’s network from external 

networks (e.g. the Internet).
• Firewalls can be used to limit access to or from the external network. 

This can allow very open and free access within the organization but 
prevent outsiders from having that same level of access.

• Firewalls simplify security protection since you only have to concern 
yourself with the firewall’s filter instead of every machine on your 
network.
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Section #19

Multi-platform Development
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Multi-Platform Development
• Configuring software for different operating systems and programming 

environments.
• Separating platform dependent from platform independent source 

code.
• Handling conditional compilation using #ifdef based on logical 

characteristics vs physical/platform characteristics.
• Using abstraction layers in your programs. E.g. a single API with 

multiple pluggable implementations to handle different databases 
(Oracle, Sybase, etc).

• Testing: Test suites are important to catch errors on different platforms 
because not all developers will use all platforms all of the time.

• Installation will probably be different on each platform.
• Porting to new platforms should get EASIER over time.
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Section #20

The Plan 9
Operating System

http://plan9.bell-labs.com/plan9
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History
• Late 1980’s
• Explore a new model of computing system.

– Central administration
– Cheap local graphical terminals
– Large central shared resources (file and compute servers)

• Clean design (All resources are like files. No ioctl() style control.)

• The networking protocol (9P) is used for accessing all resources 
remotely.
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Name Spaces
• Plan 9 implements the concept of per-process name spaces.
• Each process can customize its view of the system.
• All resources are accessed via the name space (network, graphics, 

processes, files, serial ports, etc.)
• You can choose to mount or bind a file system in front or behind the 

current file system.
• Union directories allow file systems to overlap.
• For instance, the concept of the PATH environment variable is 

unnecessary. A PATH of /bin:/usr/bin:/local/bin:$HOME/bin would be 
aligned as five overlapping directories at the /bin location. This allows 
a very nice system for multiple platforms. The /platforms/mips/bin or 
/platforms/solaris/bin directory can be mounted into the /bin location 
as appropriate.

• The ordering of file systems in a union directory govern which file is 
chosen for reading or executing.
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Processes as Files
• Processes are accessible as files in Plan 9.
• The /proc file system is a kernel generated file system where each file 

is a gateway to the process’ address space.
• /proc/3241 would be the directory for process number 3241.
• /proc/3241/status would be the status for the process.
• /proc/3241/mem is the virtual memory image.
• /proc/3241/text is a link to the executable file for the process.
• /proc/3241/ctl is used to control the process (e.g. stop or kill).
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8½ - The Plan9 Window System
• The Plan 9 Window System has a novel design. It is a special form of 

file server. It opens the /dev/mouse, /dev/cons, and /dev/bitblt devices 
and provides sets of those same files as a file server would.

• This design allows one to run 8½ as a window inside another 8½!
• Each windowing application can treat its terminal devices as if it is the 

only user.
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rc(1) - The Plan9 Shell
• The Plan9 Shell introducet many features that were later incorporated 

into bash(1), such as <{} for named-pipe-on-commad-line
• The history mechanism is especially cool, allowing you to quickly and 

easily recall any command you’ve previously typed.
• The history mechanism means you can drastically reduce the number 

of shell scripts you write, because they end up just being long 
command lines that you can edit as you see fit each time you run them.

• (do a demo)


