
CS146

Software Tools and System Programming
Using Linux & Unix as an example

Wayne Hayes

CS146 2

Course Goals

• Using Unix for software development
(Bourne Shell/bash, scripting, filters, awk,
make, compilers, debuggers)

• Basic understanding of Unix systems
programming (system call interface, Unix
kernel)

CS146 3

About these slides

These slides derive much of their content
from the originals by David A. Penny and
the modifications made by Wayne Hayes,
for a similar course at University of
Toronto. Sean M. Culhane’s ideas were
also used. The original LaTeX slides were
converted to PowerPoint by Arthur Tateishi.

CS146 4

Section #1

Basic UNIX Structure
and

OS Concepts

CS146 5

What is UNIX good for?
• A generic interface to computing equipment
• Supports many users running many programs at the same time,

all sharing (transparently) the same computer system
• Promotes information sharing
• Geared for high programmer productivity. “Expert friendly”
• Generic framework allows flexible tailoring for users.
• Services include:

File system, Security, Process/Job Scheduling,
Network services/abstractions.

CS146 6

History
• Ken Thompson working at Bell Labs in 1969 wanted a small

MULTICS for his DEC PDP-7
• He wrote UNIX which was initially written in assembler and

could handle only one user at a time
• Dennis Ritchie and Ken Thompson ported an enhanced UNIX to

a PDP-11/20 in 1970
• Ritchie ported the language BCPL to UNIX in 1970, cutting it

down to fit and calling the result “B”
• In 1973 Ritchie and Thompson rewrote UNIX in “C” and

enhanced it some more
• Since then it has been enhanced and enhanced and enhanced and

…

CS146 7

Computer Hardware
• CPU - Central Processing Unit carries out the instructions of a program
• Memory - used for “small” information storage (e.g. < 4GB)
• I/O devices - used for communicating with the outside world such as

screen, keyboard, mouse, disk, tape, modem, network
• Bus - links CPU, I/O, and Memory

MemoryCPU Screen

Mouse KeyboardDisk

CS146 8

Machine Language
• CPU interprets machine language programs:

1100101 11111111 11010000 00000000
1010001 01011101 00000010 00000000
1100101 00000000 11111111 00100100

• Assembly language instructions bear a one-to-one correspondence
with machine language instructions

MOVE FFD0, D0 % b = a * 2
MUL #2, D0
MOVE D0, FFDC

CS146 9

Compilation
• High Level Language (HLL) is a language for expressing algorithms

whose meaning is (for the most part) independent of the particular
computer system being used

• A compiler translates a high-level language into assembly language
(object files).

• A linker translates assembly language programs (object files) into a
machine language program (an executable)

• Example:
– create object file “fork.o” from C program “fork.c”:

gcc -c fork.c -o fork.o
– create executable file “fork” from object file “fork.o”:

gcc fork.o -o fork

CS146 10

UNIX Kernel

UNIX system services

UNIX kernel in C

computer

Applications Programs

• A large C program that implements a general interface to a computer
to be used for writing programs:

fd = open(“/dev/tty”, O_WRONLY);
write(fd, “Hello world!”, 12);

CS146 11

UNIX system services

UNIX kernel in C

C and libc

computer

C Application Programs

libc - C Interface to UNIX system services

CS146 12

Shell

UNIX system services

UNIX kernel in C

computer

SH

• The shell (sh) is a program (written in C) that interprets commands
typed to it, and carries out the desired actions.

• The shell is that part of Unix that most users see. Therefore there is a
mistaken belief that sh is Unix.

• sh is an applications program running under Unix
• Other shells exists (ksh, csh, tcsh, bash)

CS146 13

UNIX system services

UNIX kernel in C

Tools and Applications

computer

SH

vi cat more date gcc gdb …

Common Unix Commands

CS146 14

• ls options: -l, -a, -A, -t, -S, -r, -F
• less(1), wc, mv (rename), with options -i, -f (NO BACKUP!)
• cd, pwd, mkdir, rmdir, rm (-rf), which, du, df
• When using “rm”, be careful with accidental spaces!! “rm –rf *_.c”
• basic shell globbing vs. regular expressions
• Filters: [ef]grep, sed, tr, awk, diff (incl. stdin as “-”)
• Editors: vi/vim, emacs
• People + Processes: who, w, last, ps, uptime, top, kill, time, date
• Archivers: (un)zip, tar, gzip, xz, 7zip (slow but best compression)

CS146 15

Section #2

UNIX File Abstraction
and

File System Organization

CS146 16

What is a File?
• A file is the most basic entity in a UNIX system.
• Several different kinds of files:

– Regular
– Directory
– Character Special
– Block Special
– Socket
– Symbolic Link

• They are accessed through a common interface (i.e. you need only
learn how to use one set of systems calls to be able to access any sort
of file.)

CS146 17

Regular Files
• A regular file is a named, variable length, sequence of bytes.
• UNIX itself assumes no special structure to a regular file beyond this.
• Most UNIX utility programs, however, do assume the files have a

certain structure.
• e.g.

$ cat > file
hello world!
^D
$ ls -l file
-rw-r--r-- 1 wayne 13 May 8 16:44 file
$ cat file
hello world!
$ od -cb file
0000000 h e l l o w o r l d ! \n

150 145 154 154 157 040 167 157 162 154 144 041 012

0000015

CS146 18

Regular Files (cont.)
• Regular files are used to store:

– English Text
– Numerical Results
– Program Text
– Compiled Machine Code
– Executable Programs
– Databases
– Bit-mapped Images
– etc...

CS146 19

Directories & Filenames

• Directories are special kinds of files that contain references to other
files and directories.

• Directory files can be read like a regular file, but UNIX does not let
you write to them.

• There are two ways of specifying a filename
– absolute: /homes/u1/wayne/file
– relative: cs146/accounts

• With an absolute pathname the search for the file starts at the root
directory.

/

homes

u1

wayne

file cs146

accounts

CS146 20

Relative Pathnames
• With a relative pathname the search for the file starts at the current

working directory.
• Every process under UNIX has a CWD. This can be changed by means

of a system call.
• e.g.

$ pwd
/homes/u1/wayne
$ cd cs146
$ pwd
/homes/u1/wayne/cs146
$ cd /
$ pwd
/

CS146 21

Device Files

• All forms of I/O in UNIX go through the file interface.
• To write to a terminal’s screen, for instance, you just write to the

appropriate device file:
$ cat > /dev/ttya
Hi guy!^D

• This will cause the text “Hi guy!” to appear on a screen.
• To read from a terminal’s keyboard you just read from the appropriate

device file:
$ cat /dev/ttya

• The same holds true for disks, tapes, mice, tablets, robot arms, the
computer’s ram memory, etc…

CS146 22

Block Special & Character Special
Device Files

• There are three kinds of interfaces to devices in UNIX:
• block interface
• character interface
• Line interface

• If input and output are buffered in fixed-size blocks within the
operating system, the device has a block special file as its interface.

• If the input and output are unbuffered, the device has a character
special file as its interface.

• In-between the two is the line-buffered, which is what the standard
terminal (keyboard + screen) uses.

CS146 23

Sockets & Pipes
• Pipes are special files used to pass bytes between two processes.

• Sockets are similar, but are used to connect two processes on different
machines across a network.

Process
A

Process
B

Pipe

write read

CS146 24

File Permissions
• Every user of the system has a login name.
• The file /etc/passwd associates a UID, GID, and password with each

login name.
• When a file is created, the UID and GID of the creator are

remembered.
• Every named file has associated with it a set of permissions in the form

of a string of bits.
Owner Group Others
r w x s r w x s r w x

mode regular/device directory
r read list contents
w write create and remove
x execute query and chdir
s setuid/gid (see “man chmod”)

CS146 25

Inodes
• Each distinct file in UNIX has an inode that refers to it.
• An inode contains:

– type of file
– time of inode last modified
– time file data last written
– time file data last read
– creator’s user ID
– creator’s group ID
– number of directory links
– file size
– pointers to disk blocks containing data
or the major and minor device ID
– permission bits
– sticky bit

CS146 26

Mounting
• A file system is contained on a disk.
• File systems are mounted onto existing filenames:

/

/etc /homes /usr /tmp/bin

disk

/homes/u1 /homes/u2

/homes/u1/wayne

/homes/u2/cs146h/at209pau

disk disk

/homes/u2/cs146h

CS146 27

Hard Links & Symbolic Links
• Directory files contain (filename, i-number) pairs.
• Each such entry is called a link.
• A file can have more than one link.
• Regular links (hard links) are not allowed to cross file systems.
• A different kind of link, a symbolic link, contains the pathname of the

linked to file.
• Symbolic links can cross file systems. /

u1 u2

cs146hwayne

a209smit a209foob
symLinkFile

file linkToFile

CS146 28

Section #3

UNIX Processes
and

Shell Internals

CS146 29

The Shell

• A UNIX shell is a program that interprets commands
– It translates commands that you type into system calls.

• The shell is a tool that is used to increase productivity by providing a
suite of features for running other programs in different configurations
or combinations.

• We will be discussing “sh”, otherwise known as the Bourne Shell.
– Other shells exist:

• csh - The C Shell
• ksh - The Korn Shell
• bash - The GNU Bourne-Again Shell.

CS146 30

File Descriptors
• In UNIX, all read and write system calls take as their first argument a

file descriptor (not a filename).
• To get a file descriptor you must perform an open or a creat system

call.
int fd;

fd = open(pathname, rwmode);

• You are given the lowest numbered free file descriptor available
(starting from 0).

• The open and creat system calls allocate resources within the
operating system to speed up subsequent file access.

• When a program is done with a file it should call close:
close(fd);

• When a process terminates execution, all its open files are
automatically closed.

CS146 31

Fork

• The fork system call is used to create a duplicate of the currently
running program.

• The duplicate (child process) and the original (parent process) both
process from the point of the fork with exactly the same data.

• The only difference between the two processes is the fork return value.

Process
A

Process
A #2

Process
A #1

fork

CS146 32

Fork example
int i, pid;
i = 5;
printf(“%d\n”, i);
pid = fork();

if(pid != 0)
i = 6; /* only the parent gets to here */

else
i = 4; /* only the child gets to here */

printf(“%d\n”, i);

CS146 33

Exec
• The exec system call replaces the program being run by a process by a

different one
• The new program starts executing from its beginning

• Variations on exec: execl(), execv(), etc. which will be
discussed later in the course

process A

running

program X

process A

running

program Y

exec(“Y”)

CS146 34

Exec example

PROGRAM X
int i;
i = 5;
printf(“%d\n”, i);

exec(“Y”);

i = 6;
printf(“%d\n”, i);

PROGRAM Y
printf(“hello”);

CS146 35

Processes and File Descriptors

• File descriptors belong to processes. (Not programs!)
• They are a process’ link to the outside world.

process
A

0
1

2

3

4
5

CS146 36

PIDs and FDs across an exec

• File descriptors are maintained across exec calls:

process A
running

program X
3

process A
running

program Y
3

exec(“Y”)

/etc/termcap /etc/termcap

CS146 37

PIDs and FDs across a fork
• File descriptors are maintained across fork calls:

process A
#2

3

process A
#1

3

/etc/hosts

fork

CS146 38

Fork: PIDs and PPIDs

• System call: int fork()
• If fork() succeeds, it returns the child PID to the parent and returns

0 to the child; if it fails, it returns -1 to the parent (no child is created)

• System call: int getpid()
int getppid()

• getpid() returns the PID of the current process, and getppid()
returns the PID of the parent process (note: ppid of 1 is 1)

• example (see next slide …)

CS146 39

PID/PPID example
#include <stdio.h>
int main(void)
{

int pid;
printf("ORIGINAL: PID=%d PPID=%d\n", getpid(), getppid());
pid = fork();
if(pid != 0)

printf("PARENT: PID=%d PPID=%d child=%d\n",
getpid(), getppid(), pid);

else
printf("CHILD: PID=%d PPID=%d\n", getpid(), getppid());

printf("PID %d terminates.\n\n", getpid());
return(0);

}

CS146 40

Initializing UNIX
• The first UNIX program to be run is called “/etc/init”
• It forks and then execs one “/etc/getty” per terminal
• [NEW] It may also start sshd and listen for ssh connections, as well as

starting the X-window system, which we’ll discuss later.
• getty and sshd set up a login terminal, prompt for a login name, and

then exec “/bin/login”
• login prompts for a password, encrypts a constant string using the

password as the key, and compares the results against the entry in the
file “/etc/passwd” (or /etc/shadow on newer systems)

• If they match, “/usr/bin/bash” is exec’d
• When the user exits from their login shell, the process dies. Init finds

out about it (via the wait system call), and forks another getty or sshd
process for that terminal

CS146 41

Initializing UNIX

init init

init

init

getty

init

login

init

sh

• The first UNIX program to be run is called “/etc/init”
• It forks and then execs one “/etc/getty” per terminal
• [NEW] It may also start sshd and listen for ssh connections, as well as

starting the X-window system, which we’ll discuss later.
• getty and sshd set up a login terminal, prompt for a login name, and

then exec “/bin/login”
• When the user exits from their login shell, the process dies. Init finds

out about it (via the wait system call), and forks another getty or sshd
process for that terminal

CS146 42

Standard Streams
• The forked inits open the terminals they are assigned to 3 times.
• The result is that when sh is eventually started up, the first three file

descriptors (0, 1, 2) are pre-assigned, and refer to the login terminal.

Descriptor Name Purpose
0 Standard Input Read Input
1 Standard Output Write Results
2 Standard Error Report Errors

• sh reads its commands from the standard input

CS146 43

How sh runs commands
> date
Fri Oct 1 12:03:53 PDT 2010

• When a command is typed csh forks and then execs the typed command:

• After the fork and exec, file descriptors 0, 1, and 2 still refer to the
standard input, output, and error in the new process

• By UNIX programmer convention, the executed program will use these
descriptors appropriately

csh csh

csh

csh

date

csh

CS146 44

duplicate:
fork()

How sh runs (cont.)

parent process running shell,
PID 34, waiting for child

child process running shell, PID 35

parent process running shell,
PID 34, awakens

wait for child:
wait()

process running shell,
PID 34

child process running utility, PID 35

child process terminates PID 35

terminate:
exit()

signal

differentiate:
exec()

CS146 45

I/O redirection
$ cat < f1 > f2

• After the fork, but before the exec, sh can redirect the standard input,
output, or error streams (or any other stream for that matter):

while(not end of standard input) {
print(stdout, “% “);

read_cmd(stdin, command);

pid = fork();

if (pid == 0) {

/* The child executes from here */

if (inputRedirected) {

close(stdin);

open(inputFile, O_RDONLY);

}

if (outputRedirected) {

close(stdout);

creat(outputFile);

}

exec(command);

} else

/* parent: wait for child to terminate */

} /* end while */

CS146 46

Pipes

$ ls /u/cs146h | cat

• For a pipeline, the standard output of one program is connected to the
standard input of the next program.

• Pipelines can be (almost) arbitrarily long.
• Commands in a pipeline are run concurrently!
• The output of a pipeline could be produced using temporary files, but

– pipes are implemented in RAM, which is faster than disk.
– you would lose on the store-and-forward delays
– programs requiring little CPU can produce lots of I/O, so why not run

them concurrently rather than wait for one to finish before starting the
next one?

– you might fill up the disk with large intermediate files.

CS146 47

Exec arguments
$ echo hello world!
hello world!

• The exec system call has a parameter (not shown previously) that is
used to pass command line arguments to the executed commands:

char * argv[4];

argv[0] = “echo”;
argv[1] = “hello”;
argv[2] = “world!”;
argv[3] = NULL; /* (char*) 0 */

exec(“/bin/echo”, argv);

CS146 48

Environment Arguments
• The exec system call has another parameter (not shown previously)

that is used to pass the state of the environment to executed
commands:

char * envp[2];
envp[0] = “TERM=xterm”;
envp[1] = NULL;

exec(“/bin/echo”, argv, envp);

• sh may be told to pass these environment parameters to executed
programs by way of the export command.

% TERM=xterm; export TERM

CS146 49

Section #4

Bourne Shell

CS146 50

Shell Communications
• Pre-opened file descriptors:

$ cat < f > g

• Exec (command line) arguments:
$ grep ‘hello’ f

• Environment parameters:
$ PRINTER=lw; export PRINTER
$ lpr document

CS146 51

Basic Redirection
• Direct output from file descriptor n to file f:

n > f $ 2>err ls 1>foo
If n is absent, the default is the standard output (1).

• Append output from file descriptor n to the end of file f:
n >> f $ cat x >> f

If n is absent, the default is the standard output (1).

• Direct input to file descriptor n from file f:
n < f $ 3<bar foo

If n is absent, the default is the standard input (0).

• Redirect standard output (1) from program 1 to the standard input (0)
for program 2:

p1 | p2 $ ls | grep foo

CS146 52

Advanced Redirection:
“Here” Documents

n << word
n << -word

• The shell input is read up to a line that is the same as word, or to an
end-of-file.

• The resulting document becomes the input on file descriptor n
(defaults to the standard input, 0).

• If a minus sign (-) is appended to the <<, all leading TABs are
stripped.

put “hello world!” into file f.
cat > f <<-END

hello world!
END
done

CS146 53

Advanced Redirection:
dup’ing & close’ing

n<&m n>&m n<&- n>&-
• dup system call:

int fd1, fd2;
fd1 = open(“file” O_RDWR);
fd2 = dup(fd1);

• At the end of this sequence, fd1 and fd2 both refer to exactly the same
thing.

• The phrase, n>&m or n<&m , causes file descriptor n to be a
dup of the (pre-opened) file descriptor m.

• The phrase, n<&- or n>&- closes file descriptor n.

• The shell checks that n is open for input(<), or output(>), respectively.
• The defaults for absent n are stdout (1) for >, and stdin (0) for <.

CS146 54

Filename Generation
(globbing)

• Words on the command line are expanded if they contain one of the
characters “*”, “?”, “[“.

• The word is replaced with a sorted list of filenames that match the
given pattern.

• If no matching filenames are found, the word is left unchanged.
* Matches any string (including null).
? Matches any single character.
[…] Matches any one of the enclosed characters.
[x-y] Matches any character lexically between the pair.
[!…] Matches any character not enclosed.

• The character “.” at the start of a filename or immediately following a
“/” as well as the character “/” itself, must be matched explicitly.

CS146 55

Shell Variables:
setting and unsetting

• The shell maintains an internal table that gives string values to shell
variables.

• A shell variable is initially assigned a value(set), or subsequently has
its value changed, by a command of the form variable=value.

$ x=3 y=4

• A shell variable is removed by the built-in command unset.
$ unset x

• A shell variable can be exported to the environment of commands that
are executed.
$ export x

CS146 56

Shell Variables:
retrieving

• The value of a shell variable may be substituted in a command by a
“$” phrase.

$var The value of var is substituted.
${var} The value of var is substituted. (The braces are required only

when var is followed by a letter, digit, or underscore.)
${var:-w} If var is set and non-null, substitute its value, otherwise

substitute w.
${var:=w} If var is not set or is null, set it to w. The value of var is

substituted.
${var:?w} If var is set and non-null, substitute its value, otherwise print

w and exit from the shell. (Default message if w is absent.)
${var:+w} If var is set and non-null, substitute w, otherwise substitute

nothing.

CS146 57

Shell Variables:
positional parameters

• Shell variables that are composed of a single digit are positional
parameters.

$0 0th positional parameter.
$1 1st positional parameter.
…
$9 9th positional parameter.

$# The number of positional parameters as a decimal (base 10) string.

$* All the positional parameters, starting with $1, are substituted (separated
by spaces).

$@ Similar to $*. However they differ when quoting is used (later).

CS146 58

Shell Variables:
the “set” command

• The command
$ set

will print out the values of all shell variables.
• The command

$ set a b c
will set positional parameters 1, 2, and 3 to “a”, “b”, and “c”
respectively.

• The set command with arguments starting with “+” or “-” will turn on
and off the shell options. e.g.

$ set -x
will cause all commands and their arguments to be printed as they are
executed.

• These options may also be set when invoking the shell.
$ sh -x foo

CS146 59

Shell Variables:
pre-set

• The following shell variables are pre-set.

$- The options supplied to the shell on invocation or by the set
command.

$? The exit status returned by the last command executed in the
foreground as a string in decimal notation.

$$ The process ID of this shell.
$! The process ID of the last background command invoked.
$PATH The directories to search in order to find a command.
$PS1 Primary prompt string.
$PS2 Secondary prompt string.
$MAILCHECK

How often to check for mail.
$IFS Internal field separator.

CS146 60

Environment Parameters
• The environment, a list of name-value pairs, is passed to the shell and

to every command that the shell invokes.
• When the shell starts up, it makes a shell variable out of each name-

value pair.
• Shell variables and environment parameters may be bound together by

means of the export command.
• Entries in the environment may be modified or added to by binding an

existing or yet to exist shell variable. Subsequent changes to that
variable will be reflected in the environment list.

• Entries may be deleted by performing an unset on the corresponding
shell variables.

• The environment for any simple command may be augmented by
prefixing it with one or more assignments to parameters. e.g.

$ X=5 Y=6 fooscript

CS146 61

Environment Parameters
used by sh

HOME Default argument for cd. (set by login)
PATH The search path for commands.
CDPATH the search path for cd.
MAIL File where the user’s mail arrives. (set by login)
MAILCHECK How often to check for mail.
MAILPATH Set of files to check for mail. (used in preference to

MAIL if set)
PS1 Primary prompt string.
PS2 Secondary prompt string.
IFS The characters that separate arguments on a command

line.
SHELL If set and value contains an “r”, the shell becomes a

restricted shell. (set by login)

CS146 62

Command Substitutions

• The standard output for a command enclosed in a pair of back-quotes
(``) may be used as part or all of a word.

• Trailing newlines are removed.
$ echo `pwd`
/homes/u1/wayne

CS146 63

Quoting
• The following characters have a special meaning to the shell:

; & () | ^ < > NL SPACE TAB

• A single character may be quoted by preceding it with a backslash(\).
• A backslash(\) character followed by a newline is ignored.
• All characters enclosed between single quotes (‘) are quoted (except

for (‘).
• Inside double quote marks(“) shell variable substitution and command

substitution occurs. (“\” is used to quote the characters \ ‘ “ and $.

$* = $1 $2 … $n
“$*” = “$1 $2 … $n”
“$@” = “$1” “$2” … “$n”

CS146 64

Putting it all Together
• Whenever a command is read, either from a shell script or from the

terminal, the following sequence of substitutions occur:
1) Comments

A word beginning with the “#” causes the word and all the following characters up
to the end of the line to be ignored.

2) Command substitution
Commands enclosed in back-quotes are executed.

3) Parameter substitution
All “$” references are expanded.

4) Blank interpretation
The results up to here are scanned for characters in IFS and split into distinct
arguments. Explicit nulls are retained (“”), implicit ones are removed.

5) Filename expansion
Each argument is then filename expanded.

6) I/O Redirection
I/O redirection is now separated from command line arguments.

CS146 65

Section #5

Shell Scripting

CS146 66

Shell Scripting: 1
• “ls -F” is much more useful than simple “ls”. It tells you concisely

what each file is without the bother of doing “ls -l” all the time.
• We want it to be so that when we type “ls”, we get “ls -F”.

– $HOME/bin/ls

CS146 67

Shell Scripting: 1(a)
$HOME/bin/ls

ls –F

2 Things Wrong
1. Since this script version of ‘ls’ was probably run as

the first ‘ls’ in the PATH, the ‘ls’ in the script will
run the script again. Infinite recursion.

2. Arguments are being ignored. That means ‘ls /etc’
would not work as expected.

CS146 68

Shell Scripting: 1(b)
$HOME/bin/ls

exec /bin/ls –F “$@”

A corrected version would call /bin/ls to avoid the infinite
loop. The “$@” variable will pass the arguments to the
real ‘ls’. The ‘exec’ avoids the shell waiting around for
the completion of ‘ls’.

CS146 69

Shell Scripting: 1(c)
The Bourne Shell has a function syntax that can solve
our problem elegantly. It can be added to the .profile
startup file so it is loaded for login shells.

$HOME/.profile
ls () { /bin/ls –F “$@”; }

– In other shells, there is an alias command used like
alias ls ls –F

or
alias ls=“ls –F”

CS146 70

Shell Scripting: 2
• We want to set the shell prompt to be ‘machine-> ’
• I logon to many different machines. Often several at once from the

same workstation. I want only one .profile file.
• Program “hostname” will give you the machine in the form:

– machinename.domainname

CS146 71

Shell Scripting: 2(a)
• The first approach demonstrates the use of IFS and set but it is quite

convoluted. Using set in shell scripts has the notable drawback that
arguments are destroyed and hence must be parsed first or saved for
later.

• $HOME/.profile

oldIFS=$IFS
IFS=’.’; set `hostname`; PS1=“$1-> ” ; export PS1
IFS=$oldIFS; unset oldIFS

CS146 72

Shell Scripting: 2(b)
• The following version can be considered simpler. It sends the output of

hostname through sed with a substitution command.
PS1=`hostname | sed ’s/\..*//’`; export PS1

• The sed command is explained as follows:
s - sed command for substitution
/ - delimiter for regular expression
\ - escape character for following character
. - a period. Normally, sed interprets periods as the regular expression for

“any character”. The previous backslash overrides that.
. - match any character. This one was not escaped.
* - match zero or more of the previous expression. In this case it means

match zero or more of “any character”.
/ - separator between the regular expression and replacement part of the

substitute command
/ - the end of the replacement string. We’re replacing with nothing.

• So the sed command has been asked to find a period followed by any
number of characters and replace it with nothing.

CS146 73

Shell Scripting: 3
• When I logon, I want to a polite greeting, customized to the time of

day.
Good morning, Wayne!
Good afternoon, Wayne!
Good evening, Wayne!
Good god! What are you doing up so early?

• The date command will print out the current date and time.
$ date
Mon Jan 30 10:09:27 EST 2008

CS146 74

Shell Scripting: 3(a)
$HOME/bin/greet
Mon Jan 3 10:09:27 EST 2008
set `date`; IFS=’:’; set $4; hour=$1
if [$hour –lt 9]; then

echo “Good god! What are you doing up so early?”
elif [$hour –lt 12]; then

echo “Good morning, Wayne!”
elif [$hour –lt 18]; then

echo “Good afternoon, Wayne!”
else

echo “Good evening, Wayne!”
fi

• Time could be parsed easier using cut.
hour=`date | cut –c12-13`

CS146 75

Shell Scripting: 3(b)
• Date has some nice options including the ability to format the output in

various ways. Yes, it does pay to read the man pages.

case `date +%H` in
0[0-8]) echo “Good god…”;;
09 | 1[01]) echo “Good morning, Wayne!”;;
1[2-7]) echo “Good afternoon, Wayne!”;;
*) echo “Good evening, Wayne!”;;

esac

• I can have the greet command run upon login by adding a line to my
.profile to run greet.

CS146 76

Shell Scripting: 4
• List all regular files in a subtree.
• This is a recursive script that demonstrates the use of $0 to run itself

without knowing the name of the script.
$HOME/bin/dtfiles

PATH=/bin:/usr/bin:$HOME/bin:$PATH
cd $1
for i in *
do

if [-f $i]; then
echo $i

elif [-d $i]; then
$0 $i

fi
done

• With no arguments, the shell script should work on your $HOME
directory. To make it work on the current directory by default, we
could change the ‘cd’ command to read: cd {$1:-.}

CS146 77

Shell Scripting: 5
• n! is “n factorial”
• Mathematically,

n! = n * (n-1) * (n-2) * … * 2 * 1

• The shell scripting language does not have arithmetic. However, the
expr(1) utility can do arithmetic by reading and parsing strings.

• Here are two versions of shell scripts to compute n factorial. Which do
you think is better? I recommend that you try both and see.

• When evaluating how to decide which script is better, consider the
number of processes forked, the number of active processes during the
run, what sorts of commands are used, how many temporary files are
needed, maintainability, etc.

CS146 78

Shell Scripting: 5(a)
#!/bin/sh

if [$# -ne 1]; then
echo “Usage: $0 n” >&2; exit 1

fi

Check to make sure the argument is a number
If echo $1 | grep ‘^[0-9][0-9]*$’ >/dev/null 2>&1; then

:
else

echo “Usage: $0 n” >&2; exit 1
fi

If [$1 –eq 0]; then
echo 1

else
m1=`expr $1 – 1`
expr $1 * `$0 $m1`

fi

CS146 79

Shell Scripting: 5(b)
#!/bin/sh
if [$# -ne 1]; then

echo “Usage: $0 n” >&2; exit 1
fi

Check to make sure the argument is a number
If echo $1 | grep ‘^[0-9][0-9]*$’ >/dev/null 2>&1; then

:
else

echo “Usage: $0 n” >&2; exit 1
fi

fact=1
number=$1
Until [$number = 0]
do

fact=`expr $fact * $number`
number=`expr $number – 1`

done
echo $fact

CS146 80

Section #6

UNIX Program Execution

CS146 81

UNIX kernel

C Program Execution

computer

System call library

Compiled C program

Standard libraries

CS146 82

EXECVE
execve(name, argv, envp)

0xfffc02

0xa0bf58

0xa0bf34

/ b i n / e c h o \0

e c h o \0 H e l l o \0

W o r l d ! \0

T E R M = x t e r m \0

0xfffd00

0xfffd05

0xfffa0b

NULL

0xfffd24

NULL

argv

envp

name

CS146 83

Executable Files

• execve will fail unless the file to execute has the appropriate execute
permission bit turned on.

• The file must also be in one of the correct formats.

• There are two general classes of executable files:
1) Executable object files (machine code and data).
2) Files of data for an interpreter (usually ascii).

CS146 84

Interpreter Files

• The UNIX kernel, during an execve, reads the first few bytes of a file
it is asked to execute.

• Interpreter files begin with a line of the form:
#! interpreter arguments
e.g.
#!/bin/sh -x

• The kernel executes the named interpreter with the name of the
original (data) file as one of the arguments.

e.g.
execv(“foo”, <“foo”, “a”, “b”, “c”>)

is transformed into:
execv(“/bin/sh”, <“sh”, “-x”, “foo”, “a”, “b”, “c”>)

• This should explain why so many UNIX commands use ‘#’ for a
comment line indicator.

CS146 85

Executable Object Files
• An executable object file has the following 7 sections:

1) header
– magic number
– text size (executable code)
– data size (global/static non-zero initialized)
– bss size (global/static, zero-initialized)
– symbol table size (variable names, if present)
– entry point (where in the text above to start execution)
– text relocation size (executable code that can be moved upon linking)
– data relocation size (same as above but for data)

2) text (machine code)
– zero filled to nearest page (e.g. 8K) boundary

3) initialized data
– zero filed to nearest page boundary

CS146 86

Executable Object Files (cont.)

4) text relocation information
– address
– size (byte, half-word, word)
– symbol number

5) data relocation information
– same as above

6) symbol table
– index into string table
– type of symbol
– value

7) string table (only present if debugging information present)
– size in first four bytes
– zero-terminated strings

CS146 87

Executable Object File Format

header
0

32

a_text

data

text

bss (0-filled)

text relocation

data relocation

symbol table

string table

table size + 4

8K aligned

8K aligned

a_text + a_data

x + a_trsize

x + a_trsize + a_drsize

x + a_trsize + a_drsize + a_syms

CS146 88

Virtual Memory Image

header

0

a_text

data

text

bss (0-filled)

8K aligned

8K aligned

a_text + a_data

a_text + a_data + a_bss

8k
Blank page (page zero)

2G

4G

System Space

Heap grows explicitly
by calls to sbrk()

Stacks grows implicitly
when addressed

Stack

CS146 89

“Hello world!”
(in 68000 assembly language)

.text
movl #13, sp@- | # bytes to write
pea msg | address
movl #1, sp@- | standard output
movl #0, sp@-
movl #4, sp@- | WRITE
trap #0

addw #20, sp | clean the stack

movl #0, sp@- | exit code
movl #0, sp@-
movl #1, sp@- | _EXIT
trap #0

.data
msg:.ascii “Hello world!\12\0”

$ as hello.s
$ ld a.out
$./a.out
Hello world!
$

CS146 90

“Hello world!”
(in C using only system call library)

char msg[] = “Hello world!\n”;

int
main(void)
{

int bytesWritten;
bytesWritten = write(1, msg, 13);
return 0;

}

$ gcc hello.c
$./a.out
Hello world!
$

CS146 91

libc
• libc contains the object code for:

– the interfaces to system calls
– the standard libraries

• For example, the file “write.s” is that part of the source for the system
call interface library that interfaces to the write system service.
err: jmp cerror

.globl _write
_write:

movl #4, sp@- # WRITE system call
trap #0
jcs err
rts

CS146 92

Error Statuses Returned from System Calls
• Every system call returns a status.
• If the status is negative then the system call interface library will call

the routine cerror.
• Cerror will store the error status (returned by the system call in a

general purpose register) into a global variable called errno.

extern int errno;
main()
{

int fd;
fd = open(“foo”, 0, 0);
if (fd == -1)

fprintf(stderr, “Error
on open: %d\n”, errno);

}

Error on open: 2

#include <stdio.h>
#include <errno.h>
main()
{

int fd;
fd = open(“foo”, 0, 0);
if (fd == EOF)

perror(“foo”);
}

foo: No such file or directory

CS146 93

“Hello world!”
(in C using standard I/O library)

#include <stdio.h>

main()
{

printf(“Hello world\n”);
}

$ gcc hello.c
$./a.out
Hello world!
$

CS146 94

Section #7

C Storage Model
Compilation and Linking

CS146 95

Setting Aside Storage

• Every data element must have the appropriate number of bytes set
aside for it in the process’s memory.

• Insofar as variables are concerned, those bytes are either allocated on
the stack, or in the heap.

• You tell the C compiler to set aside storage for you by means of a
declarations:
int i;
unsigned short j;

stack

heap

text
init. data

CS146 96

Stack Data
• Each time that a C function is called, extra stack space is implicitly

allocated.
• This stack space contains the automatic variables (also called local

variables) for that function.
• Local variables are all variables declared within a {} block.
• When a function returns, that stack space is implicitly de-allocated and

later re-used.
/* Pathological Example */
main(int argc, char *argv[],

char *envp[])
{

int x = 1;
int y = 2;

add(x, y);
printSum();

}

add(int i, int j)
{

int k = i + j;
}

printSum()
{

int a, b, c;
printf(“%d\n”, c); // or maybe a

}

CS146 97

Example explained #1
• Stack just prior to call to “add”:

Stack pointer x = 1

y = 2

return addr

argc = 1

argv

envp

Argument and
Environment

String

main’s
activation
record

CS146 98

Example explained #2
• Stack just after call to “add”:

Stack pointer k = 3

return addr

add’s
activation
record

x = 1

y = 2

return addr

argc = 1

argv

envp

main’s
activation
record

j = 2

i = 1

CS146 99

Example explained #3
• Stack just prior to call to “printSum”:

Stack pointer

3

Junk (return addr)

x = 1

y = 2

return addr

argc = 1

argv

envp

main’s
activation
record

2

1

CS146 100

Example explained #4
• Stack just after to call to “printSum”:

Stack pointer c = 3

return addr
printSum’s
activation
record

x = 1

y = 2

return addr

argc = 1

argv

envp

main’s
activation
record

a = 1

b = junk (old addr)

CS146 101

Heap Data
• The heap is divided into three parts:

– initialized data
– zero-initialized data
– dynamically allocated data

• Space for initialized and zeroed data is allocated for each declaration
appearing outside of any function (or for in-function declarations
prefaced by static):
int i, j = 3;
main()
{

static int k = 2;
i = k + j;

}

• Space for dynamically allocated data is allocated explicitly by calls to
the library function malloc.
main()
{

int *p = malloc(sizeof(int));
*p = 3;

}

CS146 102

Storage Class
• There are various ways of specifying which storage class an object

belongs to:
– If an object is declared within a {…} block with no storage class

specification, or the auto storage class specification, they are stored on the
stack.

– If an object declared within a block has the storage class specifier
register, it is either kept on the stack or in a CPU register if that is
possible.

– If an object within a block has the storage class specifier static, it is stored
in the heap, but is still semantically local to that block.

– If an object is declared outside of all blocks, it is stored in the heap.
– If an object is declared outside of all blocks, and has the specifier static, it

is local to that file.
– If an object declared outside of all blocks has the specifier extern, or no

specifier, it is visible throughout the program.
– If declared extern, no space is allocated. It is assumed that space has been

allocated elsewhere (i.e. without the keyword extern) and will be resolved
by the linker.

CS146 103

C Compilation
• There are four main phases of C compilation

(1) Preprocess
(2) Scan & Parse
(3) Code Generation
(4) Linking

CS146 104

Preprocess
• The preprocessor (cpp) handles macros, #include, and conditional

compilation.
foo.h

#define DEBUG 1
#define ADD(a,b) ((a) + (b))
int x;
extern void printi(int);

foo.c:
#include “foo.h”
void main()
{

int y, z;
x = ADD(y, z);

#if DEBUG
printi(x);

#endif
}

After preprocessing:

int x;
extern void printi(int);
void main()
{

int y, z;
x = ((y) + (z));
printi(x);

}

CS146 105

Scan
• The scanner separates input into logical tokens - no meaning is

assigned yet.

int ; extern void printi (int) ; voidx

main) { int y , z ; x = ((y) +

(z)) ; () ;xprinti

(

}

CS146 106

Parse
• The parser derives meaning from the stream of tokens. Syntax

checking also occurs here.
• x is a global integer initialized to zero (bss segment).
• main is a void subroutine with no parameters.
• { marks the beginning of main.
• int y, z; defines two automatic, uninitialized integers.
• x = ((y) + (z)); is an expression described by a parse tree;

• printi(x); call printi with x as argument.
• } marks the end of main.

(y) (z)

+

CS146 107

Code Generation
• Code generation takes the parsed program (i.e. the compiler now

“understands” the program) and generates machine language. We’ll
show it as assembly language. Some compilers generate text for an
assembler instead of generating code directly.

• Assign x an address, say memory locations 100-103.
• Assign main a starting address, say 1000.
• 68000 assembly language representation of compiled code:

_x = 100
_main = 1000

add.l -8, sp ; 2 ints, y & z
move.l @sp, @_x ; x = y
add.l @sp(4), @_x ; perform addition y+z
move.l @_x, @-sp ; push x onto stack
jsr _printi ; unresolved link
add.l 12, sp ; clean stack
rts ; return from _main

• Actual machine language file is called object file “foo.o”

CS146 108

Link
• Linking is the resolving of symbols in object files.
• Each object file has associated with it a list of <name, address> pairs

called a symbol table.
• Names not defined in the file, called unresolved references, have a

NULL address. The symbol table for foo.o is:
[<_main, 1000>, <_x, 100>, <_printi, 0>]

Note y, z do not appear since they are local to main().
• A library archive (file extension .a) is a collection of object (.o) files,

each containing executable machine code, global data, and a symbol
table. Library archives are maintained by ar(1).

• “Linking” entails combining multiple object and library files, resolving
all unresolved references, and producing an a.out executable file.

• In our example, we assume _printi is resolved by a symbol in an object
file in a standard library.

• Sometimes linking happens later, at runtime, using shared or
dynamically linked libraries (DLLs in Windows, .so files in Unix)

CS146 109

Link example
$ gcc -E foo.c # pre-process only, output to stdout
$ gcc -S foo.c # PP, scan, parse, produce assembly language file foo.s
$ gcc -c foo.c # PP, scan, parse, codegen, produce output file foo.o
$ gcc foo.o # link foo.o to produce a.out
$ gcc foo.c # all 4 phases, produce a.out
$ gcc -c foo1.c # produce foo1.o
$ gcc -c foo2.c # produce foo2.o
$ gcc foo1.o foo2.o # link foo1.o and foo2.o to libraries to produce

a.out
• If necessary, the linker moves addresses at link time to avoid address

conflicts (e.g. foo1.o and foo2.o both claim address 100 for different
variables)

• On some systems, the symbol table also includes type information, e.g.
x is an int and printi is a function. Most modern UNIX systems do this.

CS146 110

Makefiles
• A Makefile contains instructions telling make(1) what depends on

what, and how to build things. Make(1) looks at timestamps and
figures out how to build things that don’t exist or are out-of-date.

• Each section of a makefile looks like:
target1: [dependency list] # empty mean always rebuild

instructions # MUST be TAB indented.

• Sections are separated by blank lines. e.g.:
$ cat makefile

foo: foo1.o foo2.o
gcc -o foo foo1.o foo2.o

foo1.o: foo1.c foo.h
gcc -c foo1.c

foo2.o: foo2.c foo.h
gcc -c foo2.c

• Typing “make” causes the first target in the Makefile to be built.
Typing “make foo1.o” causes a specific target to be built.

CS146 111

Section #8

Standard Library

“Never code something that someone else has already coded better.”

CS146 112

Standard Library

kernel
hardware

System call library

Application Program
Standard library

• There is more in the standard library than you might expect. (Read
“man intro” and lookup the intro’s for sections starting with 3.)

• Library contains functions, variables, and macros.
• Some library calls perform system calls, others do not. The system

calls interface routines themselves are not considered part of the
standard library (See “man 2 intro”). They are simply C interfaces to
the system calls.

CS146 113

Standard Library
• Library is divided into a number of different parts (see /usr/include)

stdio User-level buffered file I/O
errno Checking return status of system

calls
malloc Memory allocation
ctype Classifying ASCII-coded integers
string Operations on null-terminated

strings
math Mathematical functions and macros
exit Normal and abnormal termination
getenv Accessing environment variables

by NAME
qsort Sorting
bsearch Binary search
assert Diagnostics used for debugging
stdarg Accessing variable length function

parameter lists
setjmp Non-local program control jumps

signal Handling UNIX signals (also called
exceptions)

limits Implementation-dependent
information

float Implementation-dependencies for
floating point

random Random number generation
time Dealing with date and time
network Accessing networks
encrypt DES encryption
dbm Database routines (key-content

pairs)
dir Directory operations
getopt Parse options in argv
regex Regular expression handlers
stty Setting terminal driver

characteristics
system Performing shell commands
… and more ...

CS146 114

Standard I/O
• Designed to make performing I/O convenient and efficient.
• I/O is done independently on independent streams.
• To use:

#include <stdio.h>

which defines (among other things):
FILE Stream struct
NULL No stream
EOF End-of-file or error return indicator

stdin Standard streams
stdout
stderr

CS146 115

Opening & Closing Streams
• FILE *fopen(char *filename, char *mode)

– Opens “filename” for access according to “mode”.
– Mode can be one of “r”, “w”, “a”, “r+”, “w+”, “a+”

• FILE *freopen(char *filename, char *mode, FILE *stream)
– Substitutes the named file in place of the open stream. The old stream is

closed.
• FILE *fdopen(int fildes, char *mode)

– Opens a stream that refers to the given UNIX file descriptor (must
currently be open).

• int fileno(FILE *stream)
– Returns the UNIX file descriptor associated with the stream.

• int fflush(FILE *stream)
– Causes any buffered data for the named stream to be written out.

• int fclose(FILE *stream)
– Flushes the stream, closes the file, and deallocates the FILE data structure.

• int exit(int status)
– Causes all open streams to “fclose”d calls _exit(status).

CS146 116

Output Buffering Modes
• There are three kinds of output buffering modes for streams:

1) Unbuffered - Characters appears on the terminal or in the file as soon as
they are written.

2) Block Buffered - Many characters are saved up and then written as a
block.

3) Line Buffered - Characters are buffered until a newline is encountered or
input is read from stdin.

• Normally all files are block buffered, except terminals which normally
default to line buffered for stdout, and stderr which is always
unbuffered.

• int setbuffer(FILE *stream, car *buf, int size)
– Specifies that “buf” be used rather than a malloc’d buffer on the first getc or putc and sets the buffer size to

“size”. If “buf” is NULL, I/O will be unbuffered. Used after a stream is opened, but before it is read or written.

• int setbuf(FILE *stream, char *buf)
– Same as setbuffer(stream, buf, BUFSIZ).

• int setlinebuf(FILE *stream)
– Used to change stdout or stderr to line buffered. Can be called anytime.

CS146 117

Unformatted Input
• int getc(FILE *stream)

– Returns the next character from “stream”. (macro - beware of side effects)
• int ungetc(int c, FILE *stream)

– Pushes the character “c” back onto “stream”. Returns c.
• int getchar()

– Identical to getc(stdin).
• int fgetc(FILE *stream)

– Same as getc, but not a macro.
• int getw(FILE *stream)

– Returns the next int from “stream”. (must check for errors)
• char *gets(char *s)

– Reads characters up to and including the next newline into “s” from stdin. The newline is
replaced by a NULL character in s. Returns s. This is VERY dangerous (see Internet Worm).

• char *fgets(char *s, int n, FILE *stream)
– Reads n-1 characters or up to and including a newline from “stream” into “s”. Adds a null

character onto the end. Returns s.
• int fread(void *ptr, size_t size, int nitems, FILE *stream)

– Reads “nitems” nto block pointed to by “ptr” from “stream”. Flushed stdout if stream is stdin.
Returns # items read.

CS146 118

Formatted Input
• int sscanf(char *s, char *format [, pointer] …)

– Parses “s” according to “format” placing the results into the variables pointed to. Returns
number of input items parsed and assigned.

• int fscanf(FILE *stream, char *format [, pointer] …)
– Same as sscanf but read from “stream”.

• int scanf(char *format [, pointer] …)
– Same as fscanf(stdin, format, …)

• “format” is composed of:
– Blanks, tabs, newlines: Match optional white space.
– Regular characters (not %): Must match input.
– % [*] [maxField] [convChar]: Conversion specification.

• The conversion characters are:
– % Matches a % characters
– d, D, ld, hd Decimal integer
– o, O, lo, ho Octal integer
– x, X, lx, hx Hexadecimal integer
– s Character string
– c Single character
– e, E, le
– f, F, lf Floating point number

CS146 119

Low-Level Output
• int putc(char c, FILE *stream)

– Appends “c” to “stream”. Returns the character written. (macro)
• int putchar(char c)

– Same as putc(c, stdout)
• int fputc(char c, FILE *stream)

– Same as putc, but not a macro.
• int putw(int w, FILE *stream)

– Appends int “w” to “stream”. Returns the word written.
• int puts(char *s)

– Appends the null-terminated string “s” to stdout, and a newline character.
• int fputs(char *s, FILE *stream)

– Appends the null-terminated string “s” to “stream”.
• int fwrite(void *ptr, size_t size, int nitems, FILE *stream)

– Append at most “nitems” of data of type *ptr beginning at “ptr” to “stream”. Returns # of items
written. (returns 0 for error)

CS146 120

Formatted Output
• int sprintf(char *s, char *format [, pointer] …)

– Places “format” expanded using “args” into the string “s”.
• int fprintf(FILE *stream, char *format [, pointer] …)

– Same as sprintf but appends to “stream”.
• int printf(char *format [, pointer] …)

– Same as fprintf(stdout, format, …)
• “format” is composed of:

– Regular characters that are copied verbatim
– Conversion specifications of the form

• % [flags] [fieldWidth] [.] [precision] [l] [type]
• Flags are:

– # Alternate form
– - Left alignment
– + Include a sign if appropriate
– space blank should be left before a positive number (i.e. leave space for the +)

• Types are:
– % Print a % character
– d, o, x Decimal, octal, or hex integer
– f Float or double
– e Float or double with exponent
– g Style d, f, or e whichever simplest gives full precision.
– c character
– s string
– u unsigned integer

CS146 121

Positioning a Stream Pointer
• int fseek(FILE *stream, long offset, int whence)

– Sets the position of the next I/O on “stream”. The new position is at a
signed “offset” from the beginning, current position, or the end-of-file,
according as “whence” is 0 (SEEK_SET), 1 (SEEK_CUR), or 2
(SEEK_END). This undoes an ungetc.

• long ftell(FILE *stream)
– Returns the current value of the file pointer for “stream”

• int rewind(FILE *stream)
– Same as fseek(stream, 0L, 0)

CS146 122

Status Enquiries
• int feof(FILE *stream)

– Returns 0 iff no end-of-file was encountered.

• int ferror(FILE *strream)
– Returns 0 iff no error has occurred while readng or wrting this stream.

• void clearerr(FILE *stream)
– Resets the end-of-file and error indicators for this stream.

CS146 123

String/Character Handling
• All “str” functions require input strings be terminated with a null byte.

• Some of the most common ones:
strlen, strcpy, strcmp, strcat

• memcpy not just for strings!

• Some function for testing/converting single characters (ctype.h):
isalpha, isdigit, isspace
toupper, tolower
atoi, atol

CS146 124

Storage Allocation
• Dynamic memory allocation (heap storage!):

malloc, calloc, free, realloc
• An example:

#include <stdio.h>
#include <malloc.h>
struct xx *sp;
main() {

sp = (struct xx *) malloc(5 * sizeof(struct xx)
);

if(!sp) // if (sp == NULL)
{

fprintf(stderr, “out of storage\n”);
exit(-1);

}
}

CS146 125

Date and Time Functions
• Most UNIX time functions have evolved from various sources, and are

sometimes inconsistent, referring to time as one of:
– the number of seconds since Jan 1, 1970 (or Jan 1, 1900)
– the number of clock ticks since Jan 1, 1970 (or Jan 1, 1900)
– the broken down structure “struct tm”

(see /usr/include/time.h)
– the broken down structure “struct timeval”

(see /usr/include/sys/time.h)
• Some are intended for time/date, whereas others are intended for

measuring elapsed time

CS146 126

Environment Interfacing
• Reading environment variables:

char * getenv(char *envname);
• Adding environment variables:

int putenv(char *string);
where string is of the form name=value.

• Executing a shell command:
system(“egrep 128 /etc/hosts | wc”);

(What are the disadvantages of running a command this way?)

CS146 127

Convenient Subshells

• You can also execute a command via the shell and have its output sent
to a pipe instead of stdout:

FILE *rpipe, *wpipe;
rpipe = popen(“ls -atl”, “r”);
... // read stuff from rpipe ...
pclose(rpipe);
wpipe = popen (“cat > foo”, “w”);
... // write stuff to wpipe ...
pclose(wpipe);

• Note that popen(3) is a standard library call that provides a convenient
method of taking advantage of the pipe(2) system call.

CS146 128

Section #9

UNIX System Calls

CS146 129

UNIX System Calls
• Kernel primitives

– Processes and protection
– Memory management
– Signals
– Timing and statistics
– Descriptors
– Resource controls
– System operation support

• System Facilities
– Generic operations
– File system
– Interprocess communications
– Terminals and devices
– Process control and debugging

CS146 130

Host & Process Identifiers
• A HOST refers to the name of the UNIX installation on which a

program runs.

• Each UNIX host associated with it a 32-bit host-id, and a host name.
These can be set (by the superuser) and returned by the calls:

– int status = sethostid(long hostid);
– long hostid = gethostid();
– int status = sethostname(char *name, int len);
– int len = gethostname(char *buf, int buflen);

• On each host runs a set of processes, each of which is identified by an
integer called the process id.

– int pid = getpid();

CS146 131

Process Creation & Termination
• A new process is created by making a logical duplicate of an existing

process:
int pid = fork();

• The fork call returns twice, once in the parent process, where pid is the
process identifier of the child, and once in the child process where the
pid return value is 0.

• A process can overlay itself with the initial memory image of another
program, passing the newly started program a set of parameters:

int status = execve(char *name, char **argv, char **envp);
(Note that including the types above like “char **” are not correct syntax.)

• A process may terminate by executing:
void exit(int status);

returning 8 bits (low-order) of exit status to its parent.
• A process may also terminate abnormally.

CS146 132

Termination Reporting
• When a child process terminates, the parent process may elect to

receive information about the event which caused termination of the
child process.

int wait(union waitstatus *waitstatus)
• There are three possibilities:

1) No children
• ERROR

2) One or more dead children (zombies)
• Call returns immediately with the status of one of the zombies chosen at

random (thus burying it).
3) No dead children

• Call blocks until there is one, then does #2.

• An additional non-blocking call returns the same information as wait,
but also includes information about resources consumed during the
child’s lifetime.

int wait3(union waitstatus *astatus, int options, struct ruasge *arusage);

CS146 133

User & Group ID’s
• Each process in the system has associated with it a:

– real user id
– effective user id
– real accounting group id
– effective accounting group id
– set of access group ids

• These are returned by:
int ruid = getuid();
int euid = geteuid();
int rgid = getgid();
int egid = getegid();
int ngrps = getgroups(int gsetsize, int gidset[gsetsize]);

• The user and group id’s are assigned at login time using:
int status = setreuid(int ruid, int euid);
int status = setregid(int rgid, int egid);
int status = setgroups(int gsetsize, int gidset[gsetsize]);

• Unless the caller is superuser, ruid/gid must be equal to either the
current real or effective user/group id.

• The setgroups call is restricted to the superuser.

CS146 134

Process Groups
• Each process in the system is normally associated with a process

group.
• The group of processes in a process group is referred to as a job, and

manipulated by system software (such as the shell).
• The process group of a process is returned by:

int pgrp = getpgrp(int pid);
• When a process is in a specific process group it may receive software

interrupts affecting the group (causing it to suspend or resume
execution, to be interrupted, or to be terminated).

• The process group associated with a process may be changed by:
int status = setpgrp(int pid, int pgrp);

• Newly created processes are assigned process id’s distinct from all
processes and process groups, and inherit pgrp.

• A non-superuser process may set its process group equal to its process
id.

• A superuser process may set the process group of any process to any
value.

CS146 135

Memory Management
• Each process begins with three logical areas of memory called text,

data, and stack.
– The text area is read-only and shared.
– The data and stack areas are private to a process.

• The stack area is automatically extended as needed.

• The data area is extended and contracted on program request by the
call:

void *newBreak = sbrk(int incr);

• The size is actually changed by units of pagesize, whose CPU-
dependent value is returned by:

int pagesize = getpagesize();

CS146 136

Time Zones
• The system’s notion of the current UTC (Universal Coordinated Time,

formerly Greenwich Mean Time), and current time zone is set and
returned by:
#include <sys/time.h>
struct timeval {

long tv_sec; /* seconds since Jan 1, 1970 */
long tv_usec; /* and microseconds */

};
struct timezone {

int tz_minuteswest; /* of UTC */
int tz_dsttime; /* type of dst correction */

};
int status = settimeofday(struct timeval *tvp, struct timezone *tzp);

int status = gettimeofday(struct timeval *tvp, struct timezone *tzp);

CS146 137

Inter-Process Communication (IPC)

• Data exchange techniques between processes:
– Data stream exchange: files, pipes, sockets
– Shared-memory model
– Signals

• Limitations of files for inter-process data exchange:
– Slow!
– One typically must finish writing a file before the other process

reads it.
– Could create LARGE temporary files.

• Limitations of pipes:
– Two processes must be running on the same machine
– Two processes communicating must be “related”

• Sockets overcome these limitations but are more complicated(we’ll
cover sockets later).

CS146 138

dup(2) and dup2(2)
newFD = dup(oldFD);
if(newFD < 0) { perror(“dup”); exit(1); }

or, to force the newFD to have a specific number:

returnCode = dup2(oldFD, newFD);
if(returnCode < 0) { perror(“dup2”); exit(1);}

• In both cases, oldFD and newFD now refer to the same file
• For dup2(), if newFD is open, it is first automatically closed
• Note that dup() and dup2() refer to fd’s and not streams

– A useful system call to convert a stream to a fd is
int fileno(FILE *fp);

CS146 139

pipe()
• The pipe() system call creates an internal system buffer and two file

descriptors: one for reading and one for writing
• Pipes are FIFO(First In, First Out) constructs.

• With a pipe, typically you want the stdout of one process to be
connected to the stdin of another process … this is where dup2()
becomes useful.

• Usage:
int fd[2], status;
status = pipe(fd);
/* fd[0] for reading; fd[1] for writing */
If(status < 0) perror(“pipe”);

CS146 140

pipe()/dup2() example

/* equivalent to “sort < file1 | uniq” */
int fd[2];
FILE *fp = fopen(“file1”, “r”);
dup2(fileno(fp), fileno(stdin));
fclose(fp);
pipe(fd); // populates both fd[0] and fd[1]
if(fork() != 0) { // Parent

dup2(fd[1], fileno(stdout));
close(fd[0]); close(fd[1]); // DON’T FORGET THIS!
execl(“/usr/bin/sort”, “sort”, (char *) 0); exit(2);

} else { // child
dup2(fd[0], fileno(stdin));
close(fd[0]); close(fd[1]);
execl(“/usr/bin/uniq”, “uniq”, (char *) 0); exit(3);

}

CS146 141

Section #10

Debugger (gdb)

CS146 142

Debugging
• A debugger is a program that runs other programs in a controlled

environment so that you can execute the program line-by-line, view
and modify variables, set breakpoints to stop execution at specified
points in the code, and watchpoints which will stop execution
anywhere when the value of a variable changes. As such, a debugger is
perhaps more aptly called a bug finder.

• By default, an a.out file contains the symbol tables of all the object
files it was made from.

• More info, like line numbers and variable types, can be inserted into an
object(.o) file by compiling with debugging turned on (the -g flag for
most UNIX compilers). These extra symbols are conveyed from the
object file to the a.out executable.

CS146 143

ptrace
• Debugging is initiated by the ptrace system call.

• Generally, the debugger does a fork, and the child enables itself to be
debugged by calling ptrace. Without this, the parent would not be
allowed to debug the child. Then the child exec’s the program to be
debugged.

• Using ptrace, the parent can examine and modify any memory location
of the child. By looking at the child’s symbol table (in the a.out file),
the parent can examine the child’s memory that corresponds to
variable names.

CS146 144

How ptrace works
• A process that has executed ptrace(0) (e.g. the child of the debugger

before it exec’s the program) treats signals differently than a normal
process.

• It also has a writable text segment (text segment is usually readonly)
• It executes normally until it receives a signal, at which time it stops,

and the parent is notified via the wait system call.
• The parent may then use ptrace to examine and modify the child’s

memory (including the text segment).
• The child remains stopped until the parent orders it to continue by

calling ptrace. The parent can clear the signal before continuing the
child, so the child never actually “sees” the signal unless the parent
wishes it.

CS146 145

Breakpoints
• Since the parent can modify any memory location, it can change the

code (text segment) of the child.

• For example, before (re)starting the child, the parent can insert code to
generate a SIGSEGV at a specific location, for the sole purpose of
stopping the child at the location.

• This called “inserting a breakpoint.”

• When the child executes that code, it gets a SIGSEGV, causing it to
stop. The parent can then examine the child. To clear a breakpoint, the
parent re-writes the original code before ordering the child to continue.

CS146 146

Examples
$ gcc -g foo.c # using “-ggdb” adds even more info
$ gdb a.out
(gdb) break main
Breakpoint 1 at 0x10453; file foo.c; line 9
(gdb) cond 1 (argc > 1)
(gdb) run bar
<break in function main(), line 9 of foo.c; argc=2,

argv=<“a.out”, “bar”>
(gdb) print argc
$1 = 2
(gdb) print argv[1]
$2 = “bar”
(gdb) whatis argc
type = int
(gdb) cont
(continuing)

CS146 147

Stack Frames
• A stack frame contains all the information pertinent to a function call -

local (automatic) variables, parameters, return address, etc.

• A new stack frame is created each time a function is called at run time
and discarded when the function returns.

• After hitting a breakpoint, the debugger can examine the current stack
frame (using ptrace), or any stack frame “above” it.

• The stack frame above the current one belongs to the function that
called the current one, etc.

• The debugger can identify the function that called the current function
by searching for the function that contains the return address in the
stack frame.

CS146 148

Other debugger commands
• backtrace - show the current list of stack frames
• step - execute a single piece of code (could be part of a line),

descending into functions.
• next - execute a single line, call but do not descend into functions.
• [return] - re-execute the previous debugger command.
• help - get online help.

• gdb commands have shortforms(bt, s, n, b, p) which save on typing.

• Note that gdb is the GNU Debugger used for debugging programs
written using gcc/g++ (the GNU C & C++ compilers). The classic
compiler program cc (usually pre-ANSI K&R C) uses the dbx
debugger. dbx has a different set of commands. Some systems have cc
configured to point to gcc or some other vendor compiler.

CS146 149

Section #12

X Window System

CS146 150

What is X?
• The X Window System (it can correctly be called X11 or X) is all of

these:
– a protocol between two processes
– a system that defines window operations, low-level graphical

rendering commands, and input request commands
– a device-independent, portable window system
– a network-transparent window system

CS146 151

X History
• At one time there was the “W” windowing package developed at

Stanford (Paul Asente).
• X was developed jointly by MIT’s Project Athena and Digital

Equipment Corporation, with others also contributing.
• X Version 10 Release 4 (X10.4) was released in 1986 but was soon

superceded.
• X11R1 was released in Sept 1987.
• The current version is X11R6 but many are still using X systems based

on X11R4 or X11R5.

• X is a network-based windowing system. It was designed to work
between many different computers.

CS146 152

X Servers
• The X Server is program that controls some of the “limited resources”

on a machine: the display, keyboard, and pointer(eg mouse).
• A server:

– Allows access to the display by multiple clients
– Interprets network messages from clients
– Forwards user input to clients
– Handles [graphics] requests
– Allocates resources
– Maintains complex data structures (windows, cursors, fonts,

graphics contexts)

• An X Server is somewhat unusual because it defines a display to have
one or more screens.

CS146 153

X Clients
• An X Client is any application that connects to the X server. Any

program that uses the screen or gets information from the user is an X
client.

• A client:
– Makes requests to the server (eg draw a line)
– Processes messages from the server (usually user events)

Workstation

X Server Client
Requests

User input

CS146 154

X Client/Server Model

Server
Queue

Xlib
Queue

Server

Application

Network

Network
(requests)

(events)

CS146 155

X Application Architecture
• Xt-based applications can deal directly with all the layers of X.

– the X library
– the Intrinsics
– and the widget set.

• Xlib-based applications can deal directly with the X library layer of X
only.

• Motif is an Xt-based widget toolkit.

Application

Motif (widget set)

Xt Intrinsics

Xlib

OS and networking

Hardware platform

Xt-based applications

Xlib-based applications

CS146 156

Widgets
• When using the Xt Toolkit, the ‘things’ in the toolkits are widgets.

– A widget is an interface object that conforms to the Toolkit Intrinsics API.
• It is a user interface building block; it has a particular job and knows

how to do it.
• Examples of widgets:

– List
– Button
– Form/Layout
– Text Box
– Scrollbar
– Label

CS146 157

X Window System Architecture

Workstation
X Server

Device Drivers

Client
Application

Xlib

Client
(Window Manager)

Xlib

Client
Application

Toolkit
Xlib

X Window System
protocol requests are
sent from Clients

Events and replies are
passed back to Clients

CS146 158

Window Manager
• The window manager is just another X Client written using the X

library. It is given special authority by convention to control the layout
of windows on the display.

CS146 159

XTerm
• Xterm is just another client app. It is NOT a shell.

• An Xterm creates a virtual terminal that a shell believes to be a
character terminal like any other physical terminal hooked up via a
serial cable.

CS146 160

Section #13

Sockets, select(2), misc.

CS146 161

Sockets
• Sockets are an extension of pipes, with the advantages that the

processes don’t need to be related, or even on the same machine.
• A socket is like the end point of a pipe -- in fact, the UNIX kernel

implements pipes as a pair of sockets.
• Two (or more) sockets must be connected before they can be used to

transfer data.
• Two main categories of socket types … we’ll talk about both:

– the UNIX domain: both processes on same machine
– the INET domain: processes

CS146 162

Connection-Oriented Paradigm

Create a socket
socket()

Assign a name to the socket
bind()

Establish a queue for connections
listen()

Extract a connection from the queue
accept()

SERVER

read()

write()

CLIENT

Create a socket
socket()

Initiate a connection
connect()

write()

read()

established

CS146 163

Multiplexed I/O
• Consider a process that reads from multiple sources without knowing

in advance which source will provide some input first
• Three solutions:

– fork a process for each input source, and each child can block on
one specific input source (can be hard to coordinate/synchronize)

– alternate non-blocking reads on input sources (called “polling”,
and it’s wasteful of CPU)

– use the select() system call …

CS146 164

select(2)
• Usage:

#include <sys/time.h>
#include <sys/types.h>
int select(int nfds,

fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout);

• where the three fd_set variables are file descriptor masks
• fd_set is defined in <sys/select.h>, which in included by

<sys/types.h>

CS146 165

select(2) cont.
• The first argument (nfds) represents the number of bits in the masks

that will be processed. Typically, this is 1 + the value of the highest fd
• The three fd_set arguments are bit masks … their manipulation is

discussed on the next slide
• The last argument specifies the amount of time the select call should

wait before completing its action and returning:
– if NULL, select will wait (block) indefinitely until one of the file

descriptors is ready for i/o
– if tv_sec and tv_usec are zero, select will return immediately
– if timeval members are non-zero, the system will wait the specified

time or until a file descriptor is ready for i/o
• select() returns the number of file descriptors ready for i/o

CS146 166

“FD_” macros
• Useful macros defined in <sys/select.h> to manage the masks:

void FD_ZERO(fd_set &fdset);
void FD_SET(int fd, fd_set &fdset);
void FD_CLR(int fd, fd_set &fdset);
int FD_ISSET(int fd, fd_set &fdset);

• Note that each macro is passed the address of the file descriptor mask

CS146 167

select(2) example
#include <sys/types.h>
fdset rmask;
int fd; /* a socket or file descriptor */
/* use socket() to assign fd to a socket */
FD_ZERO(&rmask);
FD_SET(fd, &rmask); FD_SET(fileno(stdin), &rmask);

while(1) {
select(fd+1, &rmask, NULL, NULL, NULL);
if(FD_ISSET(fileno(stdin), &rmask))

/* read from stdin */
if(FD_ISSET(fd, &rmask))

/* read from descriptor fd */
FD_SET(fd, &rmask); FD_SET(fileno(stdin), &rmask
);

}

CS146 168

Section #13 A

Miscellaneous
(can be skipped if short on time)

CS146 169

Creation & Removal
• Directory creation and removal:

int status = mkdir(char *path, int mode);
int status = rmdir(char *path);

• File creation:
#include <sys/file.h>
int fd = open(char *path, int flags, int mode);

mode:
O_RDONLY 000
O_WRONLY 001
O_RDWR 002
O_NDELAY 004 /* non-blocking*/

• Device creation
int status = mknod(char *path, int mode, int dev);

• File removal(except for directories):
int status = unlink(char *path);

CS146 170

Process Priorities
• The system gives CPU scheduling priority to processes that have not

used CPU time recently. Well, sort of.
• Process scheduling is a complex dance to try to second-guess the best

allocation of CPU time to jobs to provide good interactive response
and good throughput.

• It is possible to determine the current priority (an integer in the range
-n to +n), or alter this priority by:

#define PRIO_PROCESS 0
#define PRIO_PGRP 1
#define PRIO_USER 2

int prio = getpriority(int which, int who);

int status = setpriority(int which, int who, int prio);

CS146 171

Resource Utilization
• The resources used by a process are returned by:

#include <sys/resource.h>
int status = getrusage(int who, struct ruasge *rusage);

• The who parameter specifies whose resource usage is to be returned:
those of the current process, or those of all terminated children of the
current process.

• Resource usage information is returned concerning:
• user time
• system time
• max core resident set
• data mem size
• page reclaims
• page faults
• swaps
• block inputs
• signals received
• ...

CS146 172

Resource Limits
• Resource usage may be controlled by:

#include <sys/resource.h>
struct rlimit {

int rlim_cur;
int rlim_max;

}

int status = getrlimit(int resource, struct rlimit *r);
int status = setrlimit(int resource, struct rlimit *r);

• Only the superuser can raise rlim_max.
• Other processes may alter rlim_cur within the range from 0 to

rlim_max or (irreversible) lower rlim_max.
• The various resources whose limits may be controlled in this manner

are:
- milliseconds of CPU time - maximum stack segment size
- maximum file size - maximum core file size
- maximum data segment size - maximum resident set size

CS146 173

System Support
• The UNIX file system name space may be extended by:

int status = mount(char *blkdev, char *dir, int ronly);
• A device may be made available for swappng or paging by:

int status = swapon(char *blkdev, int size);
• A file system not currently being used can be unmounted by:

int status = unmount(char *dir);
• All system cache buffers may be scheduled to be cleaned by:

sync();
• The system may be rebooted by:

reboot(int how);

• The system optionally keeps an accounting record in a file for each
process that exists on the system. The accounting can be enabled to a
file by:

int status = acct(char *path);

CS146 174

Descriptors
• Descriptors are used to access resources such as files, devices, and

communication links.

• A process access its descriptors indirectly through its own descriptor
reference table, whose size is given by:

int nds = getdtablesize();

The entries in this tables are referred to by integers in the range
0 .. nds-1.

CS146 175

Managing Descriptors
• A duplicate of a descriptor reference may be made by:

int new = dup(int old);
The new descriptor reference is indistinguishable from the old one.

• A copy of a descriptor reference may be made in a specific slot by:
int status = dup2(int old, int new);

This causes the system to deallocate the descriptor reference count
occupying slot new, if any, replacing it with a reference to the same
descriptor as old.

• A descriptor reference deallocation may also be performed by:
int status = close(int old);

CS146 176

Reading File Attributes
• Detailed information about the attributes of a file may be obtained wit

the call:
#include <sys/stat.h>
int status = stat(char *path, struct stat *stb);
int status = fstat(int fd, struct stat *stb);

• The stat structure includes:
• file type
• protection
• ownership
• access times
• size
• hard link count

• If the file is a symbolic link, the status of the link itself may be found
by:

int status = lstat(char *path, struct stat *stb);

CS146 177

Modifying File Attributes
• Newly created files are assigned the user ID of the process that created

it, and the group ID of the directory in which it was created.

• Ownership can be changed by:
int status = chown(char *path, int owner, int group);
int status = fchown(int fd, int owner, int group);

• The protection attributes associated with a file may be changed by:
int status = chmod(char *path, int mode);
int status = fchmod(int fd, int mode);

• The access and modify times on a file may be changed by:
int status = utime(char *path, struct timeval *tvp[2]);

CS146 178

Links & Renaming
• Links allow multiple names for a file to exist. They exist

independently of the file linked to.
• Two types of links exist:
• Hard Links

– A reference counting mechanism that allows files to have multiple names
within the same file system.

– A hard link insures the target file will always be accessible even after its
original directory entry is removed.

int status = link(char *path1, char *path2);
• Symbolic Links

– Cause string substitution during the path name interpretation process.
– A symbolic link does not insure that the target file will be accessible. In

fact, a symbolic link to a non-existent file can be created.
int status = symlink(char *path1, char *path2);
int len = readlink(char *path, char *buf, int size);

• Atomic renaming of file system resident objects is done by:
int status = rename(char *old, char *new);

CS146 179

Extension & Truncation
• Files are created with zero length and may be extended by writing to

them.
• While a file is open the system maintains a pointer into the file

indicating the current location in the file associated with the descriptor.
This pointer may be moved by:

#include <sys/file.h>
int oldoffset = lseek(int fd, int offset, int whence);
#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2

• Files may have “holes” in them: void areas where data has never been
written. Holes are treated as zero-valued bytes.

• Files may be truncated by:
int status = truncate(char *path, int newlen);
int status = ftruncate(int fd, int newlen);

CS146 180

Checking Accessibility
• A process running may interrogate the accessibility of a file to the real

user. This may be of particular interest to processes with different real
and effective user ids.

#include <sys/file.h>
int accessible = access(char *path, int how);
#define F_OK 0
#define X_OK 1
#define W_OK 2
#define R_OK 3

• The presence or absence of advisory locks does not affect the result of
access.

CS146 181

Locking
• The file system provides basic facilities that allow cooperating

processes to synchronize their access to shared files.
• The system does not force processes to obey the locks; they are of an

advisory nature only.
• Locking is performed after on open call by:

#include <sys/file.h>
int status = flock(int fd, int how);
#define LOCK_SH 1 /* shared lock */
#define LOCK_EX 2 /* exclusive lock */
#define LOCK_NB 3 /* non-blocking */
#define LOCK_UN 4 /* unlock */

• If an object is currently locked by another process when an flock call is
made, the called will be blocked until the current lock owner releases
the lock, unless “how” is LOCK_NB, in which case the call is non-
blocking and informational only.

CS146 182

Section #14

Signals

CS146 183

Signals
• The system defines a set of signals that may be delivered to a process.
• A process may do one of three things with a signal:

– Handle
• The process specifies a handler function that is to be called on receipt

of the signal. When the function returns, control is returned to the
point in the program at which the signal occurred.

– Block
• Set mask to prevent delivery of signal until unmasked.

– Ignore
• If the signal occurs, no action is taken.

– Default
• If the signal occurs, the UNIX default action (which varies from

signal to signal) is taken. This may be one of:
– Do nothing.
– Process termination (with or without core dump)
– Process suspension.

CS146 184

Signal Types
• The various types of signals are (/usr/include/signal.h):

SIGFPE Floating point exception
SIGILL Illegal instruction
SIGSEGV Attempting access to addresses outside the currently assigned areas of memory.
SIGBUS Accesses that violate memory protection constraints.
SIGIOT I/O trap
SIGEMT Emulation trap
SIGTRAP Single-step trap
SIGINT Interrupt from keyboard (^C)
SIGQUIT Same as SIGINT but with a core dump (^\)
SIGHUP “Hang up” - for graceful process terminations.
SIGTERM Terminate by user or program request.
SIGKILL Same as SIGQUIT but cannot be caught, blocked, or ignored.
SIGUSR1,SIGUSR2 User defined signals.

SIGALRM Alarm – timeout of a timer (used by alarm(2)) (wall-clock time)
SIGVTALM Alarm-timeout (CPU time)
SIGPROF Expiration of interval timers.
SIGIO If requested, occurs when I/O possible to a descriptor.
SIGURG Urgent condition.
SIGSTOP Causes suspension. Cannot be caught.
SIGTSTP Suspend by user request.
SIGTTIN Suspend because input attempted from terminal.
SIGTTOU Suspend because output attempted to terminal.
SIGCHILD Child process’ status has changed.
SIGXCPU Occurs when a process near its CPU time limit.
SIGXFSZ Occurs when limit on file size creation has been reached.

CS146 185

Handling Signals
• A process changes the way a signal is delivered with:

#include <signal.h>
struct sigvec {

int (*sv_handler)(int signo, long code, struct sigcontext *scp);
int sv_mask;
int sv_flags;

};
int status = sigvec(int signo, struct sigvec *sv, struct sigvec *csv);

• Possible values for sv_handler are a function, SIG_IGN, or SIG_DEF.
• sv_mask specifies which additional signals are to be masked on receipt

of this one (implicitly includes signo).
• Sv_flags indicate whether system calls should be restarted if the signal

handler returns, and whether the signal handler should operate on the
normal stack or an alternate stack.

CS146 186

Signal Delivery
• When a signal condition arises for a process, the signal is added to a

set of signals pending for the process.
• If the signal is not currently blocked by the process then it will be

delivered.

• Signal delivery involves:
1) Adding the signal to be delivered and those signals specified in the

sv_mask to a set of those masked (ie., blocked) for the process.
2) Saving the current process’ context
3) Placing the process in the context of the signal handling routine.

• The context of the signal handler is so arranged that if the function
returns normally the original signal mask will be restored and the
process will resume execution in the original context.

CS146 187

Signal example
#include <stdio.h>
#include <stdlib.h>
#include <sys/signal.h>
int i=0;
void quit(int sigNum) {

fprintf(stderr, “\nInterrupt (signal=%d,i=%d)\n”,
sigNum, i);
exit(123);

}
void main(void) {

signal(SIGINT, quit);
signal(SIGTERM, quit);
signal(SIGQUIT, quit);
while(1)

if (i++ % 5000000 == 0) putc(‘.’, stdout);
}

CS146 188

Blocking Signals
• Blocked signals are added to the mask.

• If masked signals occur then delivery is delayed until the signals are
unblocked or unmasked.

• To add a set of signals to the mask:
– long oldmask = sigblock(long mask);

• To set the mask:
– long oldmask = sigsetmask(long mask);

• To mask a set of signals, wait for an unmasked signal, and then restore
the original mask:
– int signo = sigpause(long mask);

CS146 189

Sending Signals
• Signals may be sent either from the keyboard via the terminal driver or

from another process:
– int status = kill(int pid, int signo);
– int status = killpgrp(int pgrp, int signo);

• Unless the process belongs to root (the superuser), it must have the
same effective user id as the process receiving the signal.

• Signals are also sent implicitly from a terminal device to the process
group associated with the terminal when certain input characters are
typed (like ^C, ^\, ^Z, ^Y).

CS146 190

Signal Stacks
• For applications that change stacks periodically, signal delivery can be

arranged to occur on a stack that is independent of the one in use at the
time of signal delivery.

struct sigstack {
void *ss_sp;
int ss_onstack;

};
int status = sigstack(struct sigstack *ss, *oss);

CS146 191

Interval Time
• The system provides each process with three interval times:

– REAL - Real time intervals. SIGALRM is delivered when this timer
expires.

– VIRTUAL - Virtual time runs only when the process is executing user
code. SIGVTALRM is delivered when this timer expires.

– PROF - Profiled time runs when the process is executing user code or
system code on behalf of that process. SIGPROF is delivered when this
timer expires.

• A timer is set or read by:
struct itimerval {

struct timeval it_interval;
struct it_value; /* current value */

};
int status = getitimer(int which, struct itimerval *value);
int status = setitimer(int which, struct itimerval *v, struct itimerval *ov);

CS146 192

Execution Profiling
• Execution profiling means gathering statistics on how long a process

executes particular pieces of code.

• Profiling is turned on by:
– int status = profil(void *buf, int bufsize, int offset, int scale);

• This begins sampling of the program counter, with statistics
maintained in the user provided buffer.

Advanced Shell Stuff

CS146 193

Fork+exec are expensive; avoid shell loops that fork processes each iteration, eg:
for i in *; do if [-s "$i"]; then ls -l "$i"; fi; done # ls non-zero-sized files
vs.
for i in *; do [-s "$i"] && echo "$i"; done | xargs ls -l # bit better
vs.
ls -l | awk '$5{print}' # best: only two processes regardless of #files.

Large-scale renaming (eg., for backup):
for i in *.c; do b=`basename "$i" .c`; mv "$i" "$b-bak.c"; done
vs.
ls *.c | sed 's/\.c$//' | while read b; do mv "$b.c" "$b-bak.c"; done
vs.
ls *.c | awk '{sub("\.c$",""); printf "mv %s.c %s-bak.c\n",$0,$0}'

Common Unix Commands

CS146 194

• ls options: -l, -a, -A, -t, -S, -r, -F, -C
• less(1), wc, cp, mv (rename), with options -i, -f (NO

BACKUP!)
• cd, pwd, mkdir, rmdir, rm (-rf), which, du, df
• When using “rm”, be careful with accidental spaces!!

“rm –rf *_.c”
• basic shell globbing vs. regular expressions
• Filters: [ef]grep, sed, tr, cut, diff (incl. stdin as “-”)
• Editors: vi/vim, emacs
• People + Processes: who, w, last, ps, uptime, top, kill,

time, date
• Archivers: (un)zip, tar, gzip, xz, 7zip (slow but best

compression)

awk: the Swiss Army Knife of filters
Awk is a complete programming language designed
for line-by-line processing of text files. It features
regular expressions, math, loops, functions with
parameters and return values, string manipulation…
Most Unix filters could be implemented in awk:
• cat *.c  awk ‘{print}’ *.c
• grep ‘[0-9]G$’  awk ‘/[0-9]G$/{print}’
• cut –f2  awk ‘BEGIN{IFS=“\t”}{print $2}’
• wc  awk ‘{w+=$NF; c+=length($0)+1}

END{print NR,w,c}’

CS146 195

awk: Basic Outline

CS146 196

• C-like syntax, including printf
• Like any Unix filter, it processes text files line-by-line
• INPUT: filenames, if given; otherwise standard input
• Code blocks are executed on any line that “matches” the

Boolean expression immediately preceding it:
NF==7 {print “this line has 7 fields”}
/foo/ {print “this line has a foo in it”}
NF==1 && 1*$1>0{y=cos($1); print y}

{print “empty Boolean is always true”}
• Entire awk program is given on awk’s command line as the first

argument (previous slide examples)

awk: built-in variables and functions

CS146 197

• Lots of built-in variables, such as:
• NF = number of whitespace-separated “fields” on this line
• fields on the current line are $1, $2, $3,…, $NF
• current line number = NR (number of “records”)
• ARGIND = integer argument index for current input file
• FILENAME = name of current input file (at ARGIND)
• ENVIRON[“HOME”]  your HOME directory
• PROCINFO[“pid”]  pid of awk

• Lots of built-in functions, such as:
• length(s): length of a string, or #elements in an array
• Math: basic + - * / % int(), but also floating point:

• sin(), cos(), tan(), exp(), log(), atan2(), sqrt(), rand(),
srand(), sort(), index(), [g]sub(), and many more

awk: user-defined functions

CS146 198

function fact(k) { # recursive factorial function
if(k<=0) return 1;
else return k*fact(k-1);

}
function max(a,b) {if(a>b) return a; else return b;}
function abs(x) {if(x<0) return –x; else return x;}
function ASSERT(condition, errMsg) {

if(!condition) {
print errMsg > “/dev/stderr”
exit(1)

}
}

CS146 199

• Data types: strings, floats; associative arrays
• 0 and the empty string evaluate to “false”
• variables default to string type unless arithmetic is performed:

• “1” != “01”, but “1” == 1*”01”, because the “01” is
automatically “promoted” to number when multiplied

• variables are created at the first reference, even if not assigned
a value (in which case its value becomes the empty string “”)
• This applies to array elements too, so DO NOT check to

see if an element exists with “if(array[i])”, because this will
cause array[i] to come into existence (but empty).

• Instead, use “if(i in array)”, which doesn’t create anything.
• All arrays are associative, even if empty. To force a variable

name to become an array even if you want it to be empty:
• delete A; A[0]=1; delete A[0];
• A is now explicitly an array but with zero elements.

awk data types, variables, etc

Awk #2: useful syntax/functions

CS146 200

• if(element in array); also for(element in array)
• Careful of automatic creation: don’t do if(array[element])
• index, length, sub, gsub, isarray, (s in a)
• All variables are GLOBAL except function parameters… but you

can declare more parameters than you actually expect… all such
extra parameters become local variables. (I know… yuck), eg:

exp(x) using Taylor series; call it with just (x)
function myExp(x, term, sum, k) { # local vars

term=1; sum=0;
for(k=1; k<100; k++) { # 100 terms

sum += term
term *= x/k

}
return sum;

}

CS146 201

Personal examples of mine:
• dog(1): like cat(1), but accepts single ‘.’ as EOF
• whoson(1): one-line solution to previous Ass’t question
• process_tree, find-init
• storing edge lists + computing degrees of nodes in graphs.

awk examples

CS146 202

Section #15

Concurrency (beyond ICS53?)
Process Synchronization

CS146 203

Circular Buffers
• A circular buffer is a method of implementing a first-in-first-out

(FIFO) queue.
• Items are inserted into the queue at position in, and fetched from

position out.
• The buffer “wraps around” at the endpoints, so the position after N-1 is

position 0.
• These are also referred to as bounded buffers because no more than N

items can be held at one time.

char Fetch(void) {
if (used == 0)

ERROR(“buffer underflow!”);
char nextc = buffer[out];
out = (out + 1) % N;
--used;
return nextc;

}

char buffer[N];
int in=0, out=0, used=0;
void Insert(char c) {

if (used == N)
ERROR(“buffer overflow!”);

buffer[in] = c;
in = (in + 1) % N;
++used;

}

CS146 204

The Producer-Consumer Problem
• Consider what happens if two processes have concurrent read-write

access to the buffer.
• The Producer process inserts things into the buffer.
• The Consumer process removes things from the buffer.
• Unless we’re very lucky, there will be problems with the following.

/* Consumer Process */

while(1) {
next_val = Fetch();
consume_item(next_val);

}

/* Producer Process */

char val;
while(1) {

val = produce_item();
Insert(val);

}

CS146 205

Critical Sections Again
Recall...
• A critical section is an area of code or data that depends on there being

only one process inside at any one time for correct operation to take
place. (e.g. a linked-list data structure or a circular buffer)

• Code that modifies a shared variable usually has the following form:
ENTRY SECTION

Critical Section
EXIT SECTION

Remainder Section

• Entry Section - The code that requests permission to modify the shared
variable.

• Critical Section - The code that modifies the shared variable.
• Exit Section - The code that releases access.
• Remainder Section - The remaining code.

CS146 206

Atomic Operations
• An Atomic Operation is an operation that, once started, completes in a

logically indivisible manner. Most solutions of the critical-section
problem rely on some form of atomic operation.

• On a machine with a single CPU, individual machine instructions are
often atomic but necessarily so.

• Note that:
value = 5;

is a C statement and probably translates into several machine
instructions.

CS146 207

Two-Process Mutual Exclusion
(Wrong Algorithm #1)

• Assume there are two processes, 0 and 1.
• We will have a variable called turn which is -1 if it’s nobody’s turn,

otherwise it’s 0 or 1.
• When a process wants to enter its critical section, it checks to see if

turn is -1, then sets turn to itself.
• Both processes execute the same code below except the have different

values of id.

shared int turn = -1;
/* Process 0 */
while(1) {

while(turn != -1) /* busy wait */;
turn = 0;
/* critical section */
turn = -1;
/* remainder section */

}

/* Process 1 */
while(1) {

while(turn != -1) /* busy wait */;
turn = 1;
/* critical section */
turn = -1;
/* remainder section */

}

CS146 208

Two-Process Mutual Exclusion
(Wrong Algorithm #2)

• Idea: Don’t be greedy and take control. Be courteous by waiting for it
to be given to you.

local const int id; /* initialized to 0 or 1, depening on which process */
shared int turn = 0; /* initialize to one of them */

/* Process 0 */
while(1) {

while(turn != id) /* wait */;

/* critical section */
turn = 1-id;
/* remainder section */

}

/* Process 1 */
while(1) {

while(turn != id)/* wait */;

/* critical section */
turn = 1-id;
/* remainder section */

}

CS146 209

Two-Process Mutual Exclusion
(Wrong Algorithm #3)

• Idea: Check to see if the other process wants to enter its critical
section. If not, then it’s OK to enter.

• When you want to enter, turn on a flag.

shared int want[2] = { 0, 0 };
local const int id = /* initialized to 0 or 1 for process id*/

/* Process 0 */
while(1) {

want[id] = 1;
while(want[1-id]);
/* critical section */
want[id] = 0;
/* remainder section */

}

/* Process 1 */
while(1) {

want[id] = 1;
while(want[1-id]);
/* critical section */
want[id] = 0;
/* remainder section */

}

CS146 210

Two-Process Mutual Exclusion
• Dekker first solved the problem in the early 1960’s but his solution

allowed starvation to occur in the presence of contention.
• Peterson came up with a solution in 1981 that was simpler and didn’t

suffer from starvation problems.
• Remember we are only assuming memory interlock for these

algorithms.

• The idea combines the notions from the last two incorrect algorithms.
• When you want to enter your critical section, turn on your flag.
• Then offer turn to the other process. If it wants it, it gets it; otherwise

you can take it.

CS146 211

Peterson’s Algorithm
shared int want[2] = { 0, 0 };
shared int turn =0;
local const int id = /* initialized to 0 or 1 for process number */

/* Process 0 (id == 0) */
while(1) {

want[id] = 1;
turn = 1 - id;
while(want[1-id] && turn == 1-id);
/* critical section */
want[id] = 0;
/* remainder section */

}

/* Process 1 (id == 1)*/
while(1) {

want[id] = 1;
turn = 1 - id;
while(want[1-id] && turn == 1-id);
/* critical section */
want[id] = 0;
/* remainder section */

}

CS146 212

The Test-and-Set Instruction
• Things are much easier when the hardware provides a mechanism to

implement mutual exclusion without the need for Peterson’s algorithm.
• Test-and-Set is one such machine instruction that is available on some

processors. It defined as an atomic operation that implements the
following logical function:
int TestAndSet(int *p) {

int value = *p;
*p = 1;
return value;

}

• In assembly language, entering a critical section might look like:
loop: tset busy

branch-if-zero critical section
jmp loop

CS146 213

Mutexes
• We have seen how two processes can ensure mutual exclusion.
• Regardless of the implementation, it is often sufficient to assume the

existence of a high level locking facility with a simple call interface.
– int MutexBegin(Boolean block); // block, or return FALSE if

you’re not allowed to enter your critical section
– void MutexEnd(void);

• The above functions would be suitable for a single global lock.
• It is often better to organize things into localized locks.

CS146 214

Process Synchronization
• Locking critical sections using mutexes works well for short

operations. However it doesn’t work well for unbounded waiting.
• Recall the Producer/Consumer problem. If the consumer finds an

empty buffer, it must wait until the producer can add to the buffer. The
consumer doesn’t know how long it has to wait. With only
MutexBegin/MutexEnd, it would have to spin in a busy loop to keep
checking for more work.

• Condition Variables are used to sleep for some event or condition and
wake-up when that condition is fulfilled.

CS146 215

Semaphores
• A semaphore provides two operations:

– Wait (down, P, lock)
– Signal (up, V, unlock)

• Dijkstra proposed the semaphore concept in 1965.
• P and V are from the Dutch words passeren (to pass) and vrygeven (to

release).

• A semaphore, s, is a non-negative integer that is atomically updated
using the P and V primitives. Note the fact that it is an integer with the
special update properties.

• An analogy to marbles in a bowl. s is the number of marbles, P(s) tries
to take a marble (it may have to wait), and V(s) puts one marble back
(it might wake up another process doing a P(s)).

CS146 216

Implementing Semaphores
void Signal(int *s) // up, unlock
{

MutexBegin();
*s = *s + 1;
MutexEnd();

}

void Wait(int *s) // down, lock
{

int blocked = true;
do
{

MutexBegin();
if (*s > 0)
{

*s = *s - 1;
blocked = false;

}
MutexEnd();

} while(blocked);
}

Exercise:
MutexBegin() and MutexEnd() can
be implemented using semaphores
just as semaphores can be
implemented using mutexes.
Try to do it.

CS146 217

Other Primitives
• We have seen Mutexes and Semaphores.

• Other terms you will hear are Monitors and Message Passing.

• Message Passing works by having each thread/process send messages
back and forth. Receiving a message is usually a blocking operation.

• Monitors are a higher level abstraction than message passing and
semaphores. They associate a set of methods to the resource or data
that requires access control.

CS146 218

Programming Approaches
• Pipes

– We’ve seen this in the shell. It is essentially a chain of
producer/consumer pairs.

• Work Crew
– A group of worker processes grab work from a pool of jobs.

• Client/Server
– A server process serves the requests of the client processes.

(Remember the X Window System?)

CS146 219

Section #16

UNIX Memory Management

CS146 220

Memory Management
• The operating system must manage the memory resources of the

system. It should try to do so efficiently.
• With virtual memory systems, it is up to the operating system to

manage the allocation of information(code & data) between main
memory (core memory, RAM, physical memory) and secondary
storage (usually disks or servers on the network).

• The memory management subsystem in the kernel works with the
Memory Management Unit (MMU) hardware.

CS146 221

Virtual Memory
• Each application is given the illusion that it has a large main memory

at its disposal.
• Each process has a process address space which maps to the physical

address space of the computer.

Memory management and virtual memory advantages:
• The ability to run programs larger than physical memory
• Run partially loaded programs, thus reducing program startup time.
• Allow more than one program to reside in memory at one time.
• Allow sharing. For example, two processes running the same program

should be able to share a single copy of the code in memory.
• Access control. One process shouldn’t be able to trample over another

process’ memory.

CS146 222

Demand Paging
• Demand paging systems divide the physical and process address

spaces into fixed-size pages (eg 4k or 8k).
• Each page is brought into or out of main memory as needed.
• Note that the page size is a power 2. Therefore, for any address, you

can determine the page number and page offset with simple bit
operations (shift or mask). (eg With 4k pages, 0xfe53c234 is page
0xfe53c and page offset 0x234.)

in-core
not in-core

Physical
Memory

P1

P2

P3

P4

CS146 223

Swapping Pages
• Swapping used to refer to swapping whole processes between disk and

memory. With demand paging, we only send individuals pages of
memory to the swap space (on disk).

• Dirty pages are memory pages modified so that they are irreplaceable
now. Code pages are never dirty because they are read-only.

Main
Memory

Executable
File

Swap Area
on

Disk

Text and initialized
data

Dirty pages saved
before freeing

Subsequent faults on
outswapped pages

Stack and heap pages
allocated on first access

Uninitialized data pages
zero-filled on first access

CS146 224

Copy-On-Write
• Copy-on-Write (COW) is a technique to save work on a fork.
• Fork() is VERY often followed immediately by an exec() call.
• Therefore, it would wasteful to make a full duplicate of the process in

memory when it forks.
• The idea is to share all data pages until data is changed by either the

parent or child (before a page is touched, the parent and child can share
the page because it is identical for both of them).

• When the page is written-to, the kernel intercepts the operation and
makes a copy of the page. Now parent and child have their own copies.

• Why don’t code pages undergo Copy-on-Write?

CS146 225

mmap()
• mmap() maps a file (usually a disk file or /dev/zero) into a buffer in

memory, so that when bytes are fetched from the buffer the
corresponding bytes of the file are read

• Multiple processes can map the same file simultaneously.
• Usage:

caddr_t mmap(caddr_t addr, size_t len, int
prot, int flag, int filedes, off_t off

);
– addr and off should be set to zero,
– len is the number of bytes to allocate
– prot is the file protection, typically

(PROT_READ|PROT_WRITE)
– flag should be set to MAP_SHARED to emulate shared memory
– filedes is a file descriptor that should be opened previously

CS146 226

mmap() example
char *ShareMalloc(int size)
{

int fd;
char *returnPtr;
if((fd = open("/tmp/mmap", O_CREAT | O_RDWR, 0666)) < 0
)

Abort("Failure on open");
if(lseek(fd, size-1, SEEK_SET) == -1)

Abort("Failure on lseek");
if(write(fd, "", 1) != 1)

Abort("Failure on write");
returnPtr = (char *) mmap(0, size, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, 0);
If(returnPtr == (caddr_t) -1)

Abort("Failure on mmap");
return(returnPtr);

}

CS146 227

Section #17

Source Code Revision Control

CS146 228

Source Code Management
• Projects can involve many files that evolve over a long period of time.

• It is often necessary to keep track of the versions of the files and
control changes from several people making updates.

• Many different systems: local-only (RCS—Revision Control System),
or local+remote:

– SCCS—Source Code Control System
– CVS—Concurrent Versions System
– Preforce, git, etc.

• Source code management can be just as useful for documentation,
reports, assignments, html files, and system configuration files.

CS146 229

Advantages of Revision Control
• A good revision control system manages your changes for you.
• Many people make backup copies of their files or use filename

conventions to handle versioning. These methods are prone to error.
Note that a revision control system is NOT a replacement for a backup
system!

• A revision control system keeps your changes, your comments about
those changes, and the full history of your file in one place in an easily
retrievable form, and does it efficiently because it can store just the
differences instead of full copies of each version.

CS146 230

Section #18

Security

CS146 231

Security Topics
• Computer security should be a concern of everyone. Systems

programmers need to be aware of it even more than most because they
are more likely to be working on servers in a network environment,
etc.

• Topics to discuss:
– Passwords
– Root v.s. user
– SUID
– Detecting security breaches. Cleaning up.
– Buffer overflows
– Security through obscurity
– Denial of service attacks
– Network firewalls

CS146 232

Passwords
• Passwords are stored on the system as encrypted strings.
• When you type your password, the login process encrypts your

password and compares the two encrypted strings.

• Encrypted passwords can be cracked. Therefore, it is beneficial to keep
the encrypted passwords in a more secure place than /etc/passwd.

• Shadow passwords are passwords kept in /etc/shadow/ instead of
/etc/passwd. A shadow-aware version of login looks in
/etc/shadow/passwd for passwords in addition to the usually
information kept in /etc/passwd. /etc/shadow has permissions for only
root. Therefore, casual users cannot look at the encrypted passwords.

• Passwords for ftp, telnet, rcp, etc, are sent over the network as plain
text => use ssh instead.

• If you EVER type your password in the clear over a network, it should
be changed immediately. Some systems support expiry dates on
passwords.

CS146 233

Root v.s. User
• If you don’t need to run a program as the superuser (root), then don’t.

(same goes for Windows: don’t run as Administrator unless necessary)

• That also applies to system daemons, etc. If you install a software
package that needs to run a server process, see if you can create a new
user to run it.

• Novice system administrators often make the mistake of logging in as
root and doing everything as root. Think what happens if you type “rm
-rf *” in the wrong directory.

CS146 234

Set User-ID Bit
• You can use the SUID permission on an executable to allow a program

to run with the owner’s access instead of user that ran the program.
• Very simply. SUID shell scripts are prone to security holes. In more

ways than you can imagine.
• Binary executables can have many security problems if they are SUID

root. See Buffer Overflows later.
• Programs that are designed to be SUID root should be made to

minimize the part of code that is root powerful and deals with external
inputs.

CS146 235

Detecting & Cleaning Security Breaks
• Detecting a break-in is not always easy to do. Sometimes the intruder

can be exceptionally thorough by replacing commands such as cp,
md5sum, or diff to detect a detection attempt and thwart it.

• Using checksum programs like sum(1) are unreliable because an
intruder could have carefully crafted changes to the file so that the
checksum matches. Byte-by-byte comparisons are the only real test.

• You need to ensure that everything you use comes from a trusted copy
(CDROMs are good for this) and you need to be aware that other hosts
on the network are not trusted hosts until they have been checked and
cleaned.

• Assuming you detect a break-in, how do you purge the system of back
doors and viruses?

CS146 236

Buffer Overflows
• The most famous buffer overflow example is the Internet Worm. The

finger server, fingerd, used gets() for it’s input reading. gets() does not
check the length of the line read.

char line[512];
gets(line);

• If the intruder supplies a line of data longer than 512 bytes, that data
will overwrite the stack frame and can cause fingerd to start running
the intruder’s code. You should always use fgets() instead.

• Robert T. Morris inadvertently unleashed the Internet Worm in 1988
and effectively shut down the entire Internet. The Worm didn’t control
its propagation well enough and it choked the networks.

• Other potential buffer overrun calls: strcpy() and sprintf().
• Fingerd did not have to be running as root. This was simply foolish.

CS146 237

Security through Obscurity
• Security by Obscurity is a technique used fairly regularly but generally

ineffective. The idea is to limit information. For instance, hide an
oddly named publicly writeable directory under a search-only
directory(i.e. no read permission). Then tell only your friends the name
of that directory.

• The problem with this approach is that no information is truly private
and you have no explicit control or detection that something went
wrong.

• For encryption algorithms, it can be quite serious. If someone said that
they have a very secure encryption algorithm but the safety of the
algorithm depends on it being kept secret, then it’s not very secure.
Information leaks can occur and analysis usually cannot be prevented.

CS146 238

Denial of Service Attacks
• A denial of service attack is any situation where a malicious person

can overload your network or operating system to prevent legitimate
users from using the system.

• Denial of service attacks can take many forms and UNIX is generally
very poor about handling such attacks.

• Examples:
eatmem - a program that allocates and dirties more and more data pages until

no more processes can run
network attacks - send a large volume of network packets to saturate the

network bandwidth thus preventing others from communicating

CS146 239

Firewalls
• A firewall isolates two regions so a fire can’t spread unchecked.
• A network firewall isolates an organization’s network from external

networks (e.g. the Internet).
• Firewalls can be used to limit access to or from the external network.

This can allow very open and free access within the organization but
prevent outsiders from having that same level of access.

• Firewalls simplify security protection since you only have to concern
yourself with the firewall’s filter instead of every machine on your
network.

CS146 240

Section #19

Multi-platform Development

CS146 241

Multi-Platform Development
• Configuring software for different operating systems and programming

environments.
• Separating platform dependent from platform independent source

code.
• Handling conditional compilation using #ifdef based on logical

characteristics vs physical/platform characteristics.
• Using abstraction layers in your programs. E.g. a single API with

multiple pluggable implementations to handle different databases
(Oracle, Sybase, etc).

• Testing: Test suites are important to catch errors on different platforms
because not all developers will use all platforms all of the time.

• Installation will probably be different on each platform.
• Porting to new platforms should get EASIER over time.

CS146 242

Section #20

The Plan 9
Operating System

http://plan9.bell-labs.com/plan9

CS146 243

History
• Late 1980’s
• Explore a new model of computing system.

– Central administration
– Cheap local graphical terminals
– Large central shared resources (file and compute servers)

• Clean design (All resources are like files. No ioctl() style control.)

• The networking protocol (9P) is used for accessing all resources
remotely.

CS146 244

Name Spaces
• Plan 9 implements the concept of per-process name spaces.
• Each process can customize its view of the system.
• All resources are accessed via the name space (network, graphics,

processes, files, serial ports, etc.)
• You can choose to mount or bind a file system in front or behind the

current file system.
• Union directories allow file systems to overlap.
• For instance, the concept of the PATH environment variable is

unnecessary. A PATH of /bin:/usr/bin:/local/bin:$HOME/bin would be
aligned as five overlapping directories at the /bin location. This allows
a very nice system for multiple platforms. The /platforms/mips/bin or
/platforms/solaris/bin directory can be mounted into the /bin location
as appropriate.

• The ordering of file systems in a union directory govern which file is
chosen for reading or executing.

CS146 245

Processes as Files
• Processes are accessible as files in Plan 9.
• The /proc file system is a kernel generated file system where each file

is a gateway to the process’ address space.
• /proc/3241 would be the directory for process number 3241.
• /proc/3241/status would be the status for the process.
• /proc/3241/mem is the virtual memory image.
• /proc/3241/text is a link to the executable file for the process.
• /proc/3241/ctl is used to control the process (e.g. stop or kill).

CS146 246

8½ - The Plan9 Window System
• The Plan 9 Window System has a novel design. It is a special form of

file server. It opens the /dev/mouse, /dev/cons, and /dev/bitblt devices
and provides sets of those same files as a file server would.

• This design allows one to run 8½ as a window inside another 8½!
• Each windowing application can treat its terminal devices as if it is the

only user.

CS146 247

rc(1) - The Plan9 Shell
• The Plan9 Shell introducet many features that were later incorporated

into bash(1), such as <{} for named-pipe-on-commad-line
• The history mechanism is especially cool, allowing you to quickly and

easily recall any command you’ve previously typed.
• The history mechanism means you can drastically reduce the number

of shell scripts you write, because they end up just being long
command lines that you can edit as you see fit each time you run them.

• (do a demo)

