CS146

Software Tools and System Programming

Using Linux & Unix as an example

Wayne Hayes

Course Goals

» Using Unix for software development
(Bourne Shell/bash, scripting, filters, awk,
make, compilers, debuggers)

* Basic understanding of Unix systems
programming (system call interface, Unix
kernel)

CS146

About these slides

These slides derive much of their content
from the originals by David A. Penny and
the modifications made by Wayne Hayes,
for a stmilar course at University of
Toronto. Sean M. Culhane’s 1deas were
also used. The original LaTeX slides were
converted to PowerPoint by Arthur Tateishu.

CS146

Section #1

Basic UNIX Structure

and
OS Concepts

CS146

What 1s UNIX good for?

A generic interface to computing equipment

Supports many users running many programs at the same time,
all sharing (transparently) the same computer system

Promotes information sharing
Geared for high programmer productivity. “Expert friendly”
Generic framework allows flexible tailoring for users.

Services include:

File system, Security, Process/Job Scheduling,
Network services/abstractions.

CS146

History

Ken Thompson working at Bell Labs in 1969 wanted a small
MULTICS for his DEC PDP-7

He wrote UNIX which was 1nitially written in assembler and
could handle only one user at a time

Dennis Ritchie and Ken Thompson ported an enhanced UNIX to
a PDP-11/20 1n 1970

Ritchie ported the language BCPL to UNIX 1n 1970, cutting 1t
down to fit and calling the result “B”

In 1973 Ritchie and Thompson rewrote UNIX 1n “C” and
enhanced i1t some more

Since then it has been enhanced and enhanced and enhanced and

CS146 6

Computer Hardware

CPU - Central Processing Unit carries out the instructions of a program
Memory - used for “small” information storage (e.g. < 4GB)

I/O devices - used for communicating with the outside world such as
screen, keyboard, mouse, disk, tape, modem, network

Bus - links CPU, I/O, and Memory

CPU Memory Screen
Disk Mouse Keyboard

CS146 7

Machine Language

* CPU interprets machine language programs:
1100101 11111111 11010000 00000000

1010001 01011101 00000010 0O0OOOOOOO
1100101 00000000 11111111 00100100

* Assembly language instructions bear a one-to-one correspondence
with machine language instructions

MOVE FFDO, DO % b =a* 2
MUL #2, DO
MOVE DO, FFDC

CS146

Compilation

High Level Language (HLL) 1s a language for expressing algorithms
whose meaning is (for the most part) independent of the particular
computer system being used

A compiler translates a high-level language into assembly language
(object files).

A linker translates assembly language programs (object files) into a
machine language program (an executable)

Example:

— create object file “Fork.o” from C program “fork.c”:
gcc -c fork.c -o fork.o

— create executable file “Fork” from object file “fork.o’:
gcc fork.o -o fork

CS146

UNIX Kernel

A large C program that implements a general interface to a computer
to be used for writing programs:

fd = open(*“/dev/tty”, O WRONLY);
write(fd, “Hello world!™, 12);

Applications Programs

RERERRRRRRERRRNEN

UNIX system services

UNIX kernel in C

computer

CS146

10

C and libc

C Application Programs

HEREEEN RN

libc - C Interface to UNIX system services

Y Y Y Y Y Y Y Y Y Y Y Y Y Y

UNIX system services

UNIX kernel in C

computer

CS146 11

Shell

The shell (sh) 1s a program (written in C) that interprets commands
typed to it, and carries out the desired actions.

The shell is that part of Unix that most users see. Therefore there 1s a
mistaken belief that sh 1s Unix.

sh 1s an applications program running under Unix
Other shells exists (ksh, csh, tcsh, bash)

SH

RERERRRRRRERRRNEN

UNIX system services

UNIX kernel in C

computer

CS146

12

Tools and Applications

vi

cat

morc

date

gce

gdb

SH

RERRRNRRRRRRRRRNN

UNIX system services

UNIX kernel in C

computer

CS146

13

Common Unix Commands

Is options: -1, -a, -A, -t, -S, -r, -F

less(1), we, mv (rename), with options -1, -f (NO BACKUP!)

cd, pwd, mkdir, rmdir, rm (-rf), which, du, df

When using ““rm™, be careful with accidental spaces!! “rm —rf *_.c”
basic shell globbing vs. regular expressions

Filters: [ef]grep, sed, tr, awk, diff (incl. stdin as “-”)

Editors: vi/vim, emacs

People + Processes: who, w, last, ps, uptime, top, kill, time, date
Archivers: (un)zip, tar, gzip, xz, 7zip (slow but best compression)

CS146 14

Section #2

UNIX File Abstraction
and

File System Organization

CS146

15

What 1s a File?

A file 1s the most basic entity in a UNIX system.
Several different kinds of files:

— Regular

— Directory

— Character Special

— Block Special

— Socket

— Symbolic Link

They are accessed through a common interface (i.e. you need only

learn how to use one set of systems calls to be able to access any sort
of file.)

CS146

Regular Files

A regular file 1s a named, variable length, sequence of bytes.

UNIX itself assumes no special structure to a regular file beyond this.

Most UNIX utility programs, however, do assume the files have a
certain structure.

e.g.

$ cat > file

hello world!

D

$ Is -1 file

-rw-r--r-- 1 wayne 13 May 8 16:44 file
$ cat file

hello world!

$ od -cb file

0000000 h e 1 1 o w o r 1 d ! \n
150 145 154 154 157 040 167 157 162 154 144 041 012
0000015

CS146 17

Regular Files (cont.)

* Regular files are used to store:

English Text

Numerical Results
Program Text

Compiled Machine Code
Executable Programs
Databases

Bit-mapped Images

etce...

CS146

18

Directories & Filenames

/

homes
/’\
ul
wayne
file csl46
\

accounts

Directories are special kinds of files that contain references to other
files and directories.

Directory files can be read like a regular file, but UNIX does not let
you write to them.

There are two ways of specifying a filename

— absolute: /homes/ul/wayne/file

— relative: csl46/accounts

With an absolute pathname the search for the file starts at the root
directory.

CS146 19

Relative Pathnames

With a relative pathname the search for the file starts at the current
working directory.

Every process under UNIX has a CWD. This can be changed by means
of a system call.
e.g.
$ pwd
/homes/ul/wayne
$ cd cs146
$ pwd
/homes/ul/wayne/cs146
$cd/
$ pwd
/

CS146 20

Device Files

All forms of I/O in UNIX go through the file interface.

To write to a terminal’s screen, for instance, you just write to the
appropriate device file:

$ cat > /dev/ttya
Hi guy!”D
This will cause the text “Hi guy!” to appear on a screen.

To read from a terminal’s keyboard you just read from the appropriate
device file:

$ cat /dev/ttya

The same holds true for disks, tapes, mice, tablets, robot arms, the
computer’s ram memory, etc. ..

CS146 21

Block Special & Character Special
Device Files

There are three kinds of interfaces to devices in UNIX:
 block interface
 character interface
» Line interface

If input and output are buffered in fixed-size blocks within the
operating system, the device has a block special file as its interface.

If the input and output are unbuffered, the device has a character
special file as its interface.

In-between the two is the line-buffered, which 1s what the standard
terminal (keyboard + screen) uses.

CS146 22

Sockets & Pipes

* Pipes are special files used to pass bytes between two processes.

write read
Process '
A

Pipe

Process
B

* Sockets are similar, but are used to connect two processes on different

machines across a network.

CS146

23

File Permissions

Every user of the system has a login name.

The file /etc/passwd associates a UID, GID, and password with each
login name.

When a file 1s created, the UID and GID of the creator are
remembered.

Every named file has associated with it a set of permissions in the form
of a string of bits.

Owner Group Others
RN i RN
rwXs rwXxs TwX
mode regular/device directory
r read list contents
W write create and remove
X execute query and chdir
S setuid/gid (see “man chmod”)

CS146 24

Inodes

e FEach distinct file in UNIX has an inode that refers to it.

* An inode contains:
— type of file
— time of inode last modified
— time file data last written
— time file data last read
— creator’s user ID
— creator’s group ID
— number of directory links
— file size
— pointers to disk blocks containing data
or the major and minor device ID
— permission bits
— sticky bit

CS146

Mounting

« A file system is contained on a disk.
 File systems are mounted onto existing filenames:

/
/bin /etc /homes /usr /tmp
/homes/ul M
/homes/ui\wayne /homes/u2/cs146h

/homes/u2/cs146h/at209pau

CS146 26

Hard Links & Symbolic Links

Directory files contain (filename, 1-number) pairs.

Each such entry is called a link.

A file can have more than one link.

Regular links (hard links) are not allowed to cross file systems.

A different kind of link, a symbolic link, contains the pathname of the
linked to file.

Symbolic links can cross file systems. /

ul /\uZ

I
wayne csl46h/
/
symLinkFile

a209smit a209foob
_— ™~

K linkToFile

CS146 27

Section #3

UNIX Processes

and
Shell Internals

CS146

28

The Shell

A UNIX shell is a program that interprets commands
— It translates commands that you type into system calls.

The shell is a tool that 1s used to increase productivity by providing a
suite of features for running other programs in different configurations
or combinations.

We will be discussing “sh”, otherwise known as the Bourne Shell.
— Other shells exist:
* csh - The C Shell
* ksh - The Korn Shell
* bash - The GNU Bourne-Again Shell.

CS146 29

File Descriptors

In UNIX, all read and write system calls take as their first argument a
file descriptor (not a filename).

To get a file descriptor you must perform an open or a creat system
call.

int fd;

fd = open(pathname, rwmode) ;
You are given the lowest numbered free file descriptor available
(starting from 0).

The open and creat system calls allocate resources within the
operating system to speed up subsequent file access.

When a program 1s done with a file 1t should call close:
close (£d) ;

When a process terminates execution, all its open files are
automatically closed.

CS146 30

Fork

The fork system call 1s used to create a duplicate of the currently
running program.

Process Process
A A #1

Process
A #2

The duplicate (child process) and the original (parent process) both
process from the point of the fork with exactly the same data.

The only difference between the two processes 1s the fork return value.

CS146 31

Fork example

(s

nt 1, pid;

= 5;
printf(“%d\n”, 1);
pid = fork():;

if(pid 1= 0)

1 = 6; /* only the parent gets to here */
else

1 = 4; /* only the child gets to here */

printf(“%d\n”, 1);

CS146

Exec

The exec system call replaces the program being run by a process by a
different one

The new program starts executing from its beginning

process A process A

exec(*Y”)

running running

program Y

program X

Variations on exec: execl (), execv(), etc. which will be
discussed later in the course

CS146

33

PROGRAM X
int 1;
1 = 5;
rintf(“%d\n”’,

exec(“Y”);

I 6;

printf(“%d\n”,

PROGRAM Y

printf(“hello”);

Exec example

CS146

34

Processes and File Descriptors

File descriptors belong to processes. (Not programs!)
They are a process’ link to the outside world.

)

process |2
A g

CS146

35

PIDs and FDs across an exec

File descriptors are maintained across exec calls:

process A process A
running exec(*Y™) running
program X program Y
3 3
/etc/termcap /etc/termcap

CS146

36

PIDs and FDs across a fork

 File descriptors are maintained across fork calls:

process A
#1

process A
#2

3

/etc/hosts

CS146

37

Fork: PIDs and PPIDs

System call: 1nt fork()

If Fork () succeeds, it returns the child PID to the parent and returns
0 to the child; 1f it fails, it returns -1 to the parent (no child is created)

System call: 1nt getpid()

int getppid()
getpid() returns the PID of the current process, and getppid()
returns the PID of the parent process (note: ppid of 1 1s 1)

example (see next slide ...)

CS146 38

PID/PPID example

#include <stdio.h>
int main(void)

{
int pid;
printf("ORIGINAL: PID=0%d PPID=%d\n", getpid(), getppid();
pid = fork();
ift(pid '= 0)
printf("PARENT: PID=%d PPID=%d child=%d\n",
getpid(), getppid(), pid);
else
printf("CHILD: PID=%d PPID=%d\n", getpid(), getppid();
printf("PID %d terminates.\n\n", getpid());
return(0);
+

CS146

39

Initializing UNIX

The first UNIX program to be run is called “/etc/init”
It forks and then execs one “/etc/getty” per terminal

[INEW] It may also start sshd and listen for ssh connections, as well as
starting the X-window system, which we’ll discuss later.

getty and sshd set up a login terminal, prompt for a login name, and
then exec “/bin/login”

login prompts for a password, encrypts a constant string using the
password as the key, and compares the results against the entry in the
file “/etc/passwd” (or /etc/shadow on newer systems)

If they match, “Zusr/bin/bash” is exec’d

When the user exits from their login shell, the process dies. Init finds
out about it (via the wait system call), and forks another getty or sshd
process for that terminal

CS146 40

Initializing UNIX

The first UNIX program to be run is called “/etc/init”
It forks and then execs one “/etc/getty” per terminal

[INEW] It may also start sshd and listen for ssh connections, as well as
starting the X-window system, which we’ll discuss later.

getty and sshd set up a login terminal, prompt for a login name, and
then exec “/bin/login”

When the user exits from their login shell, the process dies. Init finds
out about it (via the wait system call), and forks another getty or sshd
process for that terminal

® @@

e¥elclo

CS146 41

Standard Streams

* The forked 1nits open the terminals they are assigned to 3 times.

e The result is that when sh 1s eventually started up, the first three file
descriptors (0, 1, 2) are pre-assigned, and refer to the login terminal.

Descriptor Name Purpose
0 Standard Input Read Input
1 Standard Output Write Results
2 Standard Error Report Errors

« sh reads its commands from the standard input

CS146 42

How sh runs commands

> date
Fri Oct 1 12:03:53 PDT 2010

When a command i1s typed csh forks and then execs the typed command:

csh date

« After the fork and exec, file descriptors 0, 1, and 2 still refer to the
standard input, output, and error in the new process

« By UNIX programmer convention, the executed program will use these
descriptors appropriately

CS146 43

How sh runs (cont.)

process running shell,

duplicate:
PID 34

fork()

child process running shell, PID 35

\ differentiate:

parent process running shell,
PID 34, waiting for child

exec()
wait f9r child: child process running utility, PID 35
wairt()
terminate:

exit()

child process terminates PID 35

signal

parent process running shell,
PID 34, awakens

CS146 44

I/O redirection

$ cat<fl>1f2

After the fork, but before the exec, sh can redirect the standard input,

output, or error streams (or any other stream for that matter):
while(not end of standard input) {
print(stdout, “% “);

read cmd(stdin, command) ;

pid = fork();
if (pid == 0) {
/* The child executes from here */
if (inputRedirected) ({
close (stdin) ;
open (inputFile, O RDONLY) ;
}
if (outputRedirected) {
close (stdout) ;
creat (outputFile) ;
}
exec (command) ;
} else
/* parent: wait for child to terminate */
} /* end while */

CS146

45

Pipes

$ 1s /u/cs146h | cat

For a pipeline, the standard output of one program is connected to the
standard input of the next program.

Pipelines can be (almost) arbitrarily long.

Commands in a pipeline are run concurrently!

The output of a pipeline could be produced using temporary files, but

pipes are implemented in RAM, which is faster than disk.
you would lose on the store-and-forward delays

programs requiring little CPU can produce lots of I/0O, so why not run
them concurrently rather than wait for one to finish before starting the
next one?

you might fill up the disk with large intermediate files.

CS146

46

Exec arguments

$ echo hello world!
hello world!

The exec system call has a parameter (not shown previously) that is
used to pass command line arguments to the executed commands:

char * argv|[4];

argv[0] = “echo’;

argv[1l] = “hello”;

argv[2] = “world!”’;

argv[3] = NULL; /* (char*) 0 */

exec(“/bin/echo”, argv);

CS146

47

Environment Arguments

The exec system call has another parameter (not shown previously)
that 1s used to pass the state of the environment to executed
commands:

char * envp[2];
envp[0] = “TERM=xterm’;
envp[1l] = NULL;

exec(*“/bin/echo”, argv, envp);

sh may be told to pass these environment parameters to executed
programs by way of the export command.

% TERM=xterm; export TERM

CS146 48

Section #4

Bourne Shell

CS146

49

Shell Communications

Pre-opened file descriptors:
$cat<f >g

Exec (command line) arguments:
$ grep ‘hello’ f

Environment parameters:
$ PRINTER=Ilw; export PRINTER
$ Ipr document

CS146

50

Basic Redirection

Direct output from file descriptor n to file f:
n>f $ 2>err Is 1>foo

If n is absent, the default 1s the standard output (1).

Append output from file descriptor n to the end of file f:

n>>f $catx >>f

If n is absent, the default 1s the standard output (1).

Direct input to file descriptor n from file f:
n<f $ 3<bar foo

If n 1s absent, the default 1s the standard input (0).

Redirect standard output (1) from program 1 to the standard input (0)
for program 2:

pl | p2 $ 1s | grep foo

CS146

Advanced Redirection:
“Here” Documents

n << word

n << -word

The shell input 1s read up to a line that is the same as word, or to an
end-of-file.

The resulting document becomes the input on file descriptor n
(defaults to the standard input, 0).

If a minus sign (-) 1s appended to the <<, all leading TABs are
stripped.

put “hello world!” into file fT.
cat > T <<-END
hello world!
END
done

CS146

52

Advanced Redirection:
dup’ing & close’ing
n<&m np>&m n<&- P>&-

dup system call:

int fd1, fd2;

fd1 = open(“file” O_ RDWR);

fd2 = dup(fdl);
At the end of this sequence, fd1 and fd2 both refer to exactly the same
thing.
The phrase, n>&m or n<&m , causes file descriptor n to be a
dup of the (pre-opened) file descriptor m.
The phrase, n<&- or n>&- closes file descriptor n.

The shell checks that n 1s open for input(<), or output(>), respectively.
The defaults for absent n are stdout (1) for >, and stdin (0) for <,

CS146 53

Filename Generation
(globbing)

Words on the command line are expanded if they contain one of the

66*,, 66?” (13

characters R

The word 1s replaced with a sorted list of filenames that match the
given pattern.

[f no matching filenames are found, the word 1s left unchanged.

* Matches any string (including null).

? Matches any single character.

[...] Matches any one of the enclosed characters.
[x-y] Matches any character lexically between the pair.
[!...] Matches any character not enclosed.

¢¢ 9

The character “.” at the start of a filename or immediately following a
“/” as well as the character “/” itself, must be matched explicitly.

CS146 54

Shell Variables:
setting and unsetting

The shell maintains an internal table that gives string values to shell
variables.

A shell variable 1s 1nitially assigned a value(set), or subsequently has
its value changed, by a command of the form variable=value.

$ x=3 y=4

A shell variable 1s removed by the built-in command unset.

$ unset x

A shell variable can be exported to the environment of commands that
are executed.

$ export x

CS146 55

Shell Variables:

retrieving

e The value of a shell variable may be substituted in a command by a

“$” phrase.

Svar

§ {var}
§ {var:-w}
§ {vari=w}
§ {var:?w}

$ {var:+w}

The value of var is substituted.

The value of var is substituted. (The braces are required only
when var is followed by a letter, digit, or underscore.)

If var is set and non-null, substitute its value, otherwise
substitute w.

If var is not set or 1s null, set it to w. The value of var is
substituted.

If var is set and non-null, substitute its value, otherwise print
w and exit from the shell. (Default message if w 1s absent.)

If var is set and non-null, substitute w, otherwise substitute
nothing.

CS146 56

Shell Variables:
positional parameters

» Shell variables that are composed of a single digit are positional
parameters.

$0 Oth positional parameter.
$1 1st positional parameter.

$9 9th positional parameter.
$# The number of positional parameters as a decimal (base 10) string.
$* All the positional parameters, starting with $1, are substituted (separated

by spaces).
$@ Similar to $*. However they differ when quoting is used (later).

CS146 57

Shell Variables:
the “set” command

The command
$ set
will print out the values of all shell variables.

The command
$seta b ¢

will set positional parameters 1, 2, and 3 to “a”, “b”, and *““c”
respectively.

¢ 9

The set command with arguments starting with “+ or “-”” will turn on

and off the shell options. e.g.
$ set-x

will cause all commands and their arguments to be printed as they are
executed.

These options may also be set when invoking the shell.
$ sh -x foo

CS146 58

Shell Variables:
pre-set

* The following shell variables are pre-set.

$- The options supplied to the shell on invocation or by the set
command.

$? The exit status returned by the last command executed in the
foreground as a string in decimal notation.

$$ The process ID of this shell.

$! The process ID of the last background command invoked.

$PATH The directories to search in order to find a command.

$PS1 Primary prompt string.

$PS2 Secondary prompt string.

SMAILCHECK

How often to check for mail.
$IFS Internal field separator.

CS146 59

Environment Parameters

The environment, a list of name-value pairs, 1s passed to the shell and
to every command that the shell invokes.

When the shell starts up, it makes a shell variable out of each name-
value pair.

Shell variables and environment parameters may be bound together by
means of the export command.

Entries in the environment may be modified or added to by binding an
existing or yet to exist shell variable. Subsequent changes to that
variable will be reflected in the environment list.

Entries may be deleted by performing an unset on the corresponding
shell variables.

The environment for any simple command may be augmented by
prefixing it with one or more assignments to parameters. €.g.

$ X=5 Y=6 fooscript

CS146 60

HOME

PATH
CDPATH
MAIL
MAILCHECK
MAILPATH

PS1
PS2
IFS

SHELL

Environment Parameters

used by sh

Default argument for ¢d. (set by login)

The search path for commands.

the search path for cd.

File where the user’s mail arrives. (set by login)
How often to check for mail.

Set of files to check for mail. (used in preference to
MAIL if set)

Primary prompt string.
Secondary prompt string.

The characters that separate arguments on a command
line.

If set and value contains an “r”, the shell becomes a
restricted shell. (set by login)

CS146 61

Command Substitutions

The standard output for a command enclosed in a pair of back-quotes
(') may be used as part or all of a word.

Trailing newlines are removed.
$ echo ‘pwd’
/homes/ul/wayne

CS146

62

Quoting

The following characters have a special meaning to the shell:
& () | ~ < > NL SPACE TAB

A single character may be quoted by preceding it with a backslash(\).
A backslash(\) character followed by a newline is ignored.

All characters enclosed between single quotes (‘) are quoted (except
for (°).

Inside double quote marks(*) shell variable substitution and command
substitution occurs. (“\” is used to quote the characters \ ¢ “ and $.

$* = $1 $2 .. $n
“$*” = “$1 $2 .. n”
“$@” = “$1” “$2” .. “$n”

CS146 63

Putting 1t all Together

Whenever a command is read, either from a shell script or from the
terminal, the following sequence of substitutions occur:
1) Comments

A word beginning with the “#” causes the word and all the following characters up
to the end of the line to be ignored.

2) Command substitution

Commands enclosed in back-quotes are executed.
3) Parameter substitution

All “$” references are expanded.
4) Blank interpretation

The results up to here are scanned for characters in IFS and split into distinct
arguments. Explicit nulls are retained (“’), implicit ones are removed.

5) Filename expansion
Each argument is then filename expanded.
6) I/O Redirection

/O redirection is now separated from command line arguments.

CS146 64

Section #5

Shell Scripting

CS146

65

Shell Scripting: 1

“Is -F”’ 1s much more useful than simple “Is”. It tells you concisely
what each file 1s without the bother of doing “Is -1” all the time.

We want it to be so that when we type “Is”, we get “Is -F”’.

— SHOME/bin/lIs

CS146

66

Shell Scripting: 1(a)

$HOME/bin/ls
Is —F

2 Things Wrong

1. Since this script version of ‘ls’ was probably run as
the first ‘Is’ in the PATH, the ‘Is’ in the script will
run the script again. Infinite recursion.

2. Arguments are being 1ignored. That means ‘Is /etc’
would not work as expected.

CS146 67

Shell Scripting: 1(b)

$HOME/bin/lIs
exec /bin/ls —F “$@”

A corrected version would call /bin/ls to avoid the infinite
loop. The “$@” variable will pass the arguments to the
real ‘Is’. The ‘exec’ avoids the shell waiting around for
the completion of ‘Is’.

CS146 68

Shell Scripting: 1(c)

The Bourne Shell has a function syntax that can solve
our problem elegantly. It can be added to the .profile
startup file so it 1s loaded for login shells.

SHOME/ .profile
Is () { /bin/ls —F “$@; }

— In other shells, there is an alias command used like
alias Is Is —F
or

alias 1s="“Is —F”’

CS146

69

Shell Scripting: 2

We want to set the shell prompt to be ‘machine->’

[logon to many different machines. Often several at once from the
same workstation. I want only one .profile file.

Program “hostname” will give you the machine in the form:

— machinename.domainname

CS146

70

Shell Scripting: 2(a)

The first approach demonstrates the use of IFS and set but it is quite
convoluted. Using set in shell scripts has the notable drawback that
arguments are destroyed and hence must be parsed first or saved for
later.

$HOME/.profile
oldIFS=$IFS

IFS="_.7; set "hostname ; PS1=“$1-> ” ; export PS1
IFS=$0ldIFS; unset oldIFS

CS146

71

Shell Scripting: 2(b)

The following version can be considered simpler. It sends the output of
hostname through sed with a substitution command.

PS1="hostname | sed ’s/\..*//’ ; export PS1

The sed command 1s explained as follows:
s - sed command for substitution
/- delimiter for regular expression
\ - escape character for following character

- a period. Normally, sed interprets periods as the regular expression for
“any character”. The previous backslash overrides that.

- match any character. This one was not escaped.

* - match zero or more of the previous expression. In this case it means
match zero or more of “any character”.

/- separator between the regular expression and replacement part of the
substitute command

/- the end of the replacement string. We’re replacing with nothing.

So the sed command has been asked to find a period followed by any
number of characters and replace 1t with nothing.

CS146 72

Shell Scripting: 3

When I logon, I want to a polite greeting, customized to the time of
day.
Good morning, Wayne!
Good afternoon, Wayne!
Good evening, Wayne!
Good god! What are you doing up so early?

» The date command will print out the current date and time.
$ date
Mon Jan 30 10:09:27 EST 2008

CS146 73

Shell Scripting: 3(a)

$HOME/bin/greet
Mon Jan 3 10:09:27 EST 2008
set date ; IFS=":7; set $4; hour=%1
iIT [$hour -1t 9]; then
echo ‘“Good god! What are you doing up so early?”
elift [$hour -1t 12]; then
echo “Good morning, Wayne!”
elit [$hour -1t 18]; then
echo ‘“Good afternoon, Waynel!”
else
echo ‘“Good evening, Wayne!”
Ti

Time could be parsed easier using cut.
hour="date | cut —c12-13"

CS146

74

Shell Scripting: 3(b)

Date has some nice options including the ability to format the output in
various ways. Yes, it does pay to read the man pages.

case “date +%H" i

0[0-8] echo
echo
echo

1[2-7]

x*

esacC

n
) “Good god..”’; ;
09 | 1101}) echo “
)
)

Good morning, Wayne!”’;;

“Good afternoon, Wayne!”;;
“Good evening, Wayne!”;;

I can have the greet command run upon login by adding a line to my

.profile to run greet.

CS146 75

Shell Scripting: 4

» List all regular files in a subtree.

« This is a recursive script that demonstrates the use of $0 to run itself
without knowing the name of the script.

$HOME/bin/dtfiles

PATH=/bin:/usr/bin:SHOME/bin:$PATH
cd $1
foriin *
do
if [-f $i |; then
echo $i
elif [-d $i |; then
$0 Si
fi
done

« With no arguments, the shell script should work on your SHOME
directory. To make it work on the current directory by default, we
could change the ‘cd’ command to read: cd {$1:-.}

CS146 76

Shell Scripting: 5

n! 1s “n factorial”

Mathematically,
nl=n*(n-1)*n-2)*...*2*1

The shell scripting language does not have arithmetic. However, the
expr(1) utility can do arithmetic by reading and parsing strings.

Here are two versions of shell scripts to compute n factorial. Which do
you think 1s better? I recommend that you try both and see.

When evaluating how to decide which script 1s better, consider the
number of processes forked, the number of active processes during the
run, what sorts of commands are used, how many temporary files are

needed, maintainability, etc.

CS146 77

Shell Scripting: 5(a)

iT [$# -ne 1]; then
echo “Usage: $0 n” >&2; exit 1
Ti

Check to make sure the argument is a number
ITf echo $1 | grep “~[0-9][0-9]1*%° >/dev/null 2>&1; then

else
echo “Usage: $0 n” >&2; exit 1
Ti

IfT [$1 —eq O]; then
echo 1

else
ml="expr $1 — 1°
expr $1 * “$0 $ml”

fi

CS146

78

Shell Scripting: 5(b)

if [$# -ne 1]; then
echo “Usage: $0 n” >&2; exit 1
fi

Check to make sure the argument is a number
IT echo $1 | grep “~[0-9]1[0-9]1*%> >/dev/null 2>&1; then

else
echo “Usage: $0 n” >&2; exit 1
fi
fact=1
number=%$1
Until [$number = 0]
do
fact="expr $fact * $number”
number="expr $number — 1°
done
echo $fact

CS146

79

Section #6

UNIX Program Execution

CS146

80

C Program Execution

Compiled C program

Standard libraries

System call library

UNIX kernel

computer

CS146 81

EXECVE

execve(name, argv, envp)

name
0xfffc02 »/ bin/Zecho\O
argv
0xa0bf34 » OxFFfdoo
OxFFfd05
Oxfffalb »Worild ! \O
NULL !
»e cho\NOHello\O
envp
0xa0bf58 » OxFFfd24 "TERM=xterm\O
NULL

CS146 82

Executable Files

execve will fail unless the file to execute has the appropriate execute
permission bit turned on.

The file must also be in one of the correct formats.
There are two general classes of executable files:

1) Executable object files (machine code and data).
2) Files of data for an interpreter (usually ascii).

CS146

83

Interpreter Files

The UNIX kernel, during an execve, reads the first few bytes of a file
1t 1s asked to execute.

Interpreter files begin with a line of the form:

#! interpreter arguments

e.g.

#!/bin/sh -x
The kernel executes the named interpreter with the name of the
original (data) file as one of the arguments.

c.g.
execv(“foo”, <“foo”, “a”, “b”, “c>)
1S transformed into:
execv(“/bin/sh™, <*sh”, “-x”, “f00”, “a”, “b”, “c”>)
This should explain why so many UNIX commands use ‘#’ for a
comment line indicator.

CS146

84

Executable Object Files

An executable object file has the following 7 sections:

1) header

magic number
— text size (executable code)
— data size (global/static non-zero initialized)
— bss size (global/static, zero-initialized)
— symbol table size (variable names, if present)
— entry point (where in the text above to start execution)
— text relocation size (executable code that can be moved upon linking)
— data relocation size (same as above but for data)

2) text (machine code)
— zero filled to nearest page (e.g. 8K) boundary

3) initialized data
— zero filed to nearest page boundary

CS146 85

Executable Object Files (cont.)

4) text relocation information
— address
— size (byte, half-word, word)
— symbol number

5) data relocation information
— same as above

6) symbol table
— 1ndex into string table
— type of symbol
— value

7) string table (only present if debugging information present)
— size in first four bytes

— zero-terminated strings

CS146

86

Executable Object File Format

string table

table size + 4

X +a trsize + a drsize +a syms

symbol table

X +a_trsize + a_drsize

data relocation
x +a_trsize

text relocation

8K aligned
bss (0-filled)
a_text +a data
data
8K aligned
a_text
text
32
header
0

CS146

Virtual Memory Image

System Space

2G

Stack
l \\ Stacks grows implicitly
when addressed
Heap grows explicitly
by calls to sbrk() — ‘
8K aligned a text+a data+a bss
bss (0-filled)
a_text +a data
data
8K aligned a_text
text
header
8k

Blank page (page zero)

CS146 0

88

“Hello world!”
(in 68000 assembly language)

-text _ $ as hello.s
movl #13, sp@- | # bytes to write

pea msg | address $ Id a.out
mov 1 #1, sp@- | standard output

mov #0, sp@- $./a.out
trap #0

addw #20, sp | clean the stack

movl #0, sp@- | exit code

movl #0, sp@-

movl #1, sp@- | _EXIT

trap #0

.data

msg:.ascii “Hello world!I\12\0”

CS146

89

“Hello world!”
(in C using only system call library)

char msg[] = “Hello world!\n”; $ gcc hello.cC
int $./a.out
?a'”(vo'd) Hello world!
Int bytesWritten; EB
bytesWritten = write(l, msg, 13);
return O;
ke

CS146

90

libc

libc contains the object code for:
— the interfaces to system calls
— the standard libraries

For example, the file “write.s” is that part of the source for the system
call interface library that interfaces to the write system service.
err: jmp cerror
-globl _write

_write:
movl #4, spO- # WRITE system call
trap #0
Jjcs err
rts

CS146 91

Error Statuses Returned from System Calls

* Every system call returns a status.

« If the status 1s negative then the system call interface library will call

the routine cerror.

« Cerror will store the error status (returned by the system call in a
general purpose register) into a global variable called errno.

extern int errno;
main()

{
int fd;

fd = open(“foo”, 0, 0);

if (Fd == -1)

fprintf(stderr, “Error
on open: %d\n”’,

}

Error on open: 2

errno);

#include <stdio.h>
#include <errno.h>
main()
{
int fd;
fd = open(“foo”, 0, 0);
it (fd == EOF)
perror(“foo”);

}

foo: No such file or directory

CS146 92

“Hello world!”
(in C using standard I/O library)

#include <stdio.h> $ gCC hello C
main() $./a.out
{
printf(““‘Hello world\n”); Hel IO WOrId!
¥ $
CS146

93

Section #7

C Storage Model

Compilation and Linking

CS146

94

Setting Aside Storage

T stack l

heap

1nit. data
text

Every data element must have the appropriate number of bytes set
aside for 1t in the process’s memory.

Insofar as variables are concerned, those bytes are either allocated on
the stack, or in the heap.

You tell the C compiler to set aside storage for you by means of a
declarations:

int 1;

unsigned short j;

CS146 95

Stack Data

Each time that a C function is called, extra stack space 1s implicitly
allocated.

This stack space contains the automatic variables (also called local
variables) for that function.

Local variables are all variables declared within a {} block.

When a function returns, that stack space i1s implicitly de-allocated and
later re-used.

/* Pathological Example */ add(aint 1, iInt j)
main(int argc, char *argv|[], {

char *envp[]) intk =1+ j;
{ +

int x = 1;

inty = 2; printSum()

{

add(x, vy); int a, b, c;

printSum(); printf(*“%d\n”, c); // or maybe a
+ by

CS146 96

Example explained #1

« Stack just prior to call to “add”:

Argument and
Environment

String

envp

argv

main’s
argc = 1 o
activation

return addr record

y=2

x=1

Stack pointer

v

CS146

Example explained #2

» Stack just after call to “add™:

Stack pointer

envp

argv

argc = 1

return addr

y=2

x=1

]=2

1=1

return addr

k=3

v

CS146

main’s
activation

record

add’s
activation

record

98

« Stack just prior to call to “printSum”:

Stack pointer

envp

argv

argc = 1

return addr

y=2

x=1

2

1

Junk (return addr)

3

CS146

Example explained #3

main’s
activation

record

99

« Stack just after to call to “printSum’:

Stack pointer

Example explained #4

bJ

envp

argv

argc = 1

return addr

y=2

x=1

return addr

a=1

b = junk (old addr)

c=3

v

CS146

main’s
activation

record

printSum’s
activation

record

100

Heap Data

e The heap 1s divided into three parts:
— 1nitialized data
— zero-initialized data
— dynamically allocated data

* Space for initialized and zeroed data 1s allocated for each declaration
appearing outside of any function (or for in-function declarations

prefaced by static):
int 1, j = 3;
main()
{

static Int k = 2;
i =k + j;
b5

* Space for dynamically allocated data 1s allocated explicitly by calls to

the library function malloc.
main()

{
int *p = malloc(sizeof(int));
*p:3;

CS146 101

Storage Class

There are various ways of specifying which storage class an object
belongs to:

If an object is declared within a {...} block with no storage class
specification, or the auto storage class specification, they are stored on the
stack.

If an object declared within a block has the storage class specifier
register, it is either kept on the stack or in a CPU register if that is
possible.

If an object within a block has the storage class specifier static, it is stored
in the heap, but is still semantically local to that block.

If an object is declared outside of all blocks, it is stored in the heap.

If an object is declared outside of all blocks, and has the specifier static, it
is local to that file.

If an object declared outside of all blocks has the specifier extern, or no
specifier, it is visible throughout the program.

If declared extern, no space is allocated. It is assumed that space has been
allocated elsewhere (i.e. without the keyword extern) and will be resolved

by the linker.
CS146 102

C Compilation

e There are four main phases of C compilation
(1) Preprocess
(2) Scan & Parse
(3) Code Generation
(4) Linking

CS146 103

Preprocess

« The preprocessor (cpp) handles macros, #include, and conditional

compilation.

foo.h
#define DEBUG 1
#define ADD(a,b) ((a) + (b))
int x;
extern void printi(int);

foo.c:
#include “foo.h”
void main()
{
inty, z;
X = ADD(y, z);
#i1T DEBUG
printi(xX);
#endi T
+

After preprocessing:

int x;
extern void printi(int);
void main()

{
int y, z;
x =y + (@):
printi(x);
+
CS146

104

Scan

* The scanner separates input into logical tokens - no meaning 1s
assigned yet.

int extern | | void printi int void
main {{|mt||y]|], X = +
(||z sl printt | | (| |x|])

CS146

105

Parse

The parser derives meaning from the stream of tokens. Syntax
checking also occurs here.

x 1s a global integer initialized to zero (bss segment).
main is a void subroutine with no parameters.

{ marks the beginning of main.

int y, z; defines two automatic, uninitialized integers.

x = ((y) + (z)); 1s an expression described by a parse tree;

|

) @

printi(x); call printi with x as argument.

} marks the end of main.

CS146

106

Code Generation

* Code generation takes the parsed program (i.e. the compiler now
“understands” the program) and generates machine language. We’ll
show it as assembly language. Some compilers generate text for an
assembler instead of generating code directly.

* Assign x an address, say memory locations 100-103.
* Assign main a starting address, say 1000.
* 68000 assembly language representation of compiled code:

X = 100
_main = 1000
add. 1 -8, sp ; 2 iInts, y & z
move. | @sp, @ X ; X =Yy
add. | @sp(4), @ x ; perform addition y+z
move. | @ x, @-sp ; push x onto stack
Jsr _printi ; unresolved link
add. | 12, sp ; clean stack
rts ; return from _main

« Actual machine language file is called object file “fo0.0”

CS146 107

Link

Linking 1s the resolving of symbols in object files.

Each object file has associated with it a list of <name, address> pairs
called a symbol table.

Names not defined in the file, called unresolved references, have a
NULL address. The symbol table for foo.o is:

[< main, 1000>, < x, 100>, < printi, 0>]
Note y, z do not appear since they are local to main().

A library archive (file extension .a) is a collection of object (.0) files,
each containing executable machine code, global data, and a symbol
table. Library archives are maintained by ar(1).

“Linking” entails combining multiple object and library files, resolving
all unresolved references, and producing an a.out executable file.

In our example, we assume _printi 1s resolved by a symbol in an object
file in a standard library.

Sometimes linking happens later, at runtime, using shared or
dynamically linked libraries (DLLs in Windows, .so files in Unix)

CS146 108

Link example

$ gcc -E foo.c # pre-process only, output to stdout

$ gcc -S foo.c # PP, scan, parse, produce assembly language file foo.s

$ gce -c foo.c # PP, scan, parse, codegen, produce output file foo.o

$ gce foo.o # link foo.0 to produce a.out

$ gce foo.c # all 4 phases, produce a.out

$ gcc -c fool.c # produce fool.o

$ gcc -¢ foo2.c # produce foo2.0

$ gcc fool.o foo2.0 # link fool.o and foo2.0 to libraries to produce
a.out

« Ifnecessary, the linker moves addresses at link time to avoid address
conflicts (e.g. fool.o and foo2.0 both claim address 100 for different
variables)

* On some systems, the symbol table also includes type information, e.g.
x 18 an 1nt and printi 1s a function. Most modern UNIX systems do this.

CS146 109

Makefiles

A Makefile contains instructions telling make(1) what depends on
what, and how to build things. Make(1) looks at timestamps and
figures out how to build things that don’t exist or are out-of-date.
Each section of a makefile looks like:

targetl: [dependency list] # empty mean always rebuild
instructions # MUST be TAB indented.

Sections are separated by blank lines. e.g.:

$ cat makefile

foo: fool.o foo2.0
gcc -o foo fool.o foo2.0

fool.o: fool.c foo.h
gcc -c fool.c

foo2.0: foo2.c foo.h
gcc -c foo2.c

Typing “make” causes the first target in the Makefile to be built.
Typing “make fool.o” causes a specific target to be built.

CS146

110

Section #8&

Standard Library

“Never code something that someone else has already coded better.”

CS146 111

Standard Library

There 1s more in the standard library than you might expect. (Read
“man intro” and lookup the intro’s for sections starting with 3.)

Library contains functions, variables, and macros.

Some library calls perform system calls, others do not. The system
calls interface routines themselves are not considered part of the
standard library (See “man 2 intro”). They are simply C interfaces to
the system calls.

Application Program

Standard library

System call library

kernel

hardware

CS146

112

stdio
errno

malloc

ctype
string

math
exit
getenv

gsort
bsearch
assert
stdarg

setjmp

Standard Library

e Library is divided into a number of different parts (see /usr/include)

User-level buffered file I/O

Checking return status of system
calls

Memory allocation

Classifying ASCII-coded integers
Operations on null-terminated
strings

Mathematical functions and macros
Normal and abnormal termination

Accessing environment variables
by NAME

Sorting
Binary search
Diagnostics used for debugging

Accessing variable length function
parameter lists

Non-local program control jumps

CS146

signal Handling UNIX signals (also called
exceptions)

limits Implementation-dependent
information

float Implementation-dependencies for
floating point

random Random number generation

time Dealing with date and time

network Accessing networks

encrypt DES encryption

dbm Database routines (key-content
pairs)

dir Directory operations

getopt Parse options in argv

regex Regular expression handlers

stty Setting terminal driver
characteristics

system Performing shell commands

... and more ...

113

Standard 1/O

* Designed to make performing I/O convenient and efficient.
e I/O 1s done independently on independent streams.

e Touse:

#include <stdio.h>

which defines (among other things):

FILE Stream struct

NULL No stream

EOF End-of-file or error return indicator
stdin Standard streams

stdout

stderr

CS146 114

Opening & Closing Streams

FILE *fopen(char *filename, char *mode)
— Opens “filename” for access according to “mode”.
— Mode can be one of “r”, “w”, “a”, “rt+”, “wt+”, “at”
FILE *freopen(char *filename, char *mode, FILE *stream)

— Substitutes the named file in place of the open stream. The old stream is
closed.

FILE *fdopen(int fildes, char *mode)

— Opens a stream that refers to the given UNIX file descriptor (must
currently be open).

int fileno(FILE *stream)
— Returns the UNIX file descriptor associated with the stream.

int fflush(FILE *stream)

— Causes any buffered data for the named stream to be written out.

int fclose(FILE *stream)
— Flushes the stream, closes the file, and deallocates the FILE data structure.

int exit(int status)
— Causes all open streams to “fclose”d calls _exit(status).

CS146 115

Output Buffering Modes

There are three kinds of output buffering modes for streams:

1) Unbuffered - Characters appears on the terminal or in the file as soon as
they are written.

2) Block Buffered - Many characters are saved up and then written as a
block.

3) Line Buffered - Characters are buffered until a newline is encountered or
input is read from stdin.

Normally all files are block buffered, except terminals which normally

default to line buffered for stdout, and stderr which is always
unbuffered.

int setbuffer(FILE *stream, car *buf, int size)

— Specifies that “buf” be used rather than a malloc’d buffer on the first getc or putc and sets the buffer size to
“size”. If “buf” is NULL, I/O will be unbuffered. Used after a stream is opened, but before it is read or written.

int setbuf(FILE *stream, char *buf)
— Same as setbuffer(stream, buf, BUFSIZ).
int setlinebuf(FILE *stream)

— Used to change stdout or stderr to line buffered. Can be called anytime.

CS146 116

Unformatted Input

int getc(FILE *stream)

— Returns the next character from “stream”. (macro - beware of side effects)
int ungetc(int ¢, FILE *stream)

— Pushes the character “c” back onto “stream”. Returns c.
int getchar()

— Identical to getc(stdin).
int fgetc(FILE *stream)

— Same as getc, but not a macro.
int getw(FILE *stream)

— Returns the next int from “stream”. (must check for errors)
char *gets(char *s)

— Reads characters up to and including the next newline into “s” from stdin. The newline is
replaced by a NULL character in s. Returns s. This is VERY dangerous (see Internet Worm).

char *fgets(char *s, int n, FILE *stream)

— Reads n-1 characters or up to and including a newline from “stream” into “s”. Adds a null
character onto the end. Returns s.

int fread(void *ptr, size_t size, int nitems, FILE *stream)

— Reads “nitems” nto block pointed to by “ptr” from “stream”. Flushed stdout if stream is stdin.
Returns # items read.

CS146 117

Formatted Input

int sscanf(char *s, char *format [, pointer] ...)

e 9

— Parses “s” according to “format” placing the results into the variables pointed to. Returns
number of input items parsed and assigned.

int fscanf(FILE *stream, char *format [, pointer] ...)
— Same as sscanf but read from “stream”.

int scanf(char *format [, pointer | ...)
— Same as fscanf(stdin, format, ...)

“format” is composed of:

— Blanks, tabs, newlines: Match optional white space.

— Regular characters (not %): Must match input.

— % [*] [maxField] [convChar]: Conversion specification.
The conversion characters are:

- % Matches a % characters

— d,D,1d, hd Decimal integer

— 0,0, 1o, ho Octal integer

- x, X, Ix, hx Hexadecimal integer

- s Character string

- C Single character

- ¢ E, le

- fFIf Floating point number

CS146 118

Low-Level Output

int putc(char c, FILE *stream)

€6 9

— Appends “c” to “stream”. Returns the character written. (macro)
int putchar(char c)
— Same as putc(c, stdout)
int fputc(char c, FILE *stream)
— Same as putc, but not a macro.
int putw(int w, FILE *stream)
— Appends int “w” to “stream”. Returns the word written.
int puts(char *s)
— Appends the null-terminated string “s” to stdout, and a newline character.
int fputs(char *s, FILE *stream)
— Appends the null-terminated string “s” to “stream”.
int fwrite(void *ptr, size t size, int nitems, FILE *stream)

— Append at most “nitems” of data of type *ptr beginning at “ptr” to “stream”. Returns # of items
written. (returns O for error)

CS146 119

Formatted Output

int sprintf(char *s, char *format [, pointer] ...)
— Places “format” expanded using “args” into the string “s”.
int fprintf(FILE *stream, char *format [, pointer] ...)
— Same as sprintf but appends to “stream”.
int printf(char *format [, pointer | ...)
— Same as fprintf(stdout, format, ...)
“format” is composed of:
— Regular characters that are copied verbatim
— Conversion specifications of the form

* % [flags] [fieldWidth] [.] [precision] [1] [type]

Flags are:

- # Alternate form

- - Left alignment

-+ Include a sign if appropriate

— space blank should be left before a positive number (i.e. leave space for the +)
Types are:

- % Print a % character

- d,o0,x Decimal, octal, or hex integer

- f Float or double

- e Float or double with exponent

- g Style d, f, or e whichever simplest gives full precision.

- cC character

- 8 string

- u unsigned integer

CS146 120

Positioning a Stream Pointer

* int fseek(FILE *stream, long offset, int whence)

— Sets the position of the next I/O on “stream”. The new position is at a
signed “offset” from the beginning, current position, or the end-of-file,
according as “whence” is 0 (SEEK _SET), 1 (SEEK CUR), or 2
(SEEK_END). This undoes an ungetc.

* long ftell(FILE *stream)

— Returns the current value of the file pointer for “stream”

* int rewind(FILE *stream)

— Same as fseek(stream, OL, 0)

CS146 121

Status Enquiries

» 1int feof(FILE *stream)
— Returns 0 iff no end-of-file was encountered.

» 1nt ferror(FILE *strream)

— Returns 0 iff no error has occurred while readng or wrting this stream.

» void clearerr(FILE *stream)
— Resets the end-of-file and error indicators for this stream.

CS146 122

String/Character Handling

All “str” functions require input strings be terminated with a null byte.

Some of the most common ones:
strilen, strcpy, strcmp, strcat
memcpy not just for strings!

Some function for testing/converting single characters (ctype.h):
1salpha, 1sdigit, 1sspace

toupper, tolower

atoir, atol

CS146 123

Storage Allocation

* Dynamic memory allocation (heap storage!):
malloc, calloc, free, realloc

* An example:
#include <stdio.h>
#include <malloc.h>
struct xx *sp;

main() {
sp = (struct xx *) malloc(5 * sizeof(struct xx)
E
1IT(C 'sp) // 1f (sp == NULL)
{
fprintf(stderr, “out of storage\n”);
exit(-1);
+

CS146 124

Date and Time Functions

Most UNIX time functions have evolved from various sources, and are
sometimes inconsistent, referring to time as one of:

— the number of seconds since Jan 1, 1970 (or Jan 1, 1900)

— the number of clock ticks since Jan 1, 1970 (or Jan 1, 1900)
— the broken down structure “struct tm”

(see Zusr/include/time.h)
— the broken down structure “struct timeval”
(see Zusr/include/sys/time.h)

Some are intended for time/date, whereas others are intended for
measuring elapsed time

CS146 125

Environment Interfacing

« Reading environment variables:
char * getenv(char *envname);
* Adding environment variables:

int putenv(char *string);
where string is of the form name=value.

* Executing a shell command:

system(“egrep 128 /etc/hosts | wc™);
(What are the disadvantages of running a command this way?)

CS146 126

Convenient Subshells

* You can also execute a command via the shell and have its output sent
to a pipe instead of stdout:

FILE *rpipe, *wpipe;

rpipe = popen(“Is -athl”, “r”);
... // read stuff from rpipe ...
pclose(rpipe);

wpipe = popen (““‘cat > foo”, “wW’);
... // write stuff to wpipe ...
pclose(wpipe);

* Note that popen(3) 1s a standard library call that provides a convenient
method of taking advantage of the pipe(2) system call.

CS146 127

Section #9

UNIX System Calls

CS146 128

UNIX System Calls

« Kernel primitives

Processes and protection
Memory management
Signals

Timing and statistics
Descriptors

Resource controls

System operation support

« System Facilities

Generic operations

File system

Interprocess communications
Terminals and devices

Process control and debugging

CS146

129

Host & Process Identitiers

A HOST refers to the name of the UNIX installation on which a
program runs.

Each UNIX host associated with it a 32-bit host-1d, and a host name.
These can be set (by the superuser) and returned by the calls:

— 1nt status = sethostid(long hostid);
— long hostid = gethostid();
— 1nt status = sethostname(char *name, int len);

— 1nt len = gethostname(char *buf, int buflen);

On each host runs a set of processes, each of which is identified by an
integer called the process id.

— 1int pid = getpid();

CS146 130

Process Creation & Termination

A new process 1s created by making a logical duplicate of an existing
process:

int pid = fork();
The fork call returns twice, once in the parent process, where pid is the

process identifier of the child, and once 1n the child process where the
pid return value is 0.

A process can overlay itself with the initial memory image of another
program, passing the newly started program a set of parameters:

int status = execve(char *name, char **argv, char **envp);

(Note that including the types above like “char ** are not correct syntax.)
A process may terminate by executing;:

void exit(int status);

returning 8 bits (low-order) of exit status to its parent.
A process may also terminate abnormally.

CS146 131

Termination Reporting

 When a child process terminates, the parent process may elect to
receive information about the event which caused termination of the
child process.

int wait(union waitstatus *waitstatus)

e There are three possibilities:
1) No children
« ERROR
2) One or more dead children (zombies)

 Call returns immediately with the status of one of the zombies chosen at
random (thus burying it).

3) No dead children
» (Call blocks until there is one, then does #2.

* An additional non-blocking call returns the same information as wait,
but also includes information about resources consumed during the
child’s lifetime.

int wait3(union waitstatus *astatus, int options, struct ruasge *arusage);

CS146 132

User & Group ID’s

Each process 1n the system has associated with it a:

— realuserid

— effective user id _

real accounting group id
effective accounting group id
set of access group ids

These are returned by:
int ruid = getuid();
int euid = geteuid();
int rgid = getgid();
int egid = getegid();
int ngrps = getgroups(int gsetsize, int gidset[gsetsize]);

The user and group 1d’s are assigned at login time using:
int status = setreuid(int ruid, int euid);
int status = setregid(int rgid, int egid);
int status = setgroups(int gsetsize, int gidset[gsetsize]);

Unless the caller 1s superuser, ruid/gid must be equal to either the
current real or effective user/group 1d.

The setgroups call 1s restricted to the superuser.

CS146

133

Process Groups

Each process in the system 1s normally associated with a process
group.

The group of processes in a process group is referred to as a job, and
manipulated by system software (such as the shell).

The process group of a process is returned by:
int pgrp = getpgrp(int pid);

When a process 1s 1n a specific process group it may receive software
interrupts affecting the group (causing it to suspend or resume
execution, to be interrupted, or to be terminated).
The process group associated with a process may be changed by:

int status = setpgrp(int pid, int pgrp);
Newly created processes are assigned process 1d’s distinct from all
processes and process groups, and inherit pgrp.
A non-superuser process may set its process group equal to its process
id.
A 1superuser process may set the process group of any process to any
value.

CS146 134

Memory Management

Each process begins with three logical areas of memory called text,
data, and stack.

— The text area 1s read-only and shared.
— The data and stack areas are private to a process.

The stack area 1s automatically extended as needed.

The data area 1s extended and contracted on program request by the
call:

void *newBreak = sbrk(int incr);

The size is actually changed by units of pagesize, whose CPU-
dependent value 1s returned by:

int pagesize = getpagesize();

CS146

135

Time Zones

The system’s notion of the current UTC (Universal Coordinated Time,
formerly Greenwich Mean Time), and current time zone 1s set and
returned by:
#include <sys/time.h>
struct timeval {
long tv_sec; /* seconds since Jan 1, 1970 */
long tv_usec; /* and microseconds */
s
struct timezone {
int tz_minuteswest; /* of UTC */
int tz_dsttime; /* type of dst correction */
s

int status = settimeofday(struct timeval *tvp, struct timezone *tzp);

int status = gettimeofday(struct timeval *tvp, struct timezone *tzp);

CS146 136

Inter-Process Communication (IPC)

Data exchange techniques between processes:
— Data stream exchange: files, pipes, sockets
— Shared-memory model
— Signals
Limitations of files for inter-process data exchange:
— Slow!

— One typically must finish writing a file before the other process
reads it.

— Could create LARGE temporary files.

Limitations of pipes:
— Two processes must be running on the same machine
— Two processes communicating must be “related”

Sockets overcome these limitations but are more complicated(we’ll
cover sockets later).

CS146 137

dup(2) and dup2(2)

newFD = dup(oldFD);
1T newFD < 0) { perror(““dup™); exit(l); }

or, to force the newFD to have a specific number:

returnCode = dup2(oldFD, newFD);
if(returnCode < 0) { perror(“dup2™); exit(1);}

e In both cases, 0 ldFD and newFD now refer to the same file
* Fordup2(), if newFD is open, it is first automatically closed
* Note that dup() and dup2() refer to fd’s and not streams

— A useful system call to convert a stream to a fd 1s
int fileno(FILE *fp);

CS146 138

pipe()

The pipe() system call creates an internal system buffer and two file
descriptors: one for reading and one for writing

Pipes are FIFO(First In, First Out) constructs.

With a pipe, typically you want the stdout of one process to be
connected to the stdin of another process ... this is where dup2 ()

becomes useful.

Usage:
int fd[2], status;
status = pipe(fd);
/* ¥d[O] for reading; ¥d[1] for writing */
If(status < 0) perror(“pipe”);

CS146 139

pipe()/dup2() example

/* equivalent to “sort < filel | uniqg” */
int fd[2];
FILE *fp = fopen(“filel”, “r”);
dup2(fileno(fp), Tileno(stdin));
fclose(fp);
pipe(fd); // populates both fd[0] and fd[1]
1T fork(Q '= 0) { // Parent
dup2(fd[1], fileno(stdout));
close(fd[0]); close(fd[1]); // DON’T FORGET THIS!

execl(“/usr/bin/sort”, “sort”, (char *) 0); exit(2);

} else { // child
dup2(fd[0], fileno(stdin));
close(fd[0]); close(fd[1]);

execl(“/usr/bin/uniq”, “uniqg”, (char *) 0); exit(3);

CS146

140

Section #10

Debugger (gdb)

CS146 141

Debugging

A debugger is a program that runs other programs in a controlled
environment so that you can execute the program line-by-line, view
and modify variables, set breakpoints to stop execution at specified
points in the code, and watchpoints which will stop execution
anywhere when the value of a variable changes. As such, a debugger 1s
perhaps more aptly called a bug finder.

By default, an a.out file contains the symbol tables of all the object
files 1t was made from.

More info, like line numbers and variable types, can be inserted into an
object(.0) file by compiling with debugging turned on (the -g flag for
most UNIX compilers). These extra symbols are conveyed from the
object file to the a.out executable.

CS146 142

ptrace

Debugging is initiated by the ptrace system call.

Generally, the debugger does a fork, and the child enables itself to be
debugged by calling ptrace. Without this, the parent would not be
allowed to debug the child. Then the child exec’s the program to be
debugged.

Using ptrace, the parent can examine and modify any memory location
of the child. By looking at the child’s symbol table (in the a.out file),
the parent can examine the child’s memory that corresponds to
variable names.

CS146 143

How ptrace works

A process that has executed ptrace(0) (e.g. the child of the debugger
before 1t exec’s the program) treats signals differently than a normal
process.

It also has a writable text segment (text segment is usually readonly)

[t executes normally until 1t receives a signal, at which time it stops,
and the parent 1s notified via the wait system call.

The parent may then use ptrace to examine and modify the child’s
memory (including the text segment).

The child remains stopped until the parent orders it to continue by
calling ptrace. The parent can clear the signal before continuing the
child, so the child never actually “sees” the signal unless the parent
wishes fit.

CS146

144

Breakpoints

Since the parent can modify any memory location, it can change the
code (text segment) of the child.

For example, before (re)starting the child, the parent can insert code to
generate a SIGSEGYV at a specific location, for the sole purpose of
stopping the child at the location.

This called “inserting a breakpoint.”

When the child executes that code, it gets a SIGSEGV, causing it to
stop. The parent can then examine the child. To clear a breakpoint, the
parent re-writes the original code before ordering the child to continue.

CS146 145

Examples

$ gcc -g foo.c # using ““-ggdb” adds even more iInfo
$ gdb a.out

(gdb) break main

Breakpoint 1 at 0x10453; file foo.c; line 9

(gdb) cond 1 (argc > 1)

(gdb) run bar

<break in function main(), line 9 of foo.c; argc=2,
argv=<“a.out”, “bar”>

(gdb) print argc
$1 = 2

(gdb) print argv|1l]
$2 = “bar”

(gdb) whatis argc
type = iInt

(gdb) cont
(continuing)

CS146 146

Stack Frames

A stack frame contains all the information pertinent to a function call -
local (automatic) variables, parameters, return address, etc.

A new stack frame is created each time a function is called at run time
and discarded when the function returns.

After hitting a breakpoint, the debugger can examine the current stack
frame (using ptrace), or any stack frame “above” it.

The stack frame above the current one belongs to the function that
called the current one, etc.

The debugger can 1dentify the function that called the current function
by searching for the function that contains the return address in the
stack frame.

CS146 147

Other debugger commands

backtrace - show the current list of stack frames

step - execute a single piece of code (could be part of a line),
descending into functions.

next - execute a single line, call but do not descend into functions.
[return] - re-execute the previous debugger command.
help - get online help.

gdb commands have shortforms(bt, s, n, b, p) which save on typing.

Note that gdb 1s the GNU Debugger used for debugging programs
written using gee/g++ (the GNU C & C++ compilers). The classic
compiler program cc (usually pre-ANSI K&R C) uses the dbx
debugger. dbx has a different set of commands. Some systems have cc
configured to point to gcc or some other vendor compiler.

CS146 148

Section #12

X Window System

CS146 149

What 1s X?

e The X Window System (it can correctly be called X11 or X) 1s all of
these:

— a protocol between two processes

— a system that defines window operations, low-level graphical
rendering commands, and input request commands

— a device-independent, portable window system

— a network-transparent window system

CS146 150

X History

At one time there was the “W” windowing package developed at
Stanford (Paul Asente).

X was developed jointly by MIT’s Project Athena and Digital
Equipment Corporation, with others also contributing.

X Version 10 Release 4 (X10.4) was released in 1986 but was soon
superceded.

X11R1 was released in Sept 1987.

The current version 1s X11R6 but many are still using X systems based
on X11R4 or X11RS.

X 1s a network-based windowing system. It was designed to work
between many different computers.

CS146 151

X Servers

* The X Server is program that controls some of the “limited resources”
on a machine: the display, keyboard, and pointer(eg mouse).

e A server:

Allows access to the display by multiple clients
Interprets network messages from clients
Forwards user input to clients

Handles [graphics] requests

Allocates resources

Maintains complex data structures (windows, cursors, fonts,
graphics contexts)

« An X Server is somewhat unusual because it defines a display to have
one or more SCreens.

CS146 152

X Clients

An X Client 1s any application that connects to the X server. Any
program that uses the screen or gets information from the user is an X
client.
A client:

— Makes requests to the server (eg draw a line)

— Processes messages from the server (usually user events)

X Server Client

Requests

Workstation User input

CS146 153

X Client/Server Model

(requests)

Server

Queue

| Network :I

Server

Application T

Xlib

Queue

L

Network

CS146

(events)

154

X Application Architecture

« Xt-based applications can deal directly with all the layers of X.
— the X library
— the Intrinsics
— and the widget set.
« Xlib-based applications can deal directly with the X library layer of X
only.
* Motif 1s an Xt-based widget toolkit.

Application

—— Xt-based applications
Motif (widget set)

Xt Intrinsics

Xlib

Xlib-based applications
OS and networking

Hardware platform

CS146 155

Widgets

When using the Xt Toolkit, the ‘things’ in the toolkits are widgets.

— A widget 1s an interface object that conforms to the Toolkit Intrinsics API.
It 1s a user interface building block; it has a particular job and knows
how to do it.

Examples of widgets:

— List

— Button

— Form/Layout

— Text Box

— Scrollbar

— Label

CS146 156

X Window System Architecture

Client

Application

Toolkit

Xlib

A

Client Client
Application (Window Manager)
Xlib Xlib
X Window System
protocol requests are
sent from Clients
X Server

Device Drivers

Events and replies are

passed back to Clients

CS146

A

A\ 4

Workstation

N

157

Window Manager

e The window manager 1s just another X Client written using the X
library. It is given special authority by convention to control the layout
of windows on the display.

CS146 158

XTerm

Xterm 1s just another client app. It is NOT a shell.

An Xterm creates a virtual terminal that a shell believes to be a

character terminal like any other physical terminal hooked up via a
serial cable.

CS146 159

Section #13

Sockets, select(2), misc.

CS146 160

Sockets

Sockets are an extension of pipes, with the advantages that the
processes don’t need to be related, or even on the same machine.

A socket 1s like the end point of a pipe -- in fact, the UNIX kernel
implements pipes as a pair of sockets.

Two (or more) sockets must be connected before they can be used to
transfer data.

Two main categories of socket types ... we’ll talk about both:
— the UNIX domain: both processes on same machine

— the INET domain: processes

CS146 161

Connection-Oriented Paradigm

SERVER CLIENT
Create a socket Create a socket
socket() socket()

7 7

Assign a hame to the socket
bind() @

Establish a queue for connections

listen()
Extract a connection from the queue Initiate a connection

accept() <j] %wmmw4[£> connect()

CS146

162

Multiplexed 1/O

* Consider a process that reads from multiple sources without knowing
in advance which source will provide some input first

e Three solutions:

fork a process for each input source, and each child can block on
one specific input source (can be hard to coordinate/synchronize)

alternate non-blocking reads on mput sources (called “polling”,
and 1t’s wasteful of CPU)

use the select() systemcall ...

CS146 163

select(2)

e Usage:
#include <sys/time.h>
#include <sys/types.h>
int select(Int nfds,
fd set *readfds,
fd set *writefds,
fd_set *exceptfds,
struct timeval *timeout);
« where the three ¥d_set variables are file descriptor masks

e Td_set s defined in <sys/select.h>, which in included by
<sys/types.h>

CS146 164

select(2) cont.

The first argument (NFdS) represents the number of bits in the masks
that will be processed. Typically, this 1s 1 + the value of the highest fd
The three fd__set arguments are bit masks ... their manipulation is
discussed on the next slide

The last argument specifies the amount of time the select call should
wait before completing its action and returning:

— 1f NULL, select will wait (block) indefinitely until one of the file
descriptors 1s ready for 1/0
— if tv_sec and tv_usec are zero, select will return immediately
— 1f timeval members are non-zero, the system will wait the specified
time Or until a file descriptor 1s ready for 1/0
select() returns the number of file descriptors ready for /0

CS146 165

“FD_” macros

Useful macros defined in <sys/select.h> to manage the masks:

void FD ZERO(fd_set &fdset);

void FD_SET(int fd, fd _set &fdset);
void FD_CLR(C int fd, fd set &fdset);
int FD _ISSET(int fd, fd _set &fdset);

Note that each macro is passed the address of the file descriptor mask

CS146 166

select(2) example

#include <sys/types.h>

fdset rmask;

int fd; /* a socket or fTile descriptor */

/* use socket() to assign fd to a socket */

FD ZERO(&rmask);

FD SET(fd, &rmask); FD_SET(fileno(stdin), &rmask);

while(l) {
select(fd+1, &rmask, NULL, NULL, NULL);
1IT(C FD_ISSET(fileno(stdin), &rmask))
/* read from stdin */
1T FD_ISSET(fd, &rmask))
/* read from descriptor fd */
FD SET(fd, &rmask); FD_SET(fileno(stdin), &rmask
);
+

CS146 167

Section #13 A

Miscellaneous

(can be skipped 1f short on time)

CS146 168

Creation & Removal

Directory creation and removal:

int status = mkdir(char *path, int mode);
int status = rmdir(char *path);

File creation:

#include <sys/file.h>
int fd = open(char *path, int flags, int mode);
mode:
O RDONLY 000
O WRONLY 001
O RDWR 002
O NDELAY 004 /* non-blocking™*/

Device creation

int status = mknod(char *path, int mode, int dev);

File removal(except for directories):

int status = unlink(char *path);

CS146

169

Process Priorities

The system gives CPU scheduling priority to processes that have not
used CPU time recently. Well, sort of.

Process scheduling is a complex dance to try to second-guess the best
allocation of CPU time to jobs to provide good interactive response
and good throughput.

It 1s possible to determine the current priority (an integer in the range
-n to +n), or alter this priority by:

#define PRIO PROCESS 0
#define PRIO PGRP 1
#define PRIO_USER 2

int prio = getpriority(int which, int who);

int status = setpriority(int which, int who, int prio);

CS146 170

The resources used by a process are returned by:

Resource Utilization

#include <sys/resource.h>

int status = getrusage(int who, struct ruasge *rusage);

The who parameter specifies whose resource usage 1s to be returned:

those of the current process, or those of all terminated children of the
current process.

Resource usage information is returned concerning;:

user time

system time

max core resident set
data mem size

page reclaims

page faults

swaps

block inputs

signals received

CS146

171

Resource Limits

Resource usage may be controlled by:
#include <sys/resource.h>

struct rlimit {
int rlim_cur;
int rlim_max;

}
int status = getrlimit(int resource, struct rlimit *r);

int status = setrlimit(int resource, struct rlimit *r);

Only the superuser can raise rlim_max.

Other processes may alter rlim_cur within the range from 0 to
rlim_max or (irreversible) lower rlim_max.

The various resources whose limits may be controlled in this manner
are:

- milliseconds of CPU time - maximum stack segment size
- maximum file size - maximum core file size
- maximum data segment size - maximum resident set size

CS146 172

System Support

The UNIX file system name space may be extended by:
int status = mount(char *blkdev, char *dir, int ronly);

A device may be made available for swappng or paging by:
int status = swapon(char *blkdev, int size);

A file system not currently being used can be unmounted by:
int status = unmount(char *dir);

All system cache buffers may be scheduled to be cleaned by:
sync();

The system may be rebooted by:
reboot(int how);

The system optionally keeps an accounting record in a file for each
process that exists on the system. The accounting can be enabled to a

file by:

int status = acct(char *path);

CS146 173

Descriptors

» Descriptors are used to access resources such as files, devices, and
communication links.

« A process access its descriptors indirectly through its own descriptor
reference table, whose size 1s given by:

int nds = getdtablesize();

The entries 1n this tables are referred to by integers in the range
0 .. nds-1.

CS146 174

Managing Descriptors

* A duplicate of a descriptor reference may be made by:
int new = dup(int old);
The new descriptor reference is indistinguishable from the old one.

* A copy of a descriptor reference may be made in a specific slot by:
int status = dup2(int old, int new);
This causes the system to deallocate the descriptor reference count

occupying slot new, if any, replacing it with a reference to the same
descriptor as old.

* A descriptor reference deallocation may also be performed by:
int status = close(int old);

CS146 175

Reading File Attributes

Detailed information about the attributes of a file may be obtained wit
the call:

#include <sys/stat.h>

int status = stat(char *path, struct stat *stb);

int status = fstat(int fd, struct stat *stb);

The stat structure includes:

« file type

* protection

* ownership

e access times

e size

 hard link count
If the file 1s a symbolic link, the status of the link itself may be found
by:

int status = Istat(char *path, struct stat *stb);

CS146 176

Modifying File Attributes

Newly created files are assigned the user ID of the process that created
it, and the group ID of the directory in which i1t was created.

Ownership can be changed by:
int status = chown(char *path, int owner, int group);

int status = fchown(int fd, int owner, int group);

The protection attributes associated with a file may be changed by:
int status = chmod(char *path, int mode);
int status = fchmod(int fd, int mode);

The access and modify times on a file may be changed by:
int status = utime(char *path, struct timeval *tvp[2]);

CS146 177

Links & Renaming

Links allow multiple names for a file to exist. They exist
independently of the file linked to.

Two types of links exist:
Hard Links

— A reference counting mechanism that allows files to have multiple names
within the same file system.

— A hard link insures the target file will always be accessible even after its
original directory entry is removed.
int status = link(char *pathl, char *path2);
Symbolic Links
— Cause string substitution during the path name interpretation process.
— A symbolic link does not insure that the target file will be accessible. In
fact, a symbolic link to a non-existent file can be created.
int status = symlink(char *path1, char *path2);
int len = readlink(char *path, char *buf, int size);

Atomic renaming of file system resident objects i1s done by:

int status = rename(char *old, char *new);

CS146 178

Extension & Truncation

Files are created with zero length and may be extended by writing to
them.

While a file 1s open the system maintains a pointer into the file
indicating the current location in the file associated with the descriptor.
This pointer may be moved by:

#include <sys/file.h>

int oldoffset = Iseek(int fd, int offset, int whence);

#define SEEK SET 0

#define SEEK CUR 1

#define SEEK _END 2

Files may have “holes” in them: void areas where data has never been
written. Holes are treated as zero-valued bytes.

Files may be truncated by:
int status = truncate(char *path, int newlen);

int status = ftruncate(int fd, int newlen);

CS146 179

Checking Accessibility

* A process running may interrogate the accessibility of a file to the real
user. This may be of particular interest to processes with different real
and effective user 1ds.

#include <sys/file.h>

int accessible = access(char *path, int how);
#define F OK 0

#define X OK 1

#define W_OK 2

#define R OK 3

» The presence or absence of advisory locks does not affect the result of
access.

CS146 180

Locking

The file system provides basic facilities that allow cooperating
processes to synchronize their access to shared files.

The system does not force processes to obey the locks; they are of an
advisory nature only.

Locking is performed after on open call by:
#include <sys/file.h>
int status = flock(int fd, int how);
#define LOCK_SH 1 /* shared lock */
#define LOCK_EX 2 /* exclusive lock */
#define LOCK_NB 3 /* non-blocking */
#define LOCK_UN 4 /* unlock */

If an object 1s currently locked by another process when an flock call 1s
made, the called will be blocked until the current lock owner releases
the lock, unless “how” 1s LOCK NB, in which case the call is non-
blocking and informational only.

CS146 181

Section #14

Signals

CS146 182

Signals

« The system defines a set of signals that may be delivered to a process.

* A process may do one of three things with a signal:
— Handle

* The process specifies a handler function that is to be called on receipt
of the signal. When the function returns, control is returned to the
point in the program at which the signal occurred.

— Block

« Set mask to prevent delivery of signal until unmasked.
— Ignore

« If the signal occurs, no action is taken.
— Default

« If the signal occurs, the UNIX default action (which varies from
signal to signal) is taken. This may be one of:

— Do nothing.
— Process termination (with or without core dump)

— Process suspension.

CS146 183

The various types of signals are (/usr/include/signal.h):

SIGFPE
SIGILL

SIGSEGV

SIGBUS

SIGIOT

SIGEMT

SIGTRAP

SIGINT

SIGQUIT

SIGHUP

SIGTERM
SIGKILL
SIGUSR1,SIGUSR2

SIGALRM
SIGVTALM
SIGPROF
SIGIO
SIGURG
SIGSTOP
SIGTSTP
SIGTTIN
SIGTTOU
SIGCHILD
SIGXCPU
SIGXFSZ

Signal Types

Floating point exception

Illegal instruction

Attempting access to addresses outside the currently assigned areas of memory.
Accesses that violate memory protection constraints.

/O trap

Emulation trap

Single-step trap

Interrupt from keyboard (*C)

Same as SIGINT but with a core dump ("))

“Hang up” - for graceful process terminations.

Terminate by user or program request.

Same as SIGQUIT but cannot be caught, blocked, or ignored.
User defined signals.

Alarm — timeout of a timer (used by alarm(2)) (wall-clock time)
Alarm-timeout (CPU time)

Expiration of interval timers.

If requested, occurs when I/O possible to a descriptor.
Urgent condition.

Causes suspension. Cannot be caught.

Suspend by user request.

Suspend because input attempted from terminal.
Suspend because output attempted to terminal.

Child process’ status has changed.

Occurs when a process near its CPU time limit.

Occurs when limit on file size creation has been reached.

CS146

184

Handling Signals

« A process changes the way a signal 1s delivered with:
#include <signal.h>
struct sigvec {
int (*sv_handler)(int signo, long code, struct sigcontext *scp);
int sv_mask;
int sv_flags;
s
int status = sigvec(int signo, struct sigvec *sv, struct sigvec *csv);
 Possible values for sv_handler are a function, SIG_IGN, or SIG_DEF.
e sv_mask specifies which additional signals are to be masked on receipt
of this one (implicitly includes signo).
« Sv_flags indicate whether system calls should be restarted if the signal

handler returns, and whether the signal handler should operate on the
normal stack or an alternate stack.

CS146 185

Signal Delivery

When a signal condition arises for a process, the signal 1s added to a
set of signals pending for the process.

If the signal is not currently blocked by the process then it will be
delivered.

Signal delivery involves:

1) Adding the signal to be delivered and those signals specified in the
sv_mask to a set of those masked (ie., blocked) for the process.

2) Saving the current process’ context
3) Placing the process in the context of the signal handling routine.

The context of the signal handler 1s so arranged that if the function
returns normally the original signal mask will be restored and the
process will resume execution in the original context.

CS146

186

Signal example

#include <stdio.h>

#include <stdlib.h>

#include <sys/signal_h>

int 1=0;

void quit(int sigNum) {
fprintf(stderr, “\nilnterrupt (signal=%d, 1=%d)\n”’,
sigNum, 1);

exit(123);
+
void main(void) {
signal (SIGINT, quit);
signal (SIGTERM, quit);
signal (SIGQUIT, quit);
while(1)
it (1++ % 5000000 == 0) putc(“.’, stdout);

CS146 187

Blocking Signals

Blocked signals are added to the mask.

If masked signals occur then delivery is delayed until the signals are
unblocked or unmasked.

To add a set of signals to the mask:
— long oldmask = sigblock(long mask);

To set the mask:

— long oldmask = sigsetmask(long mask);

To mask a set of signals, wait for an unmasked signal, and then restore
the original mask:

— 1int signo = sigpause(long mask);

CS146 188

Sending Signals

» Signals may be sent either from the keyboard via the terminal driver or
from another process:

— 1int status = kill(int pid, int signo);
— 1nt status = killpgrp(int pgrp, int signo);

« Unless the process belongs to root (the superuser), it must have the
same effective user 1d as the process receiving the signal.

« Signals are also sent implicitly from a terminal device to the process
group associated with the terminal when certain input characters are

typed (like ~C, A\, AZ, NY).

CS146 189

Signal Stacks

« For applications that change stacks periodically, signal delivery can be
arranged to occur on a stack that is independent of the one in use at the
time of signal delivery.

struct sigstack {
void *ss_sp;
int ss_onstack;
3

int status = sigstack(struct sigstack *ss, *oss);

CS146 190

Interval Time

* The system provides each process with three interval times:

— REAL - Real time intervals. SIGALRM 1is delivered when this timer
expires.

— VIRTUAL - Virtual time runs only when the process is executing user
code. SIGVTALRM is delivered when this timer expires.

— PROF - Profiled time runs when the process is executing user code or
system code on behalf of that process. SIGPROF is delivered when this
timer expires.

e A timer is set or read by:
struct itimerval {
struct timeval it_interval;
struct it_value; /* current value */
3
int status = getitimer(int which, struct itimerval *value);

int status = setitimer(int which, struct itimerval *v, struct itimerval *ov);

CS146 191

Execution Profiling

Execution profiling means gathering statistics on how long a process
executes particular pieces of code.

Profiling is turned on by:
— 1nt status = profil(void *buf, int bufsize, int offset, int scale);

This begins sampling of the program counter, with statistics
maintained in the user provided buffer.

CS146 192

Advanced Shell Stuft

Fork+exec are expensive; avoid shell loops that fork processes each iteration, eg:
foriin *; do if [-s "$i"]; then Is -1 "$i"; fi; done # Is non-zero-sized files
VS.
foriin *;do [-s "$1"] && echo "$i"; done | xargs Is -1 # bit better
VS.
Is -1 | awk '$5{print}' # best: only two processes regardless of #files.

Large-scale renaming (eg., for backup):
for11in *.c; do b="basename "$1" .c’; mv "$1" "$b-bak.c"; done
VS.
Is *.c | sed 's/\.c$//' | while read b; do mv "$b.c" "$b-bak.c"; done
VS.
Is *.c | awk '{sub("\.c$",""); printf "mv %s.c %s-bak.c\n",$0,$0}'

CS146 193

Common Unix Commands

Is options: -1, -a, -A, -t, -S, -1, -F, -C

less(1), wc, cp, mv (rename), with options -1, -f (NO
BACKUP!)

cd, pwd, mkdir, rmdir, rm (-rf), which, du, df

When using ““rm™, be careful with accidental spaces!!
“rm—rf*_.c”

basic shell globbing vs. regular expressions

Filters: [ef]grep, sed, tr, cut, diff (incl. stdin as *-”)
Editors: vi/vim, emacs

People + Processes: who, w, last, ps, uptime, top, kill,
time, date

Archivers: (un)zip, tar, gzip, xz, 7zip (slow but best
compression)

CS146

194

awk: the Swiss Army Knife of filters

Awk 1s a complete programming language designed
for line-by-line processing of text files. It features
regular expressions, math, loops, functions with
parameters and return values, string manipulation...
Most Unix filters could be implemented in awk:

e cat *.c 2> awk {print} *.c

e grep ‘[0-9]1G$” > awk ‘/[0-9]G$/{print}’

e cut—f2 > awk ‘BEGIN{IFS=“\t"Y{print $2}’

e w¢ 2> awk ‘{w+=3$NF; c+=Ilength($0)+1}
END{print NR,w,c}’

CS146 195

awk: Basic Outline

C-like syntax, including printf
Like any Unix filter, 1t processes text files line-by-line
INPUT: filenames, if given; otherwise standard mput
Code blocks are executed on any line that “matches” the
Boolean expression immediately preceding it:

NF==7 {print “this line has 7 fields”}

/foo/ {print “this line has a foo in it”}

NF==1 && 1*$1>0{y=cos($1); print y}

{print “empty Boolean is always true”}

Entire awk program is given on awk’s command line as the first
argument (previous slide examples)

CS146 196

awk: built-in variables and functions

* Lots of built-in variables, such as:
* NF = number of whitespace-separated “fields” on this line
* fields on the current line are $1, $2, $3,..., SNF
 current line number = NR (number of “records”)
* ARGIND = integer argument index for current input file
 FILENAME = name of current input file (at ARGIND)
« ENVIRON[“HOME”] = your HOME directory
 PROCINFO[“pid”’] =2 pid of awk

e Lots of built-in functions, such as:
* length(s): length of a string, or #elements 1n an array
* Math: basic + - * / % 1nt(), but also floating point:

* sin(), cos(), tan(), exp(), log(), atan2(), sqrt(), rand(),
srand(), sort(), index(), [g]sub(), and many more

CS146 197

awk: user-defined functions

function fact(k) { # recursive factorial function
If(k<=0) return 1;
else return k*fact(k-1);
}
function max(a,b) {if(a>b) return a; else return b;}
function abs(x) {if(x<0) return —x; else return Xx;}
function ASSERT(condition, errMsg) {
If(!condition) {
print errMsg > “/dev/stderr”
exit(1)

CS146

198

awk data types, variables, etc

* Data types: strings, floats; associative arrays

0 and the empty string evaluate to “false”
variables default to string type unless arithmetic 1s performed:
o “I”1=%017, but “1” == 1*701”, because the “01” 1s
automatically “promoted” to number when multiplied
variables are created at the first reference, even 1f not assigned
a value (in which case its value becomes the empty string)
 This applies to array elements too, so DO NOT check to
see 1f an element exists with “if(array[1])”, because this will
cause array[1] to come 1nto existence (but empty).

* Instead, use “if(1 in array)”, which doesn’t create anything.
All arrays are associative, even 1f empty. To force a variable
name to become an array even if you want it to be empty:

e delete A; A[0]=1; delete A[O];

* Ais now explicitly an aggay but with zero elements.

Awk #2: usetul syntax/functions

if(element in array); also for(element in array)

Careful of automatic creation: don’t do if(array[element])

index, length, sub, gsub, isarray, (s in a)

All variables are GLOBAL except function parameters... but you
can declare more parameters than you actually expect... all such
extra parameters become local variables. (I know... yuck), eg:

exp(x) using Taylor series; call it with just (X)
function myExp(X, term, sum, k) { # local vars
term=1; sum=0;
for(k=1; k<100; k++) { # 100 terms
sum += term
term *= x/k

}

return sum,;

} CS146 200

awk examples

Personal examples of mine:

* dog(1): like cat(1), but accepts single .’ as EOF

* whoson(1): one-line solution to previous Ass’t question

* process_tree, find-init

* storing edge lists + computing degrees of nodes in graphs.

CS146 201

Section #15

Concurrency (beyond 1CS537)

Process Synchronization

CS146 202

Circular Bufters

« A circular buffer is a method of implementing a first-in-first-out
(FIFO) queue.

« [tems are inserted into the queue at position in, and fetched from
position out.

* The buffer “wraps around” at the endpoints, so the position after N-1 1s
position 0.

 These are also referred to as bounded buffers because no more than N
1items can be held at one time.

char buffer[N];

int in=0, out=0, used=0; char Fetch(void) {

void Insert(char c) { if (used == 0)
if (used == N) ERROR(“buffer underflow!”);

ERROR(“buffer overflow!™); char nextc = buffer[out];

buffer[in] = c; out=(out+1) % N;
in=(in+1)%N; --used;
++used; return nextc;

! j

CS146 203

The Producer-Consumer Problem

* Consider what happens 1f two processes have concurrent read-write
access to the buffer.

e The Producer process inserts things into the buffer.
e The Consumer process removes things from the buffer.
* Unless we’re very lucky, there will be problems with the following.

/* Producer Process */ /* Consumer Process */

char val; while(1) {

while(1) { next val = Fetch();
val = produce item(); consume _item(next val);
Insert(val); }

CS146 204

Critical Sections Again

Recall...

A critical section is an area of code or data that depends on there being
only one process inside at any one time for correct operation to take
place. (e.g. a linked-list data structure or a circular buffer)

Code that modifies a shared variable usually has the following form:
ENTRY SECTION
Critical Section
EXIT SECTION

Remainder Section

Entry Section - The code that requests permission to modify the shared
variable.

Critical Section - The code that modifies the shared variable.
Exit Section - The code that releases access.

Remainder Section - The remaining code.

CS146 205

Atomic Operations

« An Atomic Operation is an operation that, once started, completes in a
logically indivisible manner. Most solutions of the critical-section
problem rely on some form of atomic operation.

* On a machine with a single CPU, individual machine instructions are
often atomic but necessarily so.

 Note that:
value = 5;

1s a C statement and probably translates into several machine
Instructions.

CS146 206

Two-Process Mutual Exclusion
(Wrong Algorithm #1)
« Assume there are two processes, 0 and 1.

 We will have a variable called turn which 1s -1 if it’s nobody’s turn,
otherwise 1t’s 0 or 1.

 When a process wants to enter its critical section, it checks to see 1f
turn 1s -1, then sets turn to itself.

« Both processes execute the same code below except the have different
values of 1d.

shared int turn = -1;

/* Process 0 */ /* Process 1 */
while(1) { while(1) {
while(turn !=-1) /* busy wait */; while(turn !=-1) /* busy wait */;
turn = 0; turn = 1;
/* critical section */ /* critical section */
turn = -1; turn = -1;
/* remainder section */ /* remainder section */
))

CS146 207

Two-Process Mutual Exclusion
(Wrong Algorithm #2)

« Idea: Don’t be greedy and take control. Be courteous by waiting for it
to be given to you.

local const int 1d; /* 1nitialized to O or 1, depening on which process */

shared int turn = 0; /* 1nitialize to one of them */

/* Process 0 */ /* Process 1 */
while(1) { while(1) {
while(turn !=id) /* wait */; while(turn != id)/* wait */;
/* critical section */ /* critical section */
turn = 1-1d; turn = 1-1d;
/* remainder section */ /* remainder section */
))

CS146 208

Two-Process Mutual Exclusion
(Wrong Algorithm #3)

e Idea: Check to see if the other process wants to enter its critical
section. If not, then it’s OK to enter.

* When you want to enter, turn on a flag.

shared int want[2] = { 0, 0 };
local const int 1d = /* initialized to 0 or 1 for process 1d*/

/* Process 0 */ /* Process 1 */
while(1) { while(1) {
want[id] = 1; want[id] = 1;
while(want[1-1d]); while(want[1-1d]);
/* critical section */ /* critical section */
want[id] = 0; want[id] = 0;
/* remainder section */ /* remainder section */
b)

CS146

209

Two-Process Mutual Exclusion

Dekker first solved the problem in the early 1960’s but his solution
allowed starvation to occur in the presence of contention.

Peterson came up with a solution in 1981 that was simpler and didn’t
suffer from starvation problems.

Remember we are only assuming memory interlock for these
algorithms.

The 1dea combines the notions from the last two incorrect algorithms.
When you want to enter your critical section, turn on your flag.

Then offer turn to the other process. If it wants it, it gets it; otherwise
you can take it.

CS146 210

Peterson’s Algorithm

shared int want[2] = { 0, 0 };
shared int turn =0;
local const int 1d = /* initialized to O or 1 for process number */

/* Process 0 (1d ==0) */ /* Process 1 (1d==1)*/
while(1) { while(1) {
want[id] = 1; want[id] = 1;
turn =1 - 1d; turn =1 - 1d;
while(want| 1-1d] && turn == 1-1d); while(want| 1-1d] && turn == 1-1d);
/* critical section */ /* critical section */
want[id] = 0; want[id] = 0;
/* remainder section */ /* remainder section */
b b

CS146

211

The Test-and-Set Instruction

Things are much easier when the hardware provides a mechanism to
implement mutual exclusion without the need for Peterson’s algorithm.

Test-and-Set 1s one such machine instruction that 1s available on some
processors. It defined as an atomic operation that implements the
following logical function:

int TestAndSet(int *p) {
int value = *p;
*p=1;

return value;

In assembly language, entering a critical section might look like:
loop: tset busy
branch-if-zero critical section

jmp loop

CS146 212

Mutexes

We have seen how two processes can ensure mutual exclusion.

Regardless of the implementation, it is often sufficient to assume the
existence of a high level locking facility with a simple call interface.

— 1nt MutexBegin(Boolean block); // block, or return FALSE if
you’re not allowed to enter your critical section

— void MutexEnd(void);

The above functions would be suitable for a single global lock.
[t 1s often better to organize things into localized locks.

CS146

213

Process Synchronization

* Locking critical sections using mutexes works well for short
operations. However it doesn’t work well for unbounded waiting.

e Recall the Producer/Consumer problem. If the consumer finds an
empty buffer, it must wait until the producer can add to the buffer. The
consumer doesn’t know how long it has to wait. With only
MutexBegin/MutexEnd, 1t would have to spin in a busy loop to keep
checking for more work.

« Condition Variables are used to sleep for some event or condition and
wake-up when that condition 1s fulfilled.

CS146 214

Semaphores

A semaphore provides two operations:
— Wait (down, P, lock)
— Signal (up, V, unlock)
Dijkstra proposed the semaphore concept in 1965.

P and V are from the Dutch words passeren (to pass) and vrygeven (to
release).

A semaphore, s, 1s a non-negative integer that 1s atomically updated
using the P and V primitives. Note the fact that it is an integer with the
special update properties.

An analogy to marbles in a bowl. s 1s the number of marbles, P(s) tries
to take a marble (it may have to wait), and V(s) puts one marble back
(it might wake up another process doing a P(s)).

CS146 215

Implementing Semaphores

void Signal(int *s) // up, unlock void Wait(int *s) // down, lock
{ {
MutexBegin(); int blocked = true;
*s=*s+ 1; do
MutexEnd(); {
} MutexBegin();
if (*s > 0)
{
Exercise: *g=*g_[;
MutexBegin() and MutexEnd() can blocked = false;
be implemented using semaphores §
just as semaphores can be MutexEnd();
implemented using mutexes. } while(blocked);
Try to do it. h

CS146 216

Other Primitives

We have seen Mutexes and Semaphores.
Other terms you will hear are Monitors and Message Passing.

Message Passing works by having each thread/process send messages
back and forth. Receiving a message 1s usually a blocking operation.

Monitors are a higher level abstraction than message passing and
semaphores. They associate a set of methods to the resource or data
that requires access control.

CS146 217

Programming Approaches

* Pipes
— We’ve seen this in the shell. It 1s essentially a chain of
producer/consumer pairs.

e Work Crew

— A group of worker processes grab work from a pool of jobs.

 Client/Server

— A server process serves the requests of the client processes.
(Remember the X Window System?)

CS146 218

Section #16

UNIX Memory Management

CS146 219

Memory Management

The operating system must manage the memory resources of the
system. It should try to do so efficiently.

With virtual memory systems, it is up to the operating system to
manage the allocation of information(code & data) between main
memory (core memory, RAM, physical memory) and secondary
storage (usually disks or servers on the network).

The memory management subsystem in the kernel works with the
Memory Management Unit (MMU) hardware.

CS146 220

Virtual Memory

Each application is given the illusion that it has a large main memory
at 1ts disposal.

Each process has a process address space which maps to the physical
address space of the computer.

Memory management and virtual memory advantages:

The ability to run programs larger than physical memory
Run partially loaded programs, thus reducing program startup time.
Allow more than one program to reside in memory at one time.

Allow sharing. For example, two processes running the same program
should be able to share a single copy of the code in memory.

Access control. One process shouldn’t be able to trample over another
process’ memory.

CS146 221

Demand Paging

Demand paging systems divide the physical and process address
spaces into fixed-size pages (eg 4k or 8k).

Each page is brought into or out of main memory as needed.

Note that the page size is a power 2. Therefore, for any address, you
can determine the page number and page offset with simple bit
operations (shift or mask). (eg With 4k pages, 0xfe53c234 1s page

Oxfe53c and page offset 0x234.)

P1

P2

P3

Physical -
[1IN-Ccorc

Memory

——— not in-core

CS146 222

Swapping Pages

Swapping used to refer to swapping whole processes between disk and
memory. With demand paging, we only send individuals pages of
memory to the swap space (on disk).
Dirty pages are memory pages modified so that they are irreplaceable
now. Code pages are never dirty because they are read-only.

Uninitialized data pages

zero-filled on first access

Executable
File

Text and initialized‘

data

Stack and heap pages

Dirty pages saved

before freeing

A\ 4

Main
Memory

allocated on first access

CS146

Subsequent faults on

outswapped pages

Swap Area
on
Disk

223

Copy-On-Write

Copy-on-Write (COW) 1s a technique to save work on a fork.
Fork() is VERY often followed immediately by an exec() call.

Therefore, it would wasteful to make a full duplicate of the process in
memory when it forks.

The 1dea 1s to share all data pages until data i1s changed by either the
parent or child (before a page is touched, the parent and child can share
the page because it 1s 1dentical for both of them).

When the page 1s written-to, the kernel intercepts the operation and
makes a copy of the page. Now parent and child have their own copies.

Why don’t code pages undergo Copy-on-Write?

CS146 224

mmap()

mmap() maps a file (usually a disk file or /dev/zero) into a buffer in
memory, so that when bytes are fetched from the buffer the
corresponding bytes of the file are read

Multiple processes can map the same file simultaneously.
Usage:
caddr_t mmap(caddr_t addr, size t len, iInt
prot, int flag, Int filedes, off _t off
)
— addr and off should be set to zero,
— len is the number of bytes to allocate

— prot s the file protection, typically
(PROT_READ|PROT_WRITE)

— Flag should be set to MAP__SHARED to emulate shared memory
— Ti1ledes is a file descriptor that should be opened previously

CS146 225

mmap() example

char *ShareMalloc(iInt size)
{
int fd;
char *returnPtr;
1f((fd = open("/tmp/mmap', O _CREAT | O _RDWR, 0666)) < O
)

Abort("Fairlure on open™);
1T(Iseek(fd, size-1, SEEK SET) == -1)
Abort("Farlure on lIseek"™);
iIfC write(fd, ™, 1) 1=1)
Abort("Farlure on write");
returnPtr = (char *) mmap(0, size, PROT_READ|PROT _WRITE,
MAP_SHARED, fd, 0);
IT(returnPtr == (caddr_t) -1)
Abort("Farlure on mmap");
return(returnPtr);

CS146 226

Section #17

Source Code Revision Control

CS146 227

Source Code Management

Projects can involve many files that evolve over a long period of time.

It 1s often necessary to keep track of the versions of the files and
control changes from several people making updates.

Many different systems: local-only (RCS—Revision Control System),
or local+remote:

— SCCS—Source Code Control System

— CVS—~Concurrent Versions System

— Preforce, git, etc.

Source code management can be just as useful for documentation,
reports, assignments, html files, and system configuration files.

CS146 228

Advantages of Revision Control

A good revision control system manages your changes for you.

Many people make backup copies of their files or use filename
conventions to handle versioning. These methods are prone to error.
Note that a revision control system 1s NOT a replacement for a backup
system!

A revision control system keeps your changes, your comments about
those changes, and the full history of your file in one place in an easily
retrievable form, and does it efficiently because it can store just the
differences instead of full copies of each version.

CS146 229

Section #18

Security

CS146 230

Security Topics

« Computer security should be a concern of everyone. Systems
programmers need to be aware of 1t even more than most because they
are more likely to be working on servers in a network environment,
ete.

« Topics to discuss:

— Passwords

— Root v.s. user

— SUID

— Detecting security breaches. Cleaning up.
— Buffer overflows

— Security through obscurity

— Denial of service attacks

— Network firewalls

CS146 231

Passwords

Passwords are stored on the system as encrypted strings.

When you type your password, the login process encrypts your
password and compares the two encrypted strings.

Encrypted passwords can be cracked. Therefore, it 1s beneficial to keep
the encrypted passwords in a more secure place than /etc/passwd.

Shadow passwords are passwords kept in /etc/shadow/ instead of
/etc/passwd. A shadow-aware version of login looks in
/etc/shadow/passwd for passwords in addition to the usually
information kept in /etc/passwd. /etc/shadow has permissions for only
root. Therefore, casual users cannot look at the encrypted passwords.

Passwords for ftp, telnet, rcp, etc, are sent over the network as plain
text => use ssh instead.

If you EVER type your password in the clear over a network, it should
be changed immediately. Some systems support expiry dates on
passwords.

CS146 232

Root v.s. User

If you don’t need to run a program as the superuser (root), then don’t.
(same goes for Windows: don’t run as Administrator unless necessary)

That also applies to system daemons, etc. If you install a software
package that needs to run a server process, see if you can create a new
user to run it.

Novice system administrators often make the mistake of logging in as
root and doing everything as root. Think what happens if you type “rm
-rf *” in the wrong directory.

CS146 233

Set User-1D Bit

You can use the SUID permission on an executable to allow a program
to run with the owner’s access instead of user that ran the program.

Very simply. SUID shell scripts are prone to security holes. In more
ways than you can imagine.

Binary executables can have many security problems if they are SUID
root. See Buffer Overflows later.

Programs that are designed to be SUID root should be made to
minimize the part of code that 1s root powerful and deals with external
nputs.

CS146 234

Detecting & Cleaning Security Breaks

Detecting a break-in 1s not always easy to do. Sometimes the intruder
can be exceptionally thorough by replacing commands such as cp,
mdSsum, or diff to detect a detection attempt and thwart it.

Using checksum programs like sum(1) are unreliable because an
intruder could have carefully crafted changes to the file so that the
checksum matches. Byte-by-byte comparisons are the only real test.

You need to ensure that everything you use comes from a trusted copy
(CDROMs are good for this) and you need to be aware that other hosts
on the network are not trusted hosts until they have been checked and
cleaned.

Assuming you detect a break-in, how do you purge the system of back
doors and viruses?

CS146 235

Butter Overflows

The most famous buffer overflow example 1s the Internet Worm. The
finger server, fingerd, used gets() for it’s input reading. gets() does not
check the length of the line read.

char line[512];
gets(line);
If the intruder supplies a line of data longer than 512 bytes, that data

will overwrite the stack frame and can cause fingerd to start running
the intruder’s code. You should always use fgets() instead.

Robert T. Morris inadvertently unleashed the Internet Worm in 1988
and effectively shut down the entire Internet. The Worm didn’t control
its propagation well enough and it choked the networks.

Other potential buffer overrun calls: strcpy() and sprintf().
Fingerd did not have to be running as root. This was simply foolish.

CS146 236

Security through Obscurity

Security by Obscurity is a technique used fairly regularly but generally
ineffective. The 1dea i1s to limit information. For instance, hide an
oddly named publicly writeable directory under a search-only
directory(i.e. no read permission). Then tell only your friends the name
of that directory.

The problem with this approach is that no information 1s truly private
and you have no explicit control or detection that something went
wrong.

For encryption algorithms, it can be quite serious. If someone said that
they have a very secure encryption algorithm but the safety of the

algorithm depends on it being kept secret, then it’s not very secure.
Information leaks can occur and analysis usually cannot be prevented.

CS146 237

Denial of Service Attacks

A denial of service attack is any situation where a malicious person
can overload your network or operating system to prevent legitimate
users from using the system.

Denial of service attacks can take many forms and UNIX 1s generally
very poor about handling such attacks.
Examples:

eatmem - a program that allocates and dirties more and more data pages until
NO MOTe Processes can run

network attacks - send a large volume of network packets to saturate the
network bandwidth thus preventing others from communicating

CS146 238

Firewalls

A firewall isolates two regions so a fire can’t spread unchecked.

A network firewall 1solates an organization’s network from external
networks (e.g. the Internet).

Firewalls can be used to limit access to or from the external network.

This can allow very open and free access within the organization but
prevent outsiders from having that same level of access.

Firewalls simplify security protection since you only have to concern

yourself with the firewall’s filter instead of every machine on your
network.

CS146

239

Section #19

Multi-platform Development

CS146 240

Multi-Platform Development

Configuring software for different operating systems and programming
environments.

Separating platform dependent from platform independent source
code.

Handling conditional compilation using #1fdef based on logical
characteristics vs physical/platform characteristics.

Using abstraction layers in your programs. E.g. a single API with
multiple pluggable implementations to handle different databases
(Oracle, Sybase, etc).

Testing: Test suites are important to catch errors on different platforms
because not all developers will use all platforms all of the time.

Installation will probably be different on each platform.
Porting to new platforms should get EASIER over time.

CS146 241

Section #20

The Plan 9
Operating System

http://plan9.bell-labs.com/plan9

CS146

242

History

Late 1980’s
Explore a new model of computing system.

— Central administration
— Cheap local graphical terminals
— Large central shared resources (file and compute servers)

Clean design (All resources are like files. No 1octl() style control.)

The networking protocol (9P) is used for accessing all resources
remotely.

CS146 243

Name Spaces

Plan 9 implements the concept of per-process name spaces.
Each process can customize its view of the system.

All resources are accessed via the name space (network, graphics,
processes, files, serial ports, etc.)

You can choose to mount or bind a file system in front or behind the
current file system.

Union directories allow file systems to overlap.

For instance, the concept of the PATH environment variable 1s
unnecessary. A PATH of /bin:/usr/bin:/local/bin:$HOME/bin would be
aligned as five overlapping directories at the /bin location. This allows
a very nice system for multiple platforms. The /platforms/mips/bin or
/platforms/solaris/bin directory can be mounted into the /bin location
as appropriate.

The ordering of file systems in a union directory govern which file 1s
chosen for reading or executing.

CS146 244

Processes as Files

Processes are accessible as files in Plan 9.

The /proc file system is a kernel generated file system where each file
1s a gateway to the process’ address space.

/proc/3241 would be the directory for process number 3241.
/proc/3241/status would be the status for the process.
/proc/3241/mem is the virtual memory image.
/proc/3241/text 1s a link to the executable file for the process.
/proc/3241/ctl 1s used to control the process (e.g. stop or kill).

CS146 245

8" - The Plan9 Window System

The Plan 9 Window System has a novel design. It 1s a special form of
file server. It opens the /dev/mouse, /dev/cons, and /dev/bitblt devices
and provides sets of those same files as a file server would.

This design allows one to run 8’ as a window inside another 82!

Each windowing application can treat its terminal devices as if it 1s the
only user.

CS146 246

rc(1) - The Plan9 Shell

The Plan9 Shell introducet many features that were later incorporated
into bash(1), such as <{} for named-pipe-on-commad-line

The history mechanism is especially cool, allowing you to quickly and
casily recall any command you’ve previously typed.

The history mechanism means you can drastically reduce the number
of shell scripts you write, because they end up just being long
command lines that you can edit as you see fit each time you run them.

(do a demo)

CS146 247

