Editor: Diomidis Spinellis

10015 ol [ne rane

Sometimes
the Old Ways Are Best

18

YEARS

s I write this column, I’'m in the middle of
two summer projects; with luck, they’ll
both be finished by the time you read it.
One involves a forensic analysis of over
100,000 lines of old C and assembly code
from about 1990, and I have to work on
Windows XP. The other is a hack to translate code
written in weird language L1 into weird language L.2
with a program written in script-
ing language L3, where none of
the s even existed in 1990; this
one uses Linux. Thus it’s perhaps
a bit surprising that I find myself
relying on much the same toolset
for these very different tasks.

What's Changed

Bill Plauger and I wrote Software
Tools in 1975, nine years before
IEEE Software began publication. Our title was
certainly not the first use of the phrase, but the
book did help to popularize the idea of tools and
show how a small set of simple text-based tools
could make programmers more productive. Our
toolset was stolen quite explicitly from Unix mod-
els. At the time, Unix was barely known outside a
tiny community, and even the idea of thinking con-
sciously about software tools seemed new. In fact,
we even wrote our programs in a dialect of Fortran
because C was barely three years old at the time
and we thought we’d sell more copies if we aimed
at Fortran programmers.

A lot has changed over the past 25 or 30 years.

IEEE SOFTWARE Published by the IEEE Computer Society

Athens University of Economics and Business

dds@aueb.gr

Computers are enormously faster and have vastly
more memory and disk space, and we can write
much bigger and more interesting programs with
all that horsepower. Although C is still widely used,
programmers today often prefer languages such as
Java and Python that spend memory and time to
gain expressiveness and safety, which is almost al-
ways a good trade.

We develop code differently as well, with pow-
erful integrated development environments (IDEs)
such as Visual Studio and Eclipse—complex tools
that manage the whole process, showing us all
the facets of the code and replacing manuals with
online help and syntax completion. Sophisticated
frameworks generate boatloads of code for us and
glue it all together at the click of a mouse. In prin-
ciple, we’re far better off than we used to be.

But when I program, the tools that I use most
often, or that I miss the most when they aren’t avail-
able, are not the fancy IDEs. They’re the old stal-
warts from the Software Tools and early Unix era,
such as grep, diff, sort, we, and shells.

For example, my forensics work requires com-
paring two versions of the program. How better
to compare them than with diff? There are many
hundreds of files, so I use find to walk the directory
hierarchy and generate lists of files to work with. I
want to repeat some sequence of operations—time
for a shell script. And of course there’s endless
grepping to find all the places where some variable
is defined or used. The combination of grep and sort
brings together things that should be the same but
might not be—for instance, a variable that’s de-

0740-7459/08/$25.00 © 2008 IEEE

TOOLS OF THE TRADE §

clared differently in two files, or all the potentially
risky #defines. The language translation project uses
much the same core set: diff to compare program
outputs, grep to find things, the shell to automate
regression testing.

What do we want from our tools? First and fore-
most is mechanical advantage: the tool must do
some task better than people can, augmenting or
replacing our own effort. Grep, which finds patterns
of text, is the quintessential example of a good tool:
it’s dead easy to use, and it searches faster and bet-
ter than we can. Grep is actually an improvement on
many of its successors. I've never figured out how to
get Visual Studio or Eclipse to produce a compact
list of all the places where a particular string oc-
curs throughout a program. 'm sure experts will be
happy to teach me, but that’s not much help when
the experts are far away or the IDE isn’t installed.

That leads to the second criterion for a good
tool: it should be available everywhere. It’s no help
if SuperWhatever for Windows offers some won-
derful feature but I'm working on Unix. The other
direction is better because Unix command-line
tools are readily available everywhere. One of the
first things I do on a new Windows machine is in-
stall Cygwin so that I can get some work done. The
universality of the old faithfuls makes them more
useful than more powerful systems that are tied to
a specific environment or that are so big and com-
plicated that it just takes too long to get started.

The third criterion for good tools is that they
can be used in unexpected ways, the way we use a
screwdriver to pry open a paint can and a hammer
to close it up again. One of the most compelling
advantages of the old Unix collection is that each
one does some generic but focused task (search-
ing, sorting, counting, comparing) but can be end-
lessly combined with others to perform complicated
ad hoc operations. The early Unix literature is full
of examples of novel shell programs. Of course,
the shell itself is a great example of a generic but
focused tool: it concentrates on running programs
and encapsulating frequent operations in scripts.

It’s hard to mix and match programs unless
they share some uniform representation of infor-
mation. In the good old days, that was plain ASCII
text, not proprietary binary formats. Naturally,
there are also tools to convert nontext representa-
tions into text. For my forensics work, one of the
most useful is strings, which finds the ASCII text
within ‘a binary file. The combination of strings
and grep often gives real insight into the contents
of some otherwise-inscrutable file, and, if all else
fails, od produces a readable view of the raw bits
that can even be grepped.

A fourth criterion for a good tool is that it not
be too specialized—put another way, that it not
know too much. IDEs know that you’re writing a
program in a specific language, so they won't help
if you’re not; indeed, it can be a real chore to force
some nonstandard component into one, like a Yacc
grammar as part of a C program.

Lest it seem like I’'m only complaining about big
environments here, even old tools can be messed
up. Consider we, which counts lines, words, and
characters. It does a fine job on vanilla text, and it’s
valuable for a quick assessment of any arbitrary file
(an unplanned-for use). But the Linux version of wc
has been “improved”: by default it thinks it’s really
counting words in Unicode. So if the input is a non-
text file, Linux we complains about every byte that
looks like a broken Unicode character, and it runs
like a turtle as a result. A great tool has been dam-
aged because it thinks it knows what you’re doing.
You can remedy that behavior with the right incan-
tation, but only if a wizard is nearby.

here has surely been much progress in tools

over the 25 years that IEEE Software has been

around, and I wouldn’t want to go back in time.
But the tools I use today are mostly the same old
ones—grep, diff, sort, awk, and friends. This might well
mean that ’'m a dinosaur stuck in the past. On the
other hand, when it comes to doing simple things
quickly, I can often have the job done while experts
are still waiting for their IDE to start up. Sometimes
the old ways are best, and they’re certainly worth
knowing well. @

Brian Kernighan is a professor in the Deparment of Computer
Science at Princeton University and coauthor of several books on lan-
guages and programming. Contact him at bwk@cs.princeton.edu.

Software

Log on to our Web site to
* Search our vast archives
® Preview upcoming topics
* Browse our calls for papers
* Submit your article for
publication

e Subscribe or renew

www.computer.org/software

November/December 2008 |EEE SOFTWARE

19

