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A new randomized algorithm for the maximum matching problem is presented. 
Unlike conventional matching algorithms which are combinatorial, our algorithm is 
algebraic and works on the Tutte matrix of the given graph. Although slower than 
the best known matching algorithm, our algorithm has the advantage of being 
conceptuahy simple and easy to program. 0 1989 Academic Press. Inc. 

1. INTRODUCTION 

We present a new randomized algorithm for the maximum matching 
problem. Unlike conventional matching algorithms which are based on the 
combinatorial approach of finding “augmenting paths” and “blossoms” in 
graphs (see [Edl] for definitions), our algorithm is algebraic and works on 
the Tutte matrix of the given graph. 

Edmonds [Edl] gave the first polynomial time algorithm (O(n4)) for this 
problem by giving an ingenious way of dealing with the complex manner in 
which blossoms get nested. Subsequently more efficient algorithms were 
obtained. The current best running time is O(m IEI) [MVj, [Va]; this 
algorithm involves a very precise consideration of blossoms. The advantage 
of our approach is that it bypasses blossoms completely and therefore 
results in an algorithm which is conceptually simpler and is considerably 
easier to program, especially if a subroutine for matrix inversion is avail- 
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able. On the other hand, it is less efficient, its running time is 
0( M(n)n log n log log n) bit operations, where M(n) is the number of 
arithmetic operations required for multiplying two n X n matrices and n 
denotes the number of vertices in the graph. The current best bound for 
M(n) is O(n2.376) [CW]; however, because of a very large constant in the 
running time, this algorithm is not practical. Using Gaussian elimination 
and ordinary integer multiplication, the running time of our algorithm is 
O(n410g2n) bit operations. 

This algorithm was programmed by Dan Winkler at Harvard University 
in 1984. It was found to be very quick for graphs having up to a few 
hundred vertices. For such sized graphs, the numbers being operated on fit 
into one computer word; consequently, the running time can be taken to be 
O(n4) word operations. Considering also the ease of programming, our 
algorithm may be a more practical alternative, especially for small graphs. 

Central to our algorithm is a theorem of Tutte [Tu] which states that the 
Tutte matrix of a graph (see Section 2 for definition) is non-singular iff the 
graph contains a perfect matching. The first algorithmic use of this theorem 
was proposed by Lovasz [Lo]; he gave a randomized algorithm for the 
decision problem, “Does the given graph have a perfect matching?’ The 
idea is to substitute for the variables in the Tutte matrix of the graph 
randomly from a polynomially large set of integers, and test the resulting 
matrix for non-singularity. A straightforward algorithm for finding a per- 
fect matching follows using self-reducibility; it makes O(n2) calls to the 
above procedure, and has a running time of O(M( n)n3 log3n log log n). 

In this paper, we obtain a more efficient algorithm for the search 
problem. The improvement comes in three ways. First, instead of using 
determinant computations, we resort to matrix inversion. The advantage is 
that matrix inversion is no more expensive than a determinant computa- 
tion; on the other hand, the inverse has information about all n2 minors of 
the matrix. We show that n/2 matrix inversions suffice; each inversion 
gives one edge of the matching. Second, we perform computations over 
a finite field; for this purpose, we show that Tutte’s theorem and its 
generalizations extend to finite fields. This also enables us to obtain an 
0( M( n)log ‘n) algorithm for computing the size of a maximum matching in 
a graph. Although not practical, this is asymptotically the best known 
algorithm for this task. Third, notice that the straightforward algorithm 
sketched above requires fresh random bits for each call. This is not only 
wasteful, but also makes the error probability accumulate. Instead, in our 
algorithm, only one random substitution suffices; the remaining inversions 
are performed on submatrices of this initial randomized matrix. 

Lovasz generalized Tutte’s theorem to show that the rank of the Tutte 
matrix gives the size of the maximum matching in the graph [LPI. In this 
paper, we present an alternative proof of this generalization using an old 
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theorem of Frobenius. This proof schema enables us to derive additional 
properties of the Tutte matrix which are used in the algorithm. 

Finally, we present some preliminary results on the problem of paralleliz- 
ing matching. In fact, since this work first appeared in [RV], considerable 
progress has been made on understanding the parallel complexity of match- 
ing. The first random NC (RNC3) algorithm was obtained by Karp, Upfal, 
and Wigderson [KUW]. Subsequently, a more direct RNC* algorithm was 
found by Mulmuley, Vazirani, and Vazirani [MVQ 

These algorithms and other results on the parallel complexity of match- 
ing use an algebraic approach, rather than a combinatorial one, and work 
on the Tutte matrix of the graph. It is not surprising that some of our ideas 
have been relevant in this direction. For example, the processor-efficient 
implementation of [KUW], given in [GP], uses matrix inversion. So does the 
algorithm of [m, where finding a maximum matching is reduced to a 
single matrix inversion. Also, the proof schema using Frobenius’ theorem is 
used in [W] to obtain a further generalization of Tutte’s theorem, establish- 
ing a one-to-one correspondence between the bases of the Tutte matrix and 
the sets of vertices matched by maximum matchings in the graph. This is 
used for obtaining an RNC* algorithm for the two-processor scheduling 
problem (which has close connections with matching) ]W] and the vertex 
weighted matching problem [MW]. 

2. TUTTE'S THEOREM AND ITS EXTENSIONS 

Tutte’s theorem will be central to our algorithm; it gives an algebraic 
characterization for the existence of a perfect matching in a graph. The case 
of bipartite graphs is much simpler, and a similar characterization for this 
case was given by Edmonds [Ed2]. It should be mentioned that Tutte’s 
theorem is based on the work of Pfaff on skew-symmetric matrices. 

DEFINITION. Given a graph G(v, E), let D be its adjacency matrix, i.e., 

dij = ’ if (ui, uj) E E 

0 otherwise. 

Replace the l’s in this matrix by indeterminates in the following manner: if 
dij = dji = 1, then replace these two entries by a unique indeterminate, say 
xij, and its negative, i.e., -xij, so that the entries above the diagonal get a 
positive sign. The resulting matrix, A, is called the Tutte matrix of G. 
Notice that A is skew-symmetric. Its determinant, ]A], will be a polynomial 
in the various indeterminates. 
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THEOREM (Tutte). Let G be a graph, and let A be its Tutte matrix. Then, 

1 Al f 0 * there 3 a perfect matching in G. 

The following generalization of Tutte’s theorem was given by Lovasz 
[LPI: 

THEOREM (Lovasz). Let A be the Tutte matrix of graph G, and let m be 
the size of a maximum matching in G. Then, rank(A) = 2m. 

We will first present an alternative proof of this generalization. The 
difficult step in carrying out the proof is showing the existence of a 
“symmetrically located’ submatrix of A of dimension rank(A) (see proof ). 
There are several ways of carrying out this step; we do it by invoking a 
theorem of Frobenius [Ko, p. 1441 stated below. This proof schema enables 
us to derive additional useful properties of the Tutte matrix and, more 
generally, of skew-symmetric matrices (see Lemmas 1, 2, and 3). It was also 
used for obtaining a further generalization of Tutte’s and Lovasz’s theorems 
WI. 

Notation. Let A be an n x n matrix, and LY and p be subsets of 
{LZ . . * 7 n }. Then, A, will denote the submatrix of A obtained by 
choosing the rows of A corresponding to indices in (Y and columns corre- 
sponding to indices in /3. 

THEOREM (Frobenius). Let A be an n x n skew-symmetric matrix, and 
let a and f3 be subsets of { 1,2, . . . , n} such that Ial = I/31 = rank(A). Then, 

I4,I lABpI = ( -l)‘“‘V,12~ 

Proof of Lovasz ‘s Theorem. We prove the theorem in two parts: 

(i) rank(A) 2 2m. Choose any matching of size m, and let U C V be 
the set of vertices matched by it. Let G’ be the subgraph of G induced on 
U, G’ has a perfect matching. Since A,, is the Tutte matrix of G’, 
(A,,1 f 0. Since (VI = 2m, rank(A) 2 2m. 

(ii) rank(A) < 2m. Suppose rank(A) = k. Let Aa be a non-singular 
submatrix of A, with Ial = Is1 = k. We want to show that G has a 
matching of size at least k/2. Notice that if A,@ is symmetrically located, 
i.e., (Y = j3, we are done (since the restriction of G to the vertices in (Y must 
have a perfect matching by Tutte’s theorem). 

Since IA,,1 f 0 and ((~1 = 181 = rank(A), by Frobenius’s theorem, 
IA,,1 + 0. Since this is a symmetrically located submatrix of A, by the 
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previous remark, G has a matching of size k/2 (notice that k must be even, 
since a skew-symmetric matrix of odd dimensions is always singular). 0 

Tutte’s theorem suggests a means for testing if the given graph has a 
perfect matching, namely, check if 1AJ is non-vanishing. The difficulty is 
that the known methods for testing deterministically whether A is non-sin- 
gular resort to computing lA(, which may take exponential time since A 
contains an unbounded number of indeterminates. Lovasz [Lo] proposed 
the use of randomization for getting around this difficulty: substitute for 
the variables in A randomly from a polynomially large set of integers; if A 
was non-singular, the substituted matrix will be non-singular with very high 
probability. Since the substituted matrix has small, i.e., O(log n) bit integral 
entries, its determinant can be computed in polynomial time. A formal 
probabilistic analysis of this algorithm is based on a lemma of Schwartz 
[SC]. 

The above algorithm, although polynomial time, is inefficient: since IAl is 
being computed over the rationals, the intermediate numbers in the compu- 
tation may be O(n log2n) bits long. For the purpose of efficiency, we will 
substitute for the indeterminates in A randomly from a finite field Z,; 
however, in order to do this we must clear up one point. 

Tutte’s determinant IAl is a polynomial in certain variables xii with 
integer coefficients. Could it happen that all these coefficients are divisible 
by a prime p so that mod p the polynomial is the zero polynomial even 
though IAl f 0 over the integers? In this case the substituted matrix will be 
necessarily singular. 

Similarly, in the case that 1AJ f 0 (’ i.e., there are no perfect matchings) we 
want to compute rank(rl). If rank(A) = k then there is a k X k submatrix 
A’ of A so that IA’1 f 0 as a polynomial. Once again, could it happen that 
IA’1 is zero mod p? 

LEMMA 1. If A is a Tutte matrix of graph G and IAl f 0 then for any 
primep, (Al mod p f 0. 

Proof. The condition JAI f 0 implies, by Tutte’s theorem, that G has a 
perfect matching M = {(iI, j,), . . . , (i,, j,)}, where m = n/2. But then IAl 
contains the monomial 

with coefficient 1. Thus IAJmod p f 0. 0 

LEMMA 2. If A is the Tutte matrix of graph G and rank(A) = k then for 
any prime p, there exists a k X k submatrix B of A such that (BI f 0 and 
JBlmod p f 0. 
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Proof. Since rank(A) = k, there exists a k X k submatrix A,,@ such 
that lA,,B( f 0. By Frobenius’ theorem, also IA,,,1 f 0. Since A,,, is the 
Tutte matrix of a subgraph of G, the proof follows from Lemma 1. 0 

Remark. Actually, the ideas in the proof of Tutte’s theorem can be 
extended to show that for euev non-singular submatrix of A’ of a Tutte 
matrix, IA’1 is a polynomial in which every coefficient is a power of 2. Thus 
in every field ZP, p r 3, none of the coefficients degenerate. Moreover, 
every such submatrix has a monomial with coefficient + 1. 

Finally, we will prove a property of skew-symmetric matrices that will be 
useful in the matching algorithm. 

Notation. Let A be an n x n matrix. Denote by Aii the (n - 1) X 
(n - 1) submatrix obtained from A by removing the ith row and jth 
column. Similarly denote by Aii, jj the (n - 2) x (n - 2) submatrix ob- 
tained from A by removing the ith row and column as well as the jth row 
and column. There is no danger of confusion with the previous use of A,; 
the meaning will always be clear from the context. 

LEMMA 3. Let A be an n X n skew-symmetric matrix of even dimension, 
with entries in afield F. For 1 5 i, j < n, i # j, if IA,,1 # 0 then IAii, jj[ # 0. 

Proof W.1.o.g. we may assume that i = 1 and j = 2. Since IAJ # 0, 
the n - 1 columns of Al2 are linearly independent. In particular, the n - 2 
columns of A,, numbered by /3 = (3,. . . , n} are linearly independent. 
Therefore, for some subset (Y c (2, . . . , n }, 1~~1 = n - 2, the square subma- 
trix A, is nonsingular. 

Now consider the matrix A,,. Since this matrix is skew-symmetric and of 
odd dimension, it is singular. Since Aa is also a submatrix of A,, and 
lA,I + 0, ranMA,,) = n - 2. Therefore, by Frobenius’ theorem, 

3. THE MATCHING ALGORITHM 

We first give an efficient algorithm for computing the size of a maximum 
matching in a graph. 

THEOREM 1. There is an O(M(n)log2n) randomized (Monte Carlo) 
algorithm for computing the size of a maximum matching in a graph G( V, E). 

Proof: Let A be the Tutte matrix of graph G. If rank(A) = k, then by 
Lemma 2, A contains a k X k submatrix B, such that JB( mod p f 0. All 
larger submatrices of A are singular. 
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Find a prime p 2 n4. This can be done quickly, using a randomizing test 
for primality (Rabin [Ra2], Solovay and Strassen [SS]). Choose a random 
substitution S: set of xijs + Zp, i.e., independently, each S(xji) is equally 
likely to be any element of Zp. Denote by AS the result of replacing each 
xii in A by S(xij). Using Schwartz’s lemma [SC] one can show 

Pr[ S: ]&I # 0] 2 
p-2 .= 

i i 
- = e-2/n2 

P 

This is a simple calculation which utilizes the fact that degxij(BJ < 2 for 
each variable, and there are fewer than nz distinct variables. Hence, with 
probability at least e-2/n2 ’ , i.e., very close to 1, rank (As) = rank(A). The 
theorem follows since rank(As) can be computed in O(M(n)log2n) steps 
(see [BH, IMH]). 0 

Using fast matrix multiplication, Theorem 1 gives the best known algo- 
rithm for computing the size of a maximum matching in a dense graph (the 
best combinatorial algorithm requires O(n2-5) time on dense graphs [Mvj). 
Although this is not of practical value, it provides progress on a challenging 
open problem (see Section 5). 

The matching algorithm will be developed in three stages: 

(a) Finding a Perfect Matching 

DEFINITION. Let G be a graph having a perfect matching, A be its 
Tutte matrix, and p be any prime. A substitution S for the variables in A 
by elements of Zp is a good substitution if ]AsI # 0 (mod p). 

Our algorithm works by inverting AS to identify one edge of the perfect 
matching. The following lemma shows how. 

Notation. We will denote the (i, j)th entry of matrix A by (lower- 
case) aij. 

LEMMA 4. Let S be a good substitution for the Tutte matrix A and let 
B = (As)-‘. There is a j, 1 <j I n such that S(qj) # 0 (mod p) and 
bj, # 0 (mod p). Moreover, for each j satisfying this condition, the edge 
(vl, vj) is in some perfect matching of G. 

Proof: Since S is a good substitution, 1 As] # 0 (mod p), 

lASl = i ( -l)‘+‘S(a,j)(Ak(. 
i=l 



564 RABIN AND VAZIRANI 

Therefore, there is a j, 1 < j I n (notice that ai, = 0) such that S( aij) # 
0 (mod p) and IA&] # 0 (mod p); since bj, = ( -l)l+jlA,Sjl/lASl, also 
b,, f 0 (mod p). Therefore G must have the edge (ui, uj). By Lemma 3, 
lA&jj] f 0 (mod p). So (A,ijjl f 0 over ZP, and also over the integers. Let 
G, be the graph obtained by restricting G to V - { ui, u,}; Ailjj is its Tutte 
matrix. Since this matrix is non-singular, G, contains a perfect matching, 
by Tutte’s theorem. Hence, (u,, uj) is in some perfect matching of G. 0 

ALGORITHM. The algorithm consists of two phases. In the first phase, a 
random substitution S is chosen for A, as in Theorem 1. With high 
probability, this will be a good substitution for A. If so, the second phase 
will succeed in finding a perfect matching in G. This phase consists of n/2 
iterations; in each iteration, one edge of the matching is found. 

In the first iteration, AS is inverted, and an edge (ui, uj) is found as 
described in Lemma 4. Since ]Afijj] + 0 (mod p), S is also a good substitu- 
tion for the Tutte matrix, A,ijj, of the graph, G,, induced on V - (q, u,}. 
Now, by inverting Afijj, an edge is chosen from G,, and so on. The union 
of edges so chosen form a perfect matching in G. 

(b) Extension to Maximum Matching 

Using Theorem 1, we can compute the size of the maximum matching in 
the graph, say it is m. Obtain graph G’ from G by adding n - 2m new 
vertices and an edge connecting each new vertex to each original vertex. G’ 
clearly has a perfect matching; moreover, any such perfect matching when 
restricted to G gives a maximum matching in G. 

(c) Making the Algorithm Las Vegas 

The algorithm presented above is Monte Carlo, in the sense that it has a 
non-zero probability of ending in an error. Using the method proposed by 
Lovasz (appearing in [Ka]) for obtaining Las Vegas extensions for the 
parallel matching algorithms, a similar extension for our algorithm also 
follows. We refer the reader to [Ka] for details. As stated in that paper, we 
will compute the set of “non-critical” vertices by n calls to the procedure of 
Theorem 1. Then, using the Tutte-Berge formula and the Gallai-Ekimonds 
structure theorem, we obtain an upper bound on the size of the maximum 
matching in G. Because of error probability in Theorem 1, this will also be a 
Monte Carlo algorithm. Running the two Monte Carlo algorithms simulta- 
neously until they agree yields a Las Vegas algorithm. When it halts, it will 
have the correct solution, and its expected running time is O(M(n)n log%). 
(For a detailed description of these notions see [Gil or [Ral].) 

THEOREM 2. There is an O(M(n)n log2n) Las Vegas algorithm for 
finding a maximum matching in a graph. 
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4. THE PARALLEL PER~~PECTIVE 

PROPOSITION 1. There is an NC2 algorithm for finding a perfect matching 
in a graph having a unique perfect matching. 

Proof. Let G(V, E) have a unique perfect matching, let A be its Tutte 
matrix, and let M = {(vi,, vj,) . . . (vim, vi,)} be the perfect matching in G, 
where m = n/2. Then, 

Let S be the substitution s.t. xii = 1 for each variable. Since IASJ = 
1 (mod p), S is a good substitution. Let B = (A’)-‘. For each i, 1 I i I n, 
there is a unique j s.t. (vi, vi) E E and G(V - {vi, vi}) has a perfect 
matching. Therefore, by Lemma 4, for each i, 1 I i I n, there is a unique j 
s.t. S(aij) # 0 and bj,. Hence, by picking a substitution deterministically, 
and inverting AS, we obtain the perfect matching. Since matrix inversion is 
in NC2 [Cs], the result follows. Notice that for this case, the sequential 
algorithm runs in O(M(n)log2 n) time. (See also Section 5). Cl 

Notice that uniqueness is crucial in the above procedure. The importance 
of uniqueness in parallel computation is further explored and utilized in the 
parallel matching algorithm of [MW]. They observe that in a parallel 
algorithm one must coordinate the processors so they seek the same 
solution in parallel. The question is, “which solution?” The obvious alterna- 
tive of seeking the lexicographically largest solution is often not suitable, 
because this renders the problem P-complete even though an arbitrary 
solution can be found in parallel (e.g., maximal independent set and depth 
first search). The parallel complexity of finding the lexicographically largest 
perfect matching is as yet unresolved. The main ingredient in [MW] is the 
use of randomization for isolating one solution from the possibly exponen- 
tially many. Currently, an outstanding open problem is to obtain an NC 
algorithm for matching, i.e., isolate one solution deterministically (see 
Section 5). 

In the next result we show that in order to give a parallel matching 
algorithm, it is sufficient to restrict attention to perfect matchings, by 
showing that using an oracle for the perfect matching problem one can 
solve the maximum matching problem in NC’, i.e., showing an NC1-reduc- 
tion (see [Co] for a formal definition). 

PROPOSITION 2. The problem of finding a maximum matching NC1 
reduces to the perfect matching problem. 

Proof: The procedure in Section 3(b), which uses Theorem 1, gives an 
RNC* reduction. Let us extend this to an NC’ reduction. Let m be the size 
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of a maximum in G, and let G’ be obtained from G by adding k new 
vertices, where the parity of k is the same as the parity of n, and there is an 
edge connecting each new vertex to each original vertex. Clearly, G’ has a 
perfect matching iff k 2 n - m. So, using the oracle for perfect matching 
and doing a binary search on k, we can determine m. The reduction 
follows. 0 

5. DISCUSSION AND OPEN PROBLEMS 

Several open problems remain. First, notice that in each iteration, the 
algorithm uses only one column of the inverse. It therefore seems that 
performing n/2 matrix inversions is quite wasteful; it might be possible to 
use some clever updating ideas to quickly obtain subsequent matrix inverses 
from the previous ones and aim for a running time of O(n310g2n). Even 
more challenging would be to attempt the open problem stated in [MVV], 
of finding a perfect matching in time o(M(n)log%), for some constant k. 

Although not of practical value, this would tie the complexity of matching 
to that of matrix multiplication. It seems that in order to achieve this 
running time one would need to compute over a finite field, and some of 
the ideas presented here might be useful. Theorem 1 and Proposition 1 
provide progress towards this problem. 

Currently, an outstanding open problem in parallel computation is to 
give a (deterministic) NC algorithm for matching. In an interesting result, 
Proposition 1 was recently generalized to graphs having polynomially many 
perfect matchings [GK]. Other results related to this open problem appear 
in [KW]. 
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