
COMBINATORICA
Akad6miai Kiad6 - Springer-Verlag

COMBINATORICA 14 (i) (1994) 71-109

A T H E O R Y OF A L T E R N A T I N G PATHS AND BLOSSOMS F O R

P R O V I N G C O R R E C T N E S S OF T H E O(v/-VE) G E N E R A L G R A P H
M A X I M U M M A T C H I N G A L G O R I T H M

VIJAY V. VAZIRANI 1

Received December 30, 1989
Revised June 15, 1993

1. I n t r o d u c t i o n

Finding a maximum matching in a graph is a classical problem in the study
of algorithms. In this paper we present new algorithmically relevant combinatorial
structure of matchings. This structure yields the first proof of correctness of the
general graph matching algorithm of Mieali and Vazirani [14]; this is currently the
most efficient known matching algorithm.

Berge's theorem [2], which says that matching M in graph G is a maximum
matching if and only if there are no augmenting paths w.r.t, it, gives an iterative
schema for finding a maximum matching in G, i.e. successively find augmenting
paths. Finding augmenting paths is fairly easy in bipartite graphs; however, not
so in general graphs (see [13] for a detailed history of the problem). The first
polynomial time algorithm (o(rvI4)) for general graph matching was given by
Edmonds [4]. In this paper, Edmonds introduced the notion of blossom (an odd
length alternating cycle), and showed that by "shrinking" blossoms, one can find
augmenting path efficiently. In this seminal paper, Edmonds also introduced the
notion of a polynomial time algorithm.

Over the years, faster implementations of Edmonds' algorithm were given by
several authors, including Whitzgall and Zahn [16], Balinski [1], Gabow [6], Lawler
[12], and Kameda and Munro [10]. In 1972, Hopcroft and Karp [9] proposed finding
augmenting paths in phases; in each phase a maximal set of disjoint minimum length
augmenting paths is found. They showed that only O (v / ~) phases are needed,
as opposed to O(IV]) iterations in the previously-mentioned schema. They also
presented an O(IEI) implementation of a phase in bipartite graphs, thereby giving
an O(Iv/~llEi) matching algorithm for such graphs, and left the open problem of

1 Partially supported by an NSF PYI Grant with matching funds from AT&; T Bell Labs at
Cornell University

AMS subject classification codes (1991): 05 C 70, 05 C 85

72 V.V. VAZIRANI

obtaining an algorithm having the same efficiently for general graphs. Using the idea
of phases, an o (Iv I 2.5) algorithm for general graphs was given by Even and Kariv
[5]. The algorithm of Micali and Vazirani achieves the above-stated O (~] E I)
running time on a RAM, using the incremental-tree set union algorithm of Gabow
and Tarjan [7].

The natural schema for finding minimum length alternating paths is an alter-
nating breadth first search (BFS). As stated in Section 2, this leads to a simple
algorithm for the bipartite case; however, there are fundamental difficulties in mak-
ing this schema work for general graphs. In order to point out the key difficulty,
let us first consider ordinary BFS starting at vertex s in graph G to find the levels
of all vertices. A vertex v having level i + 1 must have a neighbonr, say u, having
level i, and while searching out from u, BFS will assign v its correct level. We will
say that vertex u is the agent that makes BFS find the level of vertex v. So, in
ordinary BSF, the agent is local, i.e., it is one of the neighbours of the vertex.

In the case of minimum length alternating paths in general graphs, the situation
is more complex -- there is a need to define two levels for each vertex v, minlevel(v)
and maxlevel(v), corresponding to shortest paths of the two parities. The agent
for minleve] is a neighbour, just as in the case of ordinary BFS. However, not so for
maxlevel -- it could be the case that none of the neighbours of a vertex of maxlevel
iq-] is of level i. Fortunately, it is possible to salvage the situation: it is possible to
identify a different agent -- a special edge on the path (a "bridge" of the "correct
tenacity"). In the Mical~Vazirani algorithm, this edge triggers off a special search
procedure called double depth first search (DDFS) that efficiently finds maxlevels
of vertices. This agent is not local, and so we need to carefully synchronize events,
and mark the graph properly in order to execute a phase in linear time.

For establishing correctness of the algorithm, we need to prove that every
maxlevel path has this special edge - - this is our main structural theorem. To prove
this theorem, we need to identify the combinatorial structure which the algorithm
uses as footholds - - (Theorems 1 to 7). Central to this structure is a definition
of blossoms from the perspective of minimum length alternating paths. However,
the structure is very rich, to the extent that considerable preparation is needed
before blossoms can even be defined. For this reason, we will give an overview of
the structure in Section 2.

The algorithm contains two main ideas: the precise manner in which the
various events are synchronized, and the graph searching procedure of double depth
first search (DDFS). The correctness of DDFS and the synchronization are also
established (in Theorem 8 and 9 respectively).

In the past few years, Gabow and Tarjan [8] and Blum [3] have given general
graph maximum matching algorithms having the same running time as the Micali
Vazirani algorithm. It is interesting to observe that besides cardinality matching,
for several other matching problems, such as weighted matching, finding a max-
imum matching in parallel, and approximately computing the number of perfect
matchings in dense graphs, the known algorithms for. general graphs require addi-
tional ideas but achieve the same efficiently as for bipartite graphs. Is this just a
coincide, or is there an underlying reason for this?

THEORY OF ALTERNATING PATHS 73

2. O v e r v i e w o f s t r u c t u r a l r e s u l t s a n d t h e a l g o r i t h m

Matching algorithms and their proofs of correctness tend to be considerably
more involved for general graphs than for bipart i te graphs; this is particularly true
of the algorithm of Micali and Vazirani, and its present proof of correctness. Is this
complexity unavoidable? We will a t t empt to convince the reader that the answer
to this question is "yes" by first sketching the algorithm for the bipart i te case
and showing fundamental difficulties in making this schema work for the case of
general graphs. Eventually, we will indicate how the rich combinatorial structure of
minimum length alternating paths and blossoms helps deal with these difficulties,
and we will also give an overview of the structural results.

Let us start by giving some standard definitions. Let G(V,E) be a graph. A
set M c_ E is said to be a matching if every vertex of G has at most one edge of
M incident at it. M is a maximum matching if it is a matching of largest possible
cardinality in G. The following terms are defined w.r.t, a matching M in G: edges
in M are said to be matched, and those in E \ M are unmatched. A vertex is said
to be matched if it has a matched edge incident on it, and unmatched otherwise;
sometimes an unmatched vertex is also referred as a free vertex. If (u,v) is a
matched edge, then we say that u is the matched neighbour of v. A simple pa th is
said to be an alternating path if it consists alternately of matched and unmatched
edges. An augmenting path is an alternating pa th that starts and ends at (distinct)
unmatched vertices.

The significance of an augmenting pa th p is that it helps obtain a mathing
of one larger cardinality than N, namely the matching M| where | denotes
symmetric difference.

As stated in the introduction, we will resort to finding augmenting paths in
phases, as proposed by Hopcroft and Karp: Start with the empty matching. In
each phase, find a maximal set of disjoint minimum length augmenting paths w.r.t.
the current matching and augment the matching along these paths. If there are no
augmenting paths w.r.t, the current matching, halt.

2.1. T h e b i p a r t i t e case

Let G(U,V,E) be a bipart i te graph, and let M be a matching in it. Define
the level of a vertex x C U U V to be the length of the shortest alternating pa th
from an unmatched vertex in U to x. Notice that vertices in U have even levels
and those in V have odd levels. Also, among the unmatched vertices in V, the one
having the smallest level gives the length of a minimum length augmenting pa th
w . r . t . M . So, let us consider the problem of finding the levels of all vertices. (It
turns out this is the core of the problem. As shown below, a small modification to
the procedure for finding levels helps find minimum length augmenting paths.) The
natural schema for this is an alternating breadth first search (BFS): Assign level 0
to all the unmatched vertices in U, and initialize the search level, i, to 0. Then,
iterate on i as follows: if i is even, for all unmatched edges incident at vertices
having level i, consider their other endpoints; if the endpoint does not have a level
assigned yet, assign it level i + 1. If i is odd, consider the matched edges incident

74 V . V . V A Z I R A N I

at vertices having level i, and assign their other endpoints level i + 1 (notice that
these endpoints will not have levels assigned yet.)

The procedure given above clearly works in O(IEI) time, and a straightforward
proof by induction on i shows its correctness. We would like to highlight here that
the algorithm and the proof of correctness are based on the following deceptively-
straightforward-seeming fact: Let p be an alternating path that gives vertex z its
level. We shall say that p is a level(x) path. Then, the levels of vertices on p are
contiguous, i.e., s tart ing with O, the levels increase by 1. Another way to put it is
that minimum length alternating paths in biparti te graphs are breadth-first-search
honest: let y be the free vertex in U at which p starts, and let v be any vertex on
p. Then the part o f p from y to v is a level(v) path.

Another point worth mentioning, though less important , is that while searching
from a vertex u E U along unmatched edge (u,v), if level(v) was already set i.e.,
level(v) <level(u), we ignored this edge. It is easy to see that this edge is not on a
level(x) path for any vertex z.

Finally, let us show how the algorithm given above can be modified to actually
find minimum length augmenting paths. Let us say that u is a predecessor of
v if (u,v) is the last edge on some level(v) path. The alternating BFS can be
easily modified to leave at each vertex the list of its predecessors. When the search
encounters a free vertex f C V, it can use the predecessor information to find a
minimum length augmenting path, p, ending at f : let f be the starting center of
activity; at each step, pick an arbi trary predecessor of the current center of activity,
and move to it, until a free vertex in U is encountered. Let p be the pa th so traced.
To complete the phase, the algorithm removes p and all edges incident at vertices
on p from the graph. In addition, it also keeps removing any vertex that has no
predecessors left. Then, the next pa th found will clearly be disjoint from p. In this
manner, a maximal set of disjoint minimum length augmenting paths is obtained.

2.2. Di f f icu l t i es e n c o u n t e r e d w i t h n o n - b i p a r t i t e g r a p h s

The first point to be noticed in non-biparti te graphs is that a free vertex
f may have alternating paths of both parities to a vertex v, e.g., see Fig. i.
Moreover, paths of both pari ty may be useful; neither one can be ignored. For
example, in Fig. 1 either of the edges, (w,v) and (w,z) could potentially lead to
an augmentation. Hence, we must find paths of both parities to w. This motivates
the following definitions (we have indicated definitions that first appeared in [14]):

Definition [14]. W.r.t. matching M in graph G(V, E) define:
evenlevel(v): Length of the shortest even length alternating pa th from an un-
matched vertex to v, oc if no such path exists.
oddlevel(v): Length of the shortest odd length alternating pa th from an unmatched
vertex to v; oc if no such path exists.
A pa th that gives v its evenlevel (oddlevel) will be called an evenlevel(v)
(oddlevel(v)) path.

The levels of vertices are marked in Fig. 1. Notice that an unmatched vertex
with the smallest oddlevel gives the length of the minimum length alternating pa th
in the graph. Once again, we will first consider the problem of finding the even and

T H E O R Y O F A L T E R N A T I N G P A T H S 75

X

4,5 '~u~ v ~ / ~ , o o

3,6 J 3,6

I

1,~176 I
0,~ /

Y

Fig. 1

odd levels of all vertices - - this is the core of the problem in the non-bipartite case
as well. Clearly, the simple alternating BFS will fail on non-bipartite graphs: if the
search is not allowed to come around edge (u, v) then w does not get its evenlevel,
and if is, then b gets an incorrect oddlevel.

f t O

11 .
~,rn

l 3 13,
I I

I I

h % ~ i e w 1 5] 11 ~ f 1 5 ,g- 1 /

I I

c ~ ~ 15.., d

I

f
Fig. 2

How should we modify the simple alternating BFS? In order to seek an answer,
let us see the difficulties we need to overcome. In Fig. 2, consider an oddlevel(e)
path; oddlevel(e) is 11. Notice that levels are not contiguous on this path! Minimum
length alternating paths in non-bipartite graphs are not breadth-first-search honest.
In particular, evenlevel(h) is 8, and yet it occurs as the 10 th vertex on this path.
This leads to the following basic question: In bipartite graphs, a vertex v of level
i+1 was adjacent to a vertex u of level i. At the proper search level, u triggered off
the appropriate mechanism that assigned v its level. In Fig. 2, what should trigger
off the process that assigns e its oddlevel? i.e., what is the agent. In the case of

76 V. V. V A Z I R A N I

biparti te graphs, the agent that assigns a vertex its level is local; it is one of the
neighbours of the vertex.

Another point to be noticed in Fig. 2 is that e occurs on every evenlevel(h)
path; moreover it always occurs at an even distance on such a path. In order to
find an oddlevel(e) path, we had to find an even length pa th to h that was longer
than its evenlevel. This points out another difficulty: it is not sufficient to find
alternating paths of minimum length to vertices; we may have to find longer and
longer paths, in order to find the levels of other vertices. As such, this seems to
require exponential time.

Finally, consider edge (u, v) in Fig. 12. It is clearly not useful for giving u its
oddlevel, and we had remarked that such edges could be ignored in the bipart i te
case. However, in Fig. 12, edge (u,v) is critical for obtaining an odd pa th to w. We
shall characterize such edges (called anamolies), and show how to deal with them.

2.3. O v e r c o m i n g t h e d i f f icul t ies u s ing t h e s t r u c t u r e o f m i n i m u m

a l t e r n a t i n g p a t h s a n d b l o s s o m s

The reason we can get a linear t ime algorithm for finding the levels of vertices,
despite the difficulties described above, is that mininmm length paths have a
rich combinatorial structure that can be exploited algorithmieally. The central
combinatorial notion is that of blossoms defined from the perspective of minimum
length alternating paths.

Algorithmically, the key question is to identify the agent that triggers off the
process that assigns a vertex its odd or even level. A first cut to this is to distinguish
the two levels from a different criterion than parity:

Definition [14]. Define maxlevel(v) as the larger of evenleveI(v) and oddIevel(v),
and minlevel(v) as the smaller one.

The agents for minlevel and maxlevel are different. The agent for minlevel is
local, similar to the biparti te case, i.e., one of the neighbours of the vertex.

Observation. Suppose minlevel(v)= i+1 and i+1 is odd. Then there is a neighbour,
u, of v such that evenlevel(u) = i and the edge (u,v) is unmatched. Moreover,
any evenlevel(u) path concatenated with edge (u,v) is an oddlevel(v) path. An
analogous statement holds if i + 1 is even.
The second part of the observation follows from the fact that v cannot occur on an
evenlevel(u) path, since otherwise minlevel(v) would be < 1.

For describing the agent for maxlevel, we need to introduce the central notion
of tenacity.
Definition [14]. W.r.t. matching M in graph G(V,E) define tenacity(v) =
evenlevel (v) + oddlevel (v).
For edge (u, v),

evenIevel(u) + evenlevel(v) + 1 if (u,v) is unmatched
tenacity(u, v) = oddlevel(u) + oddlevel(v) + 1 if (u, v) is matched

Remark. I t is tempting to define tenacity(u) to be the length of a shortest alter-
nating walk between two (necessarily distinct) unmatched vertices which contains

T H E O R Y O F A L T E R N A T I N G P A T H S 77

v. However, this is not true. For example, vertices v and b in Fig. 1 will have the
same tenacity under this definition.

We also need to distinguish between two types of edges.

Definition. Vertex u is said to be a predecessor of v if (u, v) is the last edge on some
minlevel(v) path. An edge (u,v) will be called a prop if either u is a predecessor
of v, or v is a predecessor of u; it will be called a bridge otherwise.

The tenacities of vertices are marked in Fig. 2. In Fig. 1, edge (u, v) is a
bridge of tenacity 9; the rest of the edges are props. In Fig. 2, only (1,m), (j,k)
and (n, o) are bridges. Their tenacities are 13, 11 and 15 respectively.

Finally, we can state the agent that triggers a maxlevel(v) computation - - it
is a bridge of tenacity tenacity(v). It triggers off a process called double depth first
search (ddfs) that finds the "blossom" containing v. How do we know that for each
vertex v there is such an agent? Let us address this question by giving an intuitive
descriptio~ of the structural results.

2.4. T h e s t r u c t u r a l r esu l t s

The central structural fact proven in this paper is that on any maxlevel(v)
path, there is a unique bridge of tenacity tenacity(v). For example, in Fig. 2,
fabdgjkonlhe is a maxlevel(e) path, and (n,o) is the bridge of tenacity 15 on this
path. In order prove this fact, we will first need to define blossoms and prove
properties of minimum length Mternating paths w.r.t, the blossoms.

Consider a vertex v having finite tenacity, and consider the tenacities of all
vertices on any evenlevel(v) or oddlevel(v) path. On each path, pick the highest
vertex (i.e., furthest from the free vertex) having tenacity > tenacity(v). We will
first show that the set picked is a singleton, i.e., there is a unique such vertex. This
will be called the base of v, and will be denoted as base(v). A base b is always
outer, i.e., it satisfies evenlevel(b) < oddlevel(b). The bases of various vertices in
Fig. 2 are:
j ,k:g
h,i , l ,m:e
c,d,e,g,n,o:b

The significance of base lies in the following fact: A path is an evenlevel(v)
(oddlevel(v)) path iff if consists of an evenleveI(base(v)) path concatenated with a
minimum even (odd) length alternating path from base(v) to v; the latter path is
required to start with an unmatched edge. We shall refer to the latter path as q.

Suppose b = base(v). Then, any evenlevel(b) path in turn contains base(b),
and so on. This motivates:

Definition. Define base 1 (v) = base(v), and base k+l (v) = base(basek(v)). Also, we
will say that b = base+(v) if b = base~(v) for some positive integer k. In Fig. 2,
base 2 (l) = b.

Blossoms are defined with two parameters: Base, b and tenacity, t, with
tenacity(b) > t. The blossom with these parameters is the set of vertices v such
that tenacity(v)<_ t and base+(v)= b. It is denoted by Bb, t. Notice that b is not
part of this blossom. In Fig. 2,
Bg,ll={j,k}

78 V.V. VAZIRANI

Be,13 ={h,i , l ,m}

Bb,15 = {c, d, e, g, h,i, j, k, l, m, n, o}

In Fig. 6,

Bb,22= {a,c,u,d,w,w I}

Bb,15= {a,c,u,d,w,wl,v,e}

Blossoms form a partial order by containment - - two blossoms are either
disjoint, or one is contained in the other. In the latter case, the first blossom
is said to be nested in the second. In Fig. 2, Bg,ll C_ Bb,15 and Be,13 C Bb,15 , and
in Fig. 6, /~b, l l C_ Bb,15. Notice that in these figures vertices are drawn at heights
proportional to their minlevels; this helps reveal the nesting of blossoms.

The significance of blossoms lies in the following: Let Bbr be the blossom with
parameters base(v) and tenacity(v). Then, the pa th q, except for the first vertex b,
lies entirely within the blossom Bb, t. If q were part of a minlevel(v) path, then it
would go "directly" from base(v) to v, much the same way as the evenlevel(base(v))
path. On the other hand, if q were part of minlevel(v) path, then it must come
"around the blossom", i.e., using the bridge of tenacity tenacity(v); furthermore, q
consists of disjoint shortest paths from b to one endpoint of the bridge, and from the
other endpoint to v (of course, these paths have to start and end with appropriate
pari ty edges).

In general, path q may use blossoms nested within Bb. t. However, it cannot do
so in an arbitrarily complicated manner: it can be shown that q enters and exits
from a blossom nested in Bb, t at most once, and either the entrance or the exit
must be the base of the nested blossom. Furthermore, the part of q, say q / i n s ide
the nested blossom is similar to q, i.e., it is a minimum alternating path from the
base of the nested blossom to a vertex in the blossom.

Let us illustrate this in Fig. 2. The oddlevel(e) path consists of pa th lab (i.e.,
an evenlevel(b) path), concatenated with pa th bdjkonlhe (which is called q above).
Pa th q consists of a minimum odd pa th from b to o, concatenated with bridge (o, n)
concatenated with the reverse of a minimum path from e to n. Pa th q uses the
nested blossoms of Bb,15; however, it does so in the restricted manner described
a b o v e .

Let us see at a very high level how the structure described above helps overcome
the difficulties. Consider the problem of finding an oddlevel(e) path in Fig. 2. At
the outset, the problem can be broken into two: finding an evenlevel(base(e))
path, and finding the path called q above. The first problem is clearly a smaller
version of the original problem. For finding q, we first find disjoint paths from
the two endpoints of the bridge (n,o) to e and b respectively, skipping over nested
blossoms. Appropriate paths are found in the nested blossoms recursively, and
concatenated with these two paths to yield q. On the other hand, if we had to find
an oddlevel(n) path, which is a minlevel path, then in order to get q, we first skip
over nested blossoms, finding a direct path to b; recursive calls will patch this with
appropriate paths through the nested blossoms.

T H E O R Y O F A L T E R N A T I N G P A T H S 79

2.5. H i g h level d e s c r i p t i o n o f a l g o r i t h m

In this subsection, we will add some more details to the general algorithmic
schema presented above. As stated in the introduction, the algorithm if Micali
and Vazirani is built on two main ideas: synchronization and the graph searching
procedure of DDFS.

Definition. For a bridge (u, v),

s pport(u, v) --- I tenacity() = tenacity(u, v), and
there is a path containing (u,

In:Fig. 2, support(n,o)----Bb35- (Be,13 U B9,11)~ i.e., the set obtained on deleting
vertices of nested blossoms, which will have lower tenacity, from Bb,15. For now~ it
will be useful to take this to be the intuitive meaning of support; later we will refine
the picture to deal with vertices that lie in the support of more than one bridge.

The algorithm iterates with parameter i, the search level, starting with i =
0. :At each search level, first MIN is executed, followed by MAX. The following is
accomplished: At search level i:

M I N : Finds the minlevels of {v E V Iminlevel(v) = i + 1}.
Before MAX starts, the following set of bridges would have been found:

$2i+1 = ((u, v) C E [(u, v) is a bridge of tenacity 2i + 1}.

M A X : Finds the maxlevels of (v E V ltenacity(v) = 2i + 1}
These vertices are found as follows:

For each bridge (u,v) in S2i+], call DDFS to find support(u,v).

Procedure MIN is straightforward. It essentially executes one step of alternat-
ing BFS, similar to the bipartite case: from vertices having level i it searches along
the appropriate parity edges to find i + 1 level vertices. MIN also leaves, at each
vertex, the list of its predecessors.

On the other hand, DDFS is a more involved search schema. Suppose it is
called with bridge (u, v) of tenacity 2i+ 1, and let B be the corresponding blossom.
DDFS will find the base, b, of this blossom. Consider the process of starting at one
of the two endpoints of the bridge, and following predecessors; if the predecessor
is in a nested blossom of B, then skip to the base of this blossom. Then, all
such paths must go through b; in fact b will be the highest bottleneck for such
paths. Furthermore, all vertices encountered on such paths, which are not in nested
blossoms, must be of tenacity 2i + 1, and constitute support(u, v).

. DDFS needs that all lower tenacity blossoms, B ~, nested in B ar e appropriately
ma~'ked, so it can efficiently reach from any vertex in B ~ to the base of B ~. It grows,
in a coordinated manner, two DFS trees rooted at u and v. These trees follow
props, skipping over nested blossoms. Whenever the two trees meet, one of them
tries to find an alternative path. If they don't succeed, the bottleneck, b, is found.

If instead of finding a bottleneck, the two DFS's reach distinct free vertices, f l
and f2, then there is a 2i+1 length augmenting path containing edge (u, v). At this

80 V. V. V A Z I R A N I

point, disjoint paths are found from u to f l and from v to f2, skipping over nested
blossoms; appropriate paths are found in the nested blossoms recursively. Then, as
in the bipart i te case, this path, together with all vertices and edges that cannot be
on a disjoint pa th are removed, and the process is continued till a maximal set of
such paths is found.

The informal description given in this section, together with Section 9 and 10,
can give the reader a fairly detailed idea of the Mgorithm. However, in order to give
a formal description of the manner in which DDFS marks and searches the graph,
we will need some structural definitions which will be developed in Section 3 to 8.

The precise manner in which events are synchronized is critical to proving cor-
rectness of the algorithm, and synchronization is further explained in Section 12.
Special edges, called anamolies, need to be identified for achieving this synchro-
nization; this is described in Section 9.

3. T e n a c i t y a n d b r e a d t h - f i r s t - s e a r c h h o n e s t y

In Section 2 we gave examples to show that minimum length paths are not BFS
honest in non-biparti te graphs. In this section, we will use the notion of tenacity
to prove that these paths are BFS honest to some extent, namely, higher tenacity
vertices on the pa th that are an even (odd) distance from f occur at the distance
that defines their evenlevel (oddlevel). Theorem 1 deals with a minlevel(v) pa th
and Theorem 2 with a maxlevel(v) path.

Lemma 1. Let (u,v) be a matched edge. Then, evenlevel(v)= oddlevel(u)+ 1 and
evenlevel(u) = oddlevel(v) + 1. Also, tenacity(u)=tenacity(v) =tenacity(u,v).

Proof. Any alternating pa th containing both u and v must contain the matched
edge (u,v). The first equality follows by observing that any oddlevel(u) path
cannot contain v, and therefore concatenating (u,v) to it yields an evenlevel(v)
path. Adding oddlevel(v) to both sides of this equality we get tenacity(v)= tena-
city(u, v). The remaining equalities follows in a similar manner. |

Notation. If p and q are two paths, poq denotes their concatenation, and IPl denotes
the length of pa th p.

Definition. Let p be alternating pa th starting at an unmatched vertex f , and let u
and v be two vertices occurring on p (in either order, u before v or v before u). Then
p[u to v] denotes the part of p from u to v (both inclusive). Similarly p[u to v),
p(u to v], p(u to v) denote the part of p from u to v, including u only, including v
only~ and excluding both u and v, respectively. We will say that u occurs at the
correct distance on p if:
(i). if IP[f to u 1 is even, then IP[f to u]l=evenleveI(u)
(ii). if IP[X to u]l is odd, then IP[X to u]l--oddlevel(u).
Similarly, u occurs at minlevel(u) distance on p if IP[f to u]l---minlevel(u), and u
occurs at maxlevel(u) distance on p if IP[f to u] l=maxleve l (u) .
Vertex u is an even(odd) vertex w.r.~, p if IP[f to u]l is even (odd), and v is higher
than u on p if Ip[I to v] l> lp [f to u]l.

T H E O R Y OF A L T E R N A T I N G PATHS 81

T h e o r e m 1. Let p be a minlevel(v) path and let u be a vertex on p such that
tenacity(u) >_ tenacity(v). Then u occurs at minlevel(u) distance on p.

Proof . I t is sufficient to prove the t heo rem for]Pl odd, because if IPl is even, consider
p[f to v) which is a min]eve] p a t h to the m a t c h e d ne ighbour of v. We will prove
t h a t if u does not occur at the correct d i s tance on p then tenacity(u) < tenaci-
ty(v). By L e m m a 1, w.l.o.g, we may assume t h a t u is even w . r . t . p . Let q be an
evenlevel(u) pa th . We will use q to show tha t oddlevel(u) < minlevel(v). Since
evenlevel(v) < minlevel(v) also, th is will show t h a t tenaci ty(u)< tenacity(v). The
s i tua t ion is i l lu s t r a t ed in Fig. 3.

P a t h q must in tersec t p(u to v], because o therwise qop[u to v] is a shor te r odd
p a t h to v. Let v ~ be the ma tched ne ighbour of v, and let p / = po(v,v~). Let w
be the first ve r t ex of q on p~(u to v~l. If w is odd w.r . t , p~, then w mus t be odd
w.r . t , q, and once again by spl icing pa r t s of q and p we can get a shor te r odd
p a t h to v. Therefore , w is even w.r . t , p ' . Now, q[f to w]op'[w to u] is an odd
length a l t e rna t i ng p a t h from f to u, giving the desired inequal i ty oddlevel(u) <
Iq] + Ip'[u to < IPl-

Hence, if tenaci ty(u)> tenacity(v), t hen u mus t occur at the correct d is tance,
in fact minlevel(u) dis tance on p. II

T h e o r e m 2. Let p be a minlevel(v) path, and u be a vertex on p such that tena-
city(u) > tenacity(v). Then,
(i) i f tenacity(u) = tenacity(v), u occurs at the correct distance on p
(ii) if tenaci ty(u)> tenacity(v), u occurs at minlevel(u) distance on p.

Proof . By L e m m a 1, w.l.o.g, we m a y assume t h a t IPl is even and t h a t u is even
w.r . i i p. (Notice t ha t unlike in T h e o r e m 1, if u occurs at the correct d i s tance
on p, i t does not follow t h a t u occurs at minlevel(u) dis tance. For this reason,
we first consider the minlevel(v) p a t h in o rder to es tab l i sh a re la t ionship be tween
minlevel(u) and minlevel(v).)

Let q be a minlevel(v) pa th . If q does not in tersec t p[u to v), t hen odd-
levd() < Iql + Ip[v to u]l. Clearly, evenlevd(u) _< IP[f to vii. Therefore tenaci-
ty(u) <_ tenacity(v). Since we have assumed t h a t tenacity(u) > tenacity(v), it
follows t ha t tenaci ty(u)=tenaci ty(v) and u occurs at the correct d i s tance on p.

Next suppose t h a t q in tersec ts p[u to v). Let u ~ be the ma tc he d ne ighbour of
u, and let w be the first ve r t ex of q on p[u ~ to v). Ver tex w mus t be odd w . r . t . p .
because o therwise there is a shor t odd length a l t e rna t i ng p a t h to u, showing tena-
city(u) < tenacity(v). Now, [q[f to w] [~ [p[f to w]/, because o therwise by spl icing
q and p we can get a shor te r even p a t h to v. Therefore]ql = minlevel(v) > even-
level(~t). Since tenacity(u) > tenacity(v), the min]evel of u mus t be i ts evenlevel.
I t r emains to show t h a t u mus t occur at the correct d i s tance on p. The a rgumen t
is the s ame as in T h e o r e m 1: if not , t hen the evenlevel(u) p a t h enables us to prove
t h a t tenacity(u) < tenacity(v). |

The next l e m m a follows from the p roof of T h e o r e m 2.

L e m m a 2. Let p be a maxlevel(v) path and u be a vertex on p such that tenaci-
ty(u) > tenacity(v). Then minlevel(v) > minlevel(u).

82 V. V. V A Z I R A N I

4. T h e base o f a v e r t e x

In this section we will use the notion of tenacity to define the base of a vertex;
this will eventually be the base of the blossom in which the vertex lies.

Definition. Let v be a vertex of finite tenacity, and let p be an evenlevel(v) or an
oddlevel(v) path. The base of v w.r.t, p, denoted by base(v,p), is the highest
vertex on p having tenacity greater than that of v (there must be such a vertex
since tenacity(f) = ~) .

The main result of this section is to show that the base of v is unique, i.e.
independent of p: Towards this end we will first show that if p and q are even-
level(v) and oddlevel(v) paths respectively, then base(v,p)= base(v,@. Let q be
the highest vertex of tenacity > tenacity(v) occurring on both p and q. The proof
involves showing that all vertices on p(b to v] are of tenacity <tenacity(v). This is
done by studying the intersections of p and q; for this we will define flowers, and
show that the intersections of p and q form flowers.

Definition. Let p be an alternating path starting at f . An odd length alternating
path that meets p only at its endpoints, and starts and ends with unmatched edges
is called a segment w.r.t .p. A set of segments w.r.t, p satisfying certain conditions
form a flower w.r.t, p, F. The base (tip) of F is the lowest (highest) vertex of p
which is one of these segments. The flower F will be the union of these segments
together with p[base(F) to tip(F)]. The vertices on this part of p are said to be
covered by F. Following is a recursive definition of the conditions which the set of
segments should satisfy:
(i) the set consists of a single segment that starts and ends at even vertices w.r . t .p .
(ii) let F I be a flower and q be a segment one of whose endpoints is covered by F I,
and the other endpoints is even w. r . t .p . Then the set of segments of F ~ together
with q form a flower.

II
(iii) let F ~ and F be flowers, and q be a segment whose two endpoints are covered
by F / and F H respectively. Then the sets of segments of F ~ and F ~t together with
q form a flower.
The length of flower F, denoted by]FI, is defined to be the sum of the lengths
of the segments of F and Ip[base(F) to tip(F)]l. Fig. ~ shows a flower formed by
segments ql, q2, q3 and q4.

The above-stated recursive definition of flower yields the following lemma by
a straightforward induction.

Lemma 3. Let p be an alternating path starting at f . Let v be even (odd) w.r.t.
path p and let F be a flower w.r.t, p which covers v. If v~base(F) , then there is
an odd (even) length alternating path in F from base(F) to v of length <_ IF[.

Definition. Let p be an alternating path starting at f , and let q be any other
alternating path. Then, a part of q that starts and ends with unmatched edges and
meets p only at its endpoints is called a segment of q w.r . t .p. A flower w.r.t, p
formed by segment of q is said to be a flower of q. An alternating path whose first
and last edges are matched edges on p (the rest of the path may also intersect p),
is called a section w.r.t .p.

T H E O R Y O F A L T E R N A T I N G P A T H S 83

V

I

I

I

I

Fig. 3

L e m m a 4. Let p be an Mternating path starting at f and q be a section w.r.t, p
which starts and ends at vertices s and s' respectively on p. Then at least one of
the following must hold:
(i). s is even w.r.t, p, or s is covered by a flower o[q.
(ii). s I is even w.r.t, p, or J is covered by a flower o fq .

Proof. The proof is by an induct ion on the number of segments in q. The assertion
is obvious in case q consists of no segments. We prove the induct ion step below.

Suppose s and s t are bo th odd w . r . t . p . There are two cases. First , suppose
there is a segment of q tha t s tarts at a vertex above s and ends at a vertex below
s. Let qt be the first such segment, and let y and yt be its s tar t ing and ending
vertices. Since s is not covered by a flower of q[s to y], by the induct ion hypothesis,
y is either even w.r.t, p or covered by a flower of q[s to y]. Now, if yl is even w.r.t.
p, s is covered by a flower of q[s to yr]. So, assume tha t yr is odd w . r . t . p . If
s ~ is covered by a flower of q[J to J] , we are done. Otherwise, by the induct ion
hypothesis, y~ is covered by a flower of q[y~ to J] . Now using a segment qt, s is
covered by a flower of q. The last case is i l lustrated in Fig. 5.

Next, suppose there is no such segment q~. Let z be the highest vertex of p on
q. Since z is even w.r.t, p, zv~J. Now, q[J to s] satisfies the first case, and by the
proof given above, s I is covered by a flower of q (since clearly s is not). I

For the next lemmas, let v be a vertex of finite tenacity, and let p and q be
evenlevel(v) and oddlevel(v) paths respectively. Consider vertices of tenacity > te-
nacity(v) which occur on both p and q (f is such a vertex), and let b be the highest
such vertex. (Recall tha t such vertices occur at their minlevel distance on bo th p
and q.) We will first prove tha t base(v ,p)=base(v ,q)=b in a simple setting: when
there are no separators (see definition below).

84 V. V. V A Z I R A N I

q4 q3

I
I

Fig. 4

Definition. We will say tha t matched edge (w,w I) is a separator w.r.t, p and q if it
occurs on both p and q, and is a cut edge for the subgraph formed by the edges and
vertices in pOq. For example, in Fig. 9(a), (s ,J) is a separator w.r.t, evenlevel(v)
and oddtevel(v) paths.

Remark . The matched edge incident at b is a separator w.r.t, p and q. This fact
follows from Lemma 7; however, we do not need it for proving Theorem 3.

Lemma 5. I f there are no separators w.r.t, p and q on p(b to v] (and therefore also
on q(b to the b se(v,p)=base(v,q)=b.

We will first need the t011owing definitions:

Definition. Let (w, w') be a matched edge occurr ing on both p(b to v] and q(b to v],
with w' even w . r . t . p . If before traversing (w,w') , q does not meet any vertex of
p higher t han u/ , then (w,w') is called a frontier. If w ~ is odd w.r.t, q, (w,w ~)
is called a backward frontier. If (w,w') is not a separator w.r.t, p and q, and w /

THEORY OF ALTERNATING PATHS 85

(\
I q '

S ! (/
y"

A"

Fig. 5

is even w.r.t, q then (w,w') is called a forward frontier. Backward and forward
frontiers are i l lustrated in Fig. 6 and 7 respectively.

Proof. We will prove tha t every vertex on p(b to v] has tenacity <_tenacity(v); the
proof for vertices on q(b to v] is similar. For this, it is sufficient to show tha t for
vertex u on p(b to v I which is even w.r.t, p, there is an odd length al ternat ing pa th
from f to u of length < tenacity(v) -[p[f to v]l.

I
!

V
I

V e

W W p

u d

I

Fig. 6
b)

86 V. V. VAZII~ANI

Let matched edge (w,w ~) on p be the closest frontier to u such tha t
IP[f to w'][_> IP[f to u]l, where w' is even w . r . t . p . If (w,w') is a backward frontier,
then q[f to w'] op[w' to u] is the required pa th (see Fig. 6). Next consider tha t
(w,w') is a forward frontier. Clearly Iq[f ~o w']l _> IP[f to wql, because otherwise
by splicing p and q we can get a shor ter even pa th to v.

We will first prove tha t w is covered by a flower of q[w to v]. Consider the
last segment of q[w to v] which starts below w (say at z) and ends above w. Now,
z couldn ' t be even w.r.t, p because otherwise p[f to z]oq[z to v] is a shorter odd
pa th to v. If z is covered by a flower of q[w to z], then this flower must cover w
also (because otherwise we can again get a shorter odd pa th to v using L e m m a 3).
If z is not covered by a flower of q[w to z], by lemma 4, w must be covered by a
flower of q[w to z]. Let b ~ be the base of this flower, and let r be an even length
al ternat ing pa th from b ~ to w in this flower.

~ ~ 1 V I V

WP=U

/ I

a) b)
Fig. 7

Now, if u is above b I, then p[f to b ~] concatenated with the odd length alter-
nat ing pa th from b p to u th rough the flower gives the odd pa th to u. Otherwise,
q[f to w] orop[b' to u] is the required path. The first case is i l lustrated in Fig. 7
and the second in Fig. 8. I

Lemma 6. base(v,p) = base(v, q) = b.

Proof. The no separators case is proved in Lemma 5. Let (s,J) be the lowest
separator on p(b to v] and q(b to v], with s / even w.r.t, p and q. Clearly, IP[f to s]l =
Iq[f to s]l , and by the choice of b, tenacity(s) < tenacity(v). Let (w,w') be the
highest frontier on p(b to s), with w t even w . r . t . p . By the proof of L e m m a 5, all
vertices on p(b to w'] have tenacity ~ tenacity(v).

For dealing with vertices on p(w ~ to s), first consider the case tha t s occurs at
the correct distance on p (e.g. see Fig. 9(@). Let r be an evenlevel(s) pa th which
shares ~he most number of vertices with q. If r has no separators on p(w ~ to s),

T H E O R Y O F A L T E R N A T I N G P A T H S 8 7

W t �9

' ~' ~ f - - b

Vr

a) b)
Fig. 8

then by the proof of L e m m a 5, all vert ices on this pa r t of p have tenacity <_ tenaci-
ty(v). Otherwise, let (x ,x ~) be the highest separa tor , wi th x ~ even w . r . t . p . Once
again, the proof of L e m m a 5 takes care of vertices on p(J to s). For the remaining
vertices, there are some cases to be considered.

The canonical case is when fix ~ to s] does not intersect q[f to s). Let u be an
even ver tex on p(w' to X']' We will show tha t the odd p a t h p'=q[f to s]or[s to x']o
p[x' to u] has length ~ tenacity(v) -IP[f to u]l , the reby bounding tenacity(u).

Since s occurs at the correct dis tance on p,]r[f to s]l_< tenacity(v)-Ip[f to s]l.
Also, Ir[f to x']] > IP[f to x']], because otherwise we can splice p and r to get a
shorter even p a t h to v. Therefore, Ir[x' to s]l_~ tenacity(v)-Ip[f to s] l - l p [f to x']l.
Subs t i tu t ing this in IP'I and using IP[f to s]l = Ig[f to s]l gives bound.

Next suppose r[x' to s] intersects q[f to s] in ver tex y first. If y is even w.r.t, q
then by the same a rgument as above, q[f to y]or[y to x'] op[x' to u t is the required
odd p a t h to u. Finally, suppose y is odd w . r . t . q . Then, Ir[f to Y]I-> Iq[f to Y]I.
Now, r[y to s] must intersect q[f to y), because otherwise r violates the condit ion
t ha t it shares the most number of vertices wi th q. Let (z,z ~) be the lowest ma tched
edge of q[f to y) t raversed by r[y to s], wi th z ~ even w . r . t . q . I f z ' is even w.r.t .
r, then we can get a shor ter even p a t h to s by splicing r and q. Otherwise,
q[f to z'] or[z' to x'] op[x' to u] is the required odd p a t h to u.

In case s does not occur at the correct dis tance on p (e.g. see Fig. 9(b)), let r
be an oddlevel(s) path . Now, r must intersect p(s to v] in an even ver tex first. Let
this ver tex be h, and as before, let (x, x 0 be the highest separa tor of r on p(w ~ to s).
Let r' =r[x ~ to h]op[h to s]. Using z g in place of r[x ~ to s] in the above-s ta ted cases
yields the required odd p a t h to u.

Finally, we r emark t h a t these a rguments apply to vertices between any two
consecutive separa tors on p; the vertices between the highest separa tor on p and v
are dealt wi th using the proof of L e m m a 5. |

88 V. V. V A Z I R A N I

V

I I

I

~)

I I

I I I

b)
F i g . 9

Theorem 3. Let v be a vertex of •nite tenacity. Then its base is unique, i,e., the
set {blb= base(v,p) for some e'venIeveI(v) or oddlevel(v) path p} is a singleton.

Proof. Let p and q be any evenlevel(v) and oddlevel(v) paths. By lemma 5,
base(v,p) =base(v ,q)= b (say). Now, by fixing p and varying q over all oddlevel(v)
paths and then fixing q and varying p over all evenlevel(v) paths we get required
result. |

Definition. For a vertex v of finite tenacity define base(v) to be its unique base.
Say that a vertex v is outer if evenlevel(v) < ocldlevel(v), and inner if oddlevel(v) <
evenlevel(v).
Remark. 1) For a matched edge (u,v), base(u)=base(v), by Lemma 1.
2) For a vertex v of finite tenacity, base(v) is an outer vertex.

Definition, Let v be a vertex of finite tenacity. Define base 1 (v) = base(v). Fur-
thermore, for k E Z +, if basek(v) is of finite tenacity, then define basek+l(v) =
base(basek(v)).

Remark. Notice that tenacity(base~+l(v)) > tenacity(basek(v)), and even-
level (base k+ 1 (V)) < evenlevel(base k (v)).

Corollary 1. Let v be a vertex such that basek+l(v) exists, for k ~ Z +, and let p
be any evenlevel(v) or oddlevel(v) path. Then every vertex on p(basek+l(v) to v]
has tenacity <_ tenacity (base ~ (v)).

5. T h e s ign i f i cance b a s e

We will use the notion of base to define blossoms in the next section. The
other significance of base is that a pa th is an evenlewl(v) pa th iff it consists of an
evenIevel(base(v)) path concatenated with a minimum even-alternating pa th from

T H E O R Y OF A L T E R N A T I N G PATHS 89

base(v) to v. Thus the two paths can be found independently. A similar statements
holds for oddlevel(v) paths.

Definition. An even-alternating path (odd-alternating path) from u to v, is an
alternating path of even (odd) length, starting with an unmatched edge.

Lemma 7. Let u be a vertex occurring on an evenlevel(v) (oddleveI(v)) path p.
Suppose u is even w.r.t, p and tenacity(u)>tenacity(v) . Let q be an evenlevel(u)
path and r be a minimum length even-alternating (odd-alternating) path from u
to v. Then q and r meet only at u.

Proof. Suppose not, and let (w,w I) be the lowest matched edge of q traversed by
r, with w r even w. r . t . q . If w ~ is even w.r.t, r, than by splicing parts of q and r,
we can get an even (odd) path to v which is shorter than]q] + [r[. However, by
Theorems 1 and 2, p[> [ql+[r[, leading to a contradiction. Suppose w ~ is odd w.r.t.
r. Then q[f to w']or[~v' to u] is an odd path to u of length <]p. We now get that
tenacity(u) < tenacity(v) (in case p is a minlevel(v) path this is obvious, otherwise
use Lemma 2). The contradiction proves the lemma. |

Remark. We have considered only the case that u is even w . r . t . p . This is so
because of the manner in which we defined even-alternating and odd-alternating
paths: they always start with an unmatched edge. The reason for this choice will
become clear in Theorem 4.

Notice that in general n may not occur on every evenlevel(v) path, e.g. see
Fig. 10.

v_ g
r

I I

a ~

I

I I

Fi 9. 10

Theorem 4. Let v be a vertex of finite tenacity, and let b = base(v). Then, every
evenlevel(v)(oddlevel(v)) path consists of an evenlevel(b) path concatenated with
a minimum]ength even-alternating (odd-alternating) path from b to v.

Proof. Follows fl'om Lemma 7 and Theorem 3.

Definition. Let b = base k (v), for k C Z +. Define evenlevel(v, b)(oddlevel(v, b)) to be
the length of a shortest even-alternating (odd-alternating) path from b to v. The
smaller of these two is called ~ninlevel(v, b), and the larger is called maxlevel(v, b).

Corollaries 2 and 3 follow from Theorem 1 to 4.

90 V. V. V A Z I R A N I

Corollary 2. Let b = base(v), and let p be an evenlevel(v,b) or an oddlevel(v,b)
path. Let u be even w.r.t, p with tenacity(u) = tenacity(v). Then, p[b to u] is
an evenlevel(u,b) path. Moreover, if p is a minlevel(v,b) path then p[b to u] is a
minlevel(u, b) path.

Corollary 3. Let v be a vertex such that basel(v),base2(v), ... ,base~(v) exist. Let
Pk be an evenlevel(basek(v)) path, and Pl be an evenlevel(basel(v),basel+l(v))
path, for 1 <_ l <_ k - 1. Finally, let Po be an evenleveI(v, basel(v))(odd -
level(v,basel(v))) path. Then pk opk_l o . . .opl op0 is an evenlevel(v)(oddlevel(v))
path, and P~-I o... opl op0 is an evenlevel(v, base~(v))(oddlevel(v, base k (v))) path.
Conversely, every evenlevel(v)(oddlevel(v)) path and every evenlevel(v, baselC(v))
(oddlevel(v,basek(v))) path is this form.

6. Blossoms and their significance

In this section we will define blossoms from the perspective of minimum length
alternating paths. Theorem 5 gives the central result that all shortest alternating
paths from base(v) to v lie in a blossom.

Definition. Let v be a vertex of finite tenacity, and let t be an odd positive integer
such that t >_ tenacity(v). Let k = min{j �9 Z + I tenacity((baseJ(v)) >>_ t}, and I =
min{j e Z + I tenacity(baseJ (v)) > t}. Define base>_~(v) = base k (v), and base>t (v) =
basJ(v).
Remark. Let p be an evenlevel(v) or oddlevel(v) path. Then by Corollary 1, every
vertex on p(base>_t(v) to v] is of tenacity < t, and every vertex on p(base>t(v) to v]
is of tenacity < t.

Definition. Let b be an outer vertex, and t be an odd positive integer such that t <
tenacity(b) (b is chosen outer because the base of a vertex is always outer). The
blossom of tenacity t having base b is the set

Bb, t = {v �9 V l tenaeity(v) <_ t and base>t@) -- b}.

In general the vertices of a blossom may not even be connected by an alter-
nating path. For example, in Fig. 10, Bb33={a ,e ,d , e , v ,9 }.

Remark. 1). If Edmonds ' algorithm is modified to 'shrink' sets of vertices in stages:
at stage i, shrink all vertices of tenacity 2 i + 1, then 'macronodes ' obtained at the
end of each stage correspond exactly to the blossoms defined above.
2). For matched edge (u,v), u and v belong to the same blossoms.

We will need the following properties of blossoms to prove Theorem 5.

Lemma 8. Let B1 and B2 be two blossoms. Then either they are disjoint or one is
contained in the other.

Proof. Let B1 be a blossom of tenacity t l and base bl, and B2 be a blossom of
tenacity t2 and base b2. Let t l < t2. Suppose v �9 B1 N B2. Then base>~ 1 (v) = bl
and base>tu (v)= b2, then clearly B1 C_ B2

T H E O R Y O F A L T E R N A T I N G P A T H S 91

Consider the case bl r Then, base>t2(bl)=b2. Let u be any vertex in B1.
Then tenacity(u) < tl and baser1 (u) = bl. Therefore, base>t 2 (u) = b2. Therefore,
u E B2. Hence B1 _C B2. 1

The proof of the following lemma is s traightforward.

Lemma 9. Let v be a vertex such that base l (v)= bt, base2(v)= b2,... ,base~(v)=
b k. Let tenacity(v) = t o , and tenacity(bi) =ti , for 1 < i < k. Let B i be the blossom
of tenacity t i-1 having base bi for 1 < i < k. Then BICB2 ~ . . . ~ B k.

Proof. Bi C Bi+l, for i = 1 , . . . , k - 1 follows from the definition of blossom.
Furthermore, since b i is in Bi+ 1 - B i , proper conta inment follows.

Lemma 10. Let b = basek(v), for k E Z +. Let p be an evenlevel(b) path, and let
u C b be even w.r.t, p. Then (u,v) is not an edge in the graph.

Proof. If (u,v) is an edge, there is an odd pa th to v of length less then evenlevel(b),
giving a contradiction. |

Theo rem 5. Let v be a vertex of finite tenacity. Let b = base(v), t = tenacity(v),
and Bb, t be the blossom having base b and tenacity t. Let p be an evenlevel(v,b)
or an oddlevel(v, b) path. Then any vertex on p(b to v] is in Bb, t.

Proof . By L e m m a 1, it is sufficient to prove the theorem for]p[even. The proof is
by induct ion on evenlevel(v). For the base case, let v be a vertex of finite tenaci ty
having the smallest evenlevel. Then clearly]pJ = 2, and since the matched neighbour
of v is in Bb,t, the assertion holds. We prove the induct ion step below.

Suppose p(b to v] contains a vertex not in Bb, t. Let u be the highest such
vertex on p; clearly u is even w . r . t . p . First consider the case Ip[u to v]l > 2. Let
v ~ be the matched neighbour of v, and let w be the highest vertex on p(u to v~).
Now, w couldn ' t be of tenaci ty t because otherwise by Corollary 2, p[b to w] is an
evenlevel(w,b) path, which contradicts the induct ion hypothesis. Therefore, te-
nacity(w) < t. Let b t = base>_t(w), and let q be an evenlevel(w,b ~) path. If b ~ =
b, qo (w, v ')o (v~,v) is shorter even-al ternat ing pa th from b to v (using Corollary 3,
Lemma 9 and the induct ion hypothesis). Otherwise, tenaeity(b ~) = t and b~E Bb, t.
Let r be an evenlevel(b~,b) path. Vertex v cannot be on r (if it is even w.r.t.
r, we get a shorter pa th from b to v, otherwise this contradicts Lemma 10) or
on q(b ~ to w] (because these vertices are of tenacity < t). Now, by the induct ion
hypothesis, r o q o (w, v') o (v', v) is a shorter pa th from b to v.

Finally, consider the case Ip[u to vii = 2. Let b ~ = base>t(@, and let q be an
evenlevel(u, b ~) pa th and r be an evenlevel(b t) path. By the induct ion hypothesis,
q(b ~ to u] is in the blossom having base b ~ and tenaci ty t, and before v r q. As before,
v cannot be on r. Since b is not basek(u) for k E Z +, evenlevel(b)+ Ip[b to u]l >
evenlevel(u) = [rl+lq I. Therefore roqo(u,v ')o(v ' ,v) is a shorter even pa th to v than
tha t obtained by concatenat ing an evenlevel(b) pa th with p. The contradict ion
proves the induct ion step. 1

The following feature of blossoms is being used in the above-stated inductive
proof.' tha t p is contained in a blossom, and therefore has a simple interface to the
rest of the graph, th rough the base of the blossom.

92 V . V . V A Z I R A N I

7. T h e n e s t i n g of b l o s s o m s

The nesting of blossoms is described in Lemma 11. Notice that in Fig. 2,
the evenlevel(e,b) path either enters or exists from blossoms nested in Bb,15 at
their base (i.e. vertices g and e), and each blossom is used at most once. This is
established in Theorem 6. As a consequence, the part of this pa th in the nested
blossom is a minimum length alternating path; this is shown in Corollary 4. These
properties of paths w.r.t, the nested blossom structure reveal the reason for BFS
dishonesty.

Lemma 11. Let Bb, t be a blossom of tenacity ~ having base b. Let C = {v I tena-
ci ty(v) = t and base>t -- b}. For u ~ C U {b}, let Bu = {v I tenaci ty(v) < t and
base>t(v)=u}. Then Bb,t=CU(U Bu).

ucCU{b}
Proof. Let v E Bb,t. If tenaci ty(v) = t, then base(v) = b and v E C. Suppose tenaci-

ty(v) < t. Then basek(v) = b, for some positive integer k. If k = 1, v E t35. Otherwise,
let u = base k-1 (v). Clearly, tenaci ty(u) <_ t. If tenaci ty(u) = t, then u E C, and v E
Bu. If tenaci ty(u) < t, then v E B b. Containment in the other direction is obvious. |

Definition. Let B1 and B2 be two blossoms. If B1 is a proper subset of B2 then we
will say that B1 is nested in By. If furthermore there is no blossom 133 such that
B I ~ B 3 ~ B 2 then B1 is properly nested in By. The nesting depth of blossom B is
defined recursively as follows: if B has no properly nested blossoms then its nesting
depth is 0. Otherwise, among the blossoms properly nested in B, let B ~ have the
largest nesting depth, and let/~ be the nesting depth of B r. Then the nesting depth
of B is /~+1.

Lemma 12. Let u E C as defined in Lemma 11, and v C B u . Then,

minIeveI(v ,b) > evenlevel(u,b) , and

maz leve l (v , b) < oddlevel(u, b).

Proof. The proof follows from Corollary 2, and the fact that tenaci ty(v) < tenaci-
ty(u). I

Theorem 6. Let v be a vertex of tenacity t in bIossom Bb,t, and p be an even-
level(%b) or an oddlevel(v,b) path. Then p enters and exits from any blossom
properly nested in Bb,t, say Bu, at mos t once. I f so, p mus t either enter or exit
from the blossom and its base, Bu U {u} at its base u.

Proof. By Lemma 1, it is sufficient to prove the theorem for IPl even. The proof is
by induction on evenlevel(v,b) for vertices of tenacity t in Bb, t. For the base case,
let v be such a vertex having smallest evenlevel(v ,b) . Clearly, any vertex of tena-
city < t on p must be in the nested blossom B b. Let w be the highest such vertex
on p. Then by Theorem 4, p(b to w] is in BD, proving the assertion. We prove the
induction step below.

Suppose p enters and exits at least one blossom properly nested in Bb,t more
than once. Let Bu be the last such blossom on p. The proof of the base case shows

T H E O R Y O F A L T E R N A T I N G P A T H S 93

that u ~ b. Let w be the first vertex of p in Bu U {u}, and w ~ be the last. If either
w = u or w1= u, then by Theorem 5 we can get a shorter even-alternating path
from b to v which uses Bu 'properly ' . Otherwise, let q be an evenlevel(u,b) path;
by Lemma 12,]ql < [P[, and therefore by the induction hypothesis q satisfies the
condition. By Corollary 2 any vertex of tenacity t must be at its correct distance on
q; moreover since u is outer, this must be its minlevel distance. Therefore, q must
enter a set B u, U {u'} at u' . Assume that p(b to w] and p[w' to v] both intersect
q; the remaining cases are simpler. A vertex of tenacity t on qAp[w ! to v] must
occur at its maxlevel distance on p. Now, if B u, is a blossom such that u p occurs
on q then p[w ! to v] must enter Bu, at most once (since Bu is the last 'misused'
blossom on p), and must exit the set B u, U{u} at u ~. Let x be the first vertex of
p[w ! to v] which is on q and has tenacity t. By Theorem 5, q[x to u] concatenated
with an evenlevel(w,u) path is shorter than p[x to w]. Therefore, if p(b to w] does
not intersect q[x to u], we can get a shorter even pa th from b to v. Otherwise, let y
be the first vertex ofp(b to w] on q[x to u]. First assume tenacity(y)=t. I f y is odd
w.r.t, q, then since q[y to u] concatenated with an evenlevel(w',u) path is shorter
than p[y to w~], we can get a shorter pa th to v. Otherwise we can use q[y to x]
instead of p[y to x]. Next suppose tenacity(y) < t, and y E Bu,. Then, p[x to y] is
an even length alternating pa th from x to y. But the shortest such path is obtained
by concatenating q[x to u ~] with an evenlevel(y,u ~) path (this pa th does not use
Bu). Again, this gives a shorter pa th to v. The contradiction proves the induction
hypothesis. |

Remark. If p is a minlevel(v,b) path then all properly nested blossoms used by p
are entered through the base. On the other hand suppose p is maxlevel(v,b) path
and uses nested blossoms B1. . . Bk in this order. Then, either all of these blossoms
are entered through the base or all are exited through the base, or ~i, 1 < i < k such
that B1. . . Bi are entered through the base Bi+l. . . Bk are exited through the base.

Corollary 4. Suppose p enters (exits) the set Bu U {u} at u and exits (enters) at
w . Then pin to w] is an evenlevel(w,u) path and therefore evenlevel(w) = even-
levd()+ to w]J.
Proof. Follows form Theorem 5 and 6, and the minimality of p.

Remark. Theorem 6 and Corollary 4 are also true for any blossom nested (not
necessarily properly) in Bb, t. This can proven by an easy induction on the nesting
depth of Bb, t.

We can now explain why minimum length alternating paths are BFS dishonest
in general graphs. Let p be a maxlevel(v,b) path that enters Bu U {u} at vertex
w ~ u . By Theorem 4 and 5, every oddlevel(w, b) path consists of an evenlevel(u, b)
path concatenated with an oddlevel(w,u) path; the latter path is contained in Bu.
Therefore]p[b to w]l > oddlevel(w,b). However, this is consistent with Theorems 1
and 2 since tenacity(w) < tenacity(v). The following corollary complements The-
orems 1 and 2 for case tenacity(w) < tenacity(v) and gives additional constraints
that minimum length alternating paths must satisfy despite their BFS dishonesty.
It can be proven by an easy induction on IPl.

Corollary 5. Let p be an evenlevel(v) or an oddlevel(v) path, and w be a vertex
of finite tenacity on p. Then base(w) is also on p; moreover, p[base(w) to w] is an

94 V.V. VAZIRANI

evenlevel(w, base(w)) or an oddlevel(w, base(w)) path, depending on the parity of
Ip[base(w) to w]l.

8. E v e r y max leve l p a t h c o n t a i n s a b r i d g e

We will prove that every edge on the path from base(v) to v has tenacity <
tenacity(v). This is followed by the last structural theorem: that a maxlevel(v)
path contains a unique bridge of tenacity tenacity(v). Theorem 7(b) shows how
v can be obtained by searching down from the bridge; this fact will eventually be
used in DDFS. Theorem 7(c) gives a relationship between the even. and oddlevels
of the endpoints of the bridge and tenacity(v). This is used in Lemma 15 to prove
that bridges are found 'well in time' to make the synchronization work.

Lemma 1~. Let p be an evenlevel(v,b) or an oddlevel(v,b) path, where b=base(v).
Then, all edges on p h~ve tenacity <_ t, where t=tenacity(v) .

Proof. By induction on the nesting depth of Bb,t, for the base case, suppose Bb, t
has nesting depth 0. Then every vertex on p(b to v] has tenacity t. So by Lemma 1,
every matched edge on p has tenacity t. Let (u,u ~) be an unmatched edge on p, with
u even w.r . t .p . Since u and u / occur at the correct distance on p, and tenacity(u ~) =
t, it follows that evenleve l (u~)=t-evenleve l (u) -1 . This gives tenacity(u,u~)---t.

We now prove the induction step. Suppose p enters (exits) the set Bu U {u} in
u and exits (enters) in w. Then, by Corollary 4, and the induction hypothesis, all
edges on p[u to w] have tenacity< t. Of the remaining edges on p, the tenacity of
matched edges is t since they are incident on vertices of tenacity t. Finally consider
a remaining unmatched edge (z, z~), If both endpoints have tenacity t (or more,
since b may be an endpoint), then z and z ~ occur at the correct distance on p, and
the argument of the base case applies. Otherwise suppose tenacity(z) = t and te-
nacity(z ~) < t. Let b ~ = base>_t(z~); by Theorem 6, b ~ must be on p. Now, using
Corollary 4 and the fact that b ~ must be at the correct distance on p, it is easy to
see that tenacity(z,z ~) =t. This proves the induction step. |

Theorem 7. Let v be a vertex of ~nite tenacity, say t, and let p be a maxlevel(v)
path. Then
(a) There is unique bridge of tenacity t on p.

Proof. We will first show the existence of such a bridge and then its uniqueness.
Let b= base(v), and let set S consist of all vertices on p[b to v] which have tenaci-
ty > t. By Theorem 2, these vertices occur at the correct distance on p. Partition
S into two sets: Smin(Smax) consists of vertices of S which occur at their minlevel
(maxlevel) distance on p. Notice that b E Smin and v E Smax. Let w be the highest
vertex of p in Stain, and let w ~ be the lowest vertex of p in Sm~x. Notice that all
vertices of Stain lie on p[b to w] and those of Smax on p[w ~ to v].

First suppose (w,w') is a matched edge. Clearly, oddlevel(w) = IP[f to w]l
and oddlevel(w') = t - Iq[f to w']l giving tenacity(w,w') = t. Moreover~ since the
minlevel of both w and w ~ is odd, (w,w/) is not a prop, and is therefore a bridge:

In the remaining case, w and w ~ are both outer vertices, and all vertices on
p(w to w% if any, are of tenacity <t. By Theorem 6, these vertices must be either

T H E O R Y O F A L T E t ~ N A T I N G P A T H S 95

in Bw or B~v,, i.e. blossoms of t enaci ty < t - 2 having base w and w / respectively.
Let x be the highest ver tex of p(w to w/) in Bw; if there is no such vertex, let x =
w. Let x ' be the first ver tex on p(x to w']. Clearly (x ,x ') is unmatched; we will
show tha t (x ,x ~) is a bridge of tenaci ty t.

By Corol lary 4, even leve l (x)= IP[f to x] I, and evenlevel (x I) = evenlevel (w I) +
Ip[w' to x']l. Also, evenlevel(w') = t - l P [f to w']l. This gives t e n a c i t y (x , x 1) = t.
Now, x ~ is not predecessor of x; if x = w, the predecessor of x is its ma tched
neighbour, and otherwise the predecessor of x is in Bw. Similarly x is not a
predecessor of x I, and so (x ,x l) is a bridge.

We finally prove uniqueness. Let (u ,u ~) be an edge on p[b to w] wi th u ~ higher
t han u. If t enac i ty (u ~) = t, u is a predecessor of u ~, and so (u, u ~) is a prop. Otherwise
by L e m m a 13, (u ,u t) is of tenaci ty < t. The same applies for an edge (u ,u ~) on
p[w! to v] wi th u higher t han u I. Also~ by L e m m a 13, edges on p[w to w ~] other t han
(x , J) , if any, are of t enac i t y< t. Final ly consider edge (u ,u ~) on p[f to b], wi th u ~
higher than u. I f t enae i ty (u ~) > t, u is a predecessor of u ~. Otherwise by Corol lary 5,
base>_t(u') must be on I f to u ') , and so by L e m m a 13, t e n a c i t y (u , u ') < t . |

The following definition and extensions of T h e o r e m 7(a) give algori thmica!ly
useful facts; their proofs follow from the proof of T h e o r e m 7(a).

Definition. Let v be a ver tex of tenaci ty t. We will say t ha t ver tex u is predt, of v
if either:

(i). u is a predecessor of v and tenaci ty(u) > t, or
(ii). there is a predecessor, u / of v, such tha t

t enaci ty (u I) < t, and

u = base>~(u').

Define pred* - t to be the reflexive, t ransi t ive closure of the relat ion predt.

R e m a r k . If v is outer, then only the ma tched neighbour of v is predt of v. Thus
(ii) applies only for inner vertices. In this case, there is an odd-a l te rna t ing p a t h
f rom u to v of length minleve l (v) - min leve l (u) whose internal vertices are all in
the b lossom Bu, t -2 (because a minleve l (v) p a t h consists of an evenlevel (u ~) p a t h
conca tena ted with the edge (ul ,u)) .

T h e o r e m 7(b). Let (x ,x ~) be the unique bridge of tenacity t on p. I f t e n a c i t y (x) < t
then let Yo =base>_t(x), otherwise let Yo = x . Similarly, i f t enac i ty (x ~) < t then zo =
base>t(xl), otherwise let zo = x ~. Then there is a set of distinct vertices Y l , . . . i Yk,
z] , . . . , z 1 such that
(i). Yi+l is predt of yi, for O<i <k , and b is predt of yk, where b=base(v) .
(ii). zi+l is predt of zi, for 0 < i < l , and v is predt of z 1.
(c) : I f (x ,x ') is matched then oddlevel(x) = oddlevel(x') = (t - 1)/2. I f (x ,x ') is
unmatched then either evenlevel (x) < (t - 1) / 2 or tenaci ty(x) < t, and either even-
leveI(x') <_ (t - 1)/2 or tenaci ty(x') < t.

The following l e m m a w i l l be used in the proof of T h e o r e m 9.

L e m m a 14. Let v0 be a vertex of tenacity t, and vl , . . . , vk be dist inct vertices such
that vi is predt of v i -1 for 1 < i < k. I f v] , . . . , v k - 1 are of tenacity t and tenaci-
ty(vk) > t then vk = base(vo).

96 V.V. VAZIRANI

Proof. By the remark following the definition of predt, there is a path p from vk
to v0 of length minlevel(vo)-evenlevel(vk) By the definition of predt, p is part of
a minlevel(vo) path. Now, since all vertices on p, other than vk, have tenacity <_ t,
it follows that base(vo)=vk. |

Remark. Let G(V, E) be a graph and M be a matching in it. Construct a new graph
GI(V I, E I) as follows: on each unmatched vertex of G add a new matched edge, and
connect the other endpoints of these edges via unmatched edges to a single new
unmatched vertex f . Now, there is an obvious one-to-one correspondence between
evenlevel(v) and oddlevel(v) path in G and G', for v c V: simply remove the first
tWO edges of a path in G ~ to obtain the pa th in G. (Notice that the first two edges
are props, since they give minlevels.) So, the evenlevel and oddlevel increases by 2
and the tenacity by 4 in going from G to G ~. Therefore, Theorems 1 and 2 are true
for G as well. Henceforth, let m denote the length of a minimum length augmenting
pa th in G. For v C V of finite tenacity, let us say that the bases of v is defined if
base(v) ~ f in G ~. Notice that following is an alternative characterization of such
vertices: on any evenlevel(v) or oddlevel(v) path in G, there is a vertex of tena-
city > tenacity(v). (Clearly, if tenacity(v) < m, the base of v is defined.) For such
vertices, Theorems 3 to 6 hold in G as well because of the above-stated one-to-one
correspondence. Finally, Theorem 7 holds for all vertices, v, in G because the first
two edges on any evenlevel(v) or oddlevel(v) path in G' are props.

9. P r o c e d u r e M I N , a n d t h e ro le o f a n a m o l i e s

Procedure MIN finds minlevels of vertices, and it also determines whether
an edge is a prop or a bridge. MIN examines an edge (u,v) at most once (MIN
marks edges that it examines 'used' so they don' t get examined again). If (u, v) is
unmatched (matched), MIN examines this edge while searching from the endpoint
having smaller evenlevel (oddlevel); ties are broken arbitrarily. Let us assume tha t
(u,v) is examined from v. If at this stage MIN gives u its minlevel then (u,v) is a
prop, otherwise it is a bridge.

If the search level i is even, MIN examines unmatched edges incident at vertices
having evenlevel i. Suppose evenlevel(v)= i, (u,v) is unmatched and has not yet
been examined by MIN. The following cases arise (we will assume that at the
beginning of the phase, the evenlevels and oddlevels of all vertices are initialized to
~) :

(i). minlevel(u) = ~ : minlevel(u) is set to i + 1, v is inserted in the set of
predecessors of u, and (u,v) is marked a prop.

(ii). minlevel(u)= i + l : v is inserted in the predecessor list of u, and (u, v) is
marked a prop.

(iii). rninlevel(u)< i and evenlevel(u) is finite: (u,v) is marked a bridge and
is inserted in the set of bridges of tenacity (evenlevel(u) + evenlevel(v) + 1). (See
Fig. i1.)

(iv). minlevel(v)<i and evenlevel(u)= c~; v inserted in the set of anamolies
of u, and (u, v) is marked a bridge. (We will a give a precise definition of anamolies
below and will explain their significance. See Fig. 12 for an example.)

T H E O R Y O F A L T E R N A T I N G P A T H S 97

I - - - I ~
I I I I

I I

!

Fig. 11

| I

I

Fig. 12

If the search level i is odd, MIN examines matched edges incident at vertices
having oddlevel i. Suppose oddtevel(v)= i, and matched edge (u,v) has not yet
been examined by MIN. The following cases arise:

(i). minlevel(u) = co: minlevel(u) is set to i + 1, v is inserted in the set of
predecessors of u, and (u,v) is marked a prop.

(ii). minlevel(u) is finite: in this case, oddlevel(u)=i. Edge (u,v) is marked a
bridge and is inserted in the set of bridges of tenacity(oddlevel(u)§
Definition. The following definition follows from case (iv). We will say that v is
a~ anamoly of u if (u,v) is an unmatched edge, u is inner, and oddlevel(u) <
evenlevel(v) <_ (tenacity(u)- 1)/2. In this case (u, v) is called an anarnoly.

From the above definition it is clear tha t an anamoly is a bridge, and that te-
nacity(u,v) > tenacity(u). Notice that MIN is able to determine the tenacity of
all bridges other than anamolies. In case (iv), tenacity(u,v) cannot be determined
since evenlevet(u) is not yet found. At search level (tenacity(u)- 1)/2, MAX will

98 V. V. V A Z I R A N I

find evenlevel(u) and will determine the tenacity of all anamolies of u, including
(u, v). This is well in t ime for calling DDFS with bridge (u, v) since tenacity(u, v) >
tenacity(u).

Notice that anamolies were not mentioned in the structure developed in The-
orems 1 to 7. Anamolies are an algorithmic convenience, and the above-stated
manner of handling them leads to the synchronization mentioned in Section 2.

10. D o u b l e d e p t h f i rs t s e a r c h

Procedure MAX uses a new graph searching algorithm: double depth first
search (DDFS), We will first describe and prove correctness of this algorithm in the
following simple setting:

Definition. A directed graph H(S, T) with distinguished vertices a, b E S is said to
be layered if S is parti t ioned into sets Sn,Sn-1, . . . ,So, called layers, such that:

(i). every edge goes from a higher numbered layer to a lower numbered layer (not
necessarily consecutive), and

(ii). Vertices in $7~(So) have positive outdegree (indegree), and those in Sn-lU...US1
have positive indegree as well as outdegree.

If u E Sk, then level(u)= k. The distinguished vertices a and b can be at any levels.
Vertex s c S t is said to be a bottleneck if for every vertex u having level <_ l, every
pa th from a to u and from b to u contains s, and moreover s is the highest leveled
such vertex. We will assume that (u, v) represents the directed edge from u to v.

The problem is to determine if there is a bottleneck. Also (we will assume that
a and b are initially marked 'L ' and 'R' respectively):

(i). if there i s a bottleneck, say s E St, to find it. Furthermore, to mark 'L' or
'R ' (corresponding to left and right) all vertices having level > 1 which are reachable
from a or b. If such a vertex, u, is labeled L(R) then there is a pa th from a(b) to u
consisting of L(R) marked vertices. There also two paths, one from a to s and an
other from b to s consisting of L and R marked vertices respectively.

(ii). if not, to find vertices c and d c So, and vertex disjoint paths from a to c
and b and d.

DDFS accomplishes this task in linear (i.e. o(Irl)) time. It simultaneously
grows two vertex disjoint DFS trees TL and TR rooted at a and b, consisting of
L and R marked vertices respectively. DDFS maintains two centers of activity,
CL i andcR which start at a and b respective. As in the usual DFS, if a center of
activity moves from u to v, then p(v) =u, i.e. u is made the parent of v. Also, if a
center of activity is at u and all outgoing edges from u have been examined, then
the center of activity moves to p(u); this important step is called backtrackin 9. A
pidgin Algol description of the procedure appears on the next page; for the sake of
visual clarity we have used indentation to demarcate statements.

Procedure DDFS

THEORY OF ALTERNATING PATHS 99

begin
Mark each vertex 'unvisited' and each edge 'unused';
C L +-- a;

e R e - b ;
barrier e- b

Lloop:

Rloop:

while n o t [l e v e l @ L) = l e v e l @ R) = 0] do begin
while [level(eL)>>_ (cR)] do begin

mark CL 'L ' and 'visited';
for each unused edge (e L , u) do begin

mark (e L , u) 'used';
if u = cR then

cR ~p(cR);
p(u) e - eL;
e L +-- ~ ;

goto Rloop;
else if u is not visited then

p (u) +--- eL ;

e L +--~;

end;
if CL = a then HALT

else cn ~--P(CL);
goto Lloop;

end~
while [leve l (cR) > level(CL)] do begin

mark e R ' R ' and 'visited'
for each unused edge (cR, u) do begin

mark (cR,u) 'used';
if u is not visited then

p(u) ~- eR;
c R ~ - u ;
goto Rloop;

end;
if eR 5r barrier then C R ~--p(cR)

else barrier ~ c L;
e R e - e L ;

eL e - p (c n) ;
goto Lloop;

end;
end;

end;

�9 .. ~eL and cR meet

... /bott leneck found
�9 .. /CL backtracks

. . . / c R backtracks

... /barrier updated

/CL backtracks

We now describe how the two DFS's are coordinated: we will first present
and prove a quadratic time version of DDFS, and later make it linear time. If CL
and cR are at different levels then the higher one grows its tree, and otherwise CL

100 V. V. V A Z I R A N I

grows its tree; the latter choice is arbitrary. The reflexive transitive closure of the
relation parent is called ancestor. The ancestors of CL(CR) give a directed pa th
from a to eL (b to oR) consisting of L(R) marked vertices; these vertices will be
called the left active (right active) vertices. The most important step is dealing with
the situation that r L and c R meet at a vertex w. In this case, first c R a t tempts
(another arbi trary choice) to find a new path from a right active vertex having
level <_ level@L), by backtracking and finding new outgoing edges from right active
vertices in the usual DFS manner. (Clearly, the pa th found will s tart at the lowest
possible right active vertex.) If c R succeeds, then w is included in TL (i.e. marked
'L ') , and the search proceeds. Otherwise, eL at tempts to find a pa th from a left
active vertex to a vertex having level <_ level(w). If CL succeeds, then w is included
in TR (i.e. marked 'R ') , and the search proceeds. If CL also fails, then w is the
bottleneck, and DDFS halts. In this case, w is not included in T L or T R. In the
first two cases, p(w) is appropriately set, depending on whether w is included in TL
or TR. Finally, DDFS halts if CL and cR are both at distinct level 0 vertices.

It easy to check that DDFS maintains the following invariant: any vertex that
is visited (i.e. in TL U TR) but not active has been backtracked from. (Notice
that there may be right active vertices that have already been backtracked from;
however, every left active vertex has not been backtracked from.) It follows that
if DDFS halts at vertex s, then every vertex visited, other than s, is backtracked
from. Using a straightforward proof by contradiction, one can now show tha t s
is indeed the bottleneck, and furthermore, DDFS would have visited every vertex
reachable from a or b and having level < level(s). The remaining requirements
follow from the fact that at any point in the algorithm, there is a pa th from a to
CL (b to cR) consisting of L(R) marked vertices.

The above-stated algorithm follows any outgoing edge at most once. However,
notice that c R may backtrack from a vertex several times. (Though CL backtracks
from a vertex at most once because any left active vertex is not yet backtracked
from.) This leads to an O(ISI 2) running time. The algorithm is made more efficient
as follows: initially, a barrier is placed at b. When CL and c R meet at a vertex,
say w, c R backtracks only up to the barrier. If it fails to find an alternative path,
it includes w in T R and it moves the barrier to w. The right active vertices now
include the ancestors of e/~ from eR to the barrier only. The above-stated invariant
is still maintained; in addition we have that any active vertex (left or right) is not
yet backtracked from. This yields the following:

Theorem 8. DDFS accomplishes the above-stated tasks, (i) and (ii), in O(ITI) time.
More precisely, i f it ends with a bottleneck s, then the time taken is O(tT'I) , where
T ~ is the set of edges which are on a path from a or b to v.

11. U s i n g D D F S to f ind t h e s u p p o r t o f a b r i d g e , a n d p r o c e d u r e M A X

We will first show how DDFS can be used to find the support of a bridge in
an idealized setting. Let (u,v) be a bridge of tenacity t_< m, where m is the length

T H E O R Y O F A L T E R N A T I N G P A T H S I01

of a minimum length augmenting path in G. Let

u if tenacity(u) -- t
u 0 = base>_t(u) o.w.

v if tenacity(v) = t
v 0 = base>t(v) o.w.

This is illustrated in Fig. 11. Let H(S,T) be the directed graph consisting of
vertices S = {w E V iw is pred~ of u0 or v0}, and edges T = {(w,w') iw, w' E S, and
w ~ is predt of w}. Parti t ion vertices in S into layers according to their minleveis,
thereby obtaining a layered graph H(S, T).

Proposition 1. Suppose DDFS is run on graph H(S,T) with distinguished vertices
uo and vo. Then:

(i). i f DDFS terminates with bottleneck s, then the set of vertices visited by
DDFS, other than s, constituted support (u,v).

(ii). if DDFS terminates at two unmatched vertices f and f~ , then there is
a minimum length augmenting path from f to f l containing (u,v). In this case
tenacity(u, v) =m.

Proof. (i). Suppose w C support(u,v). By Theorem 7(b), w E S. If the base of w
is defined then let b=base(w), otherwise let b be any unmatched vertex at which a
minlevel(w) path starts. By Theorem 7(b), b E S, and there are two disjoint paths
in H(S,T) , one from u0 (say) to w and the other from v0 to b. Since minlevel(w) >
minlevel(b), w is above the bottleneck and will be visited.

For the other direction, first note that s must be outer, since inner vertices
in S have only one incoming edge. Suppose w 7~ s is visited by DDFS; assume
w.l.o.g, that w is outer and is marked L, and that u0 and v0 are marked L and R
respectively. Then there is an L marked path, Pl, from u0 to w and an R marked
path, P2, from v0 to s in H(S,T) .

Let x , y E S , with x predt of y. I f x is a predecessor of y then (y,x) is an
edge in G. Otherwise, by the remark following Theorem 7(a), there is a path
from x to y of length minlevel(y) -minleveI(x) in G. Using this fact (and since
the paths mentioned above will be in distinct blossoms), it is easy to see that
corresponding to Pt and P2 there are disjoint paths in G: p~ from w to u0 of length
minlevel(uo) -minleveI(w), and p~ from s to v0 of length minlevel(vo) - m i n -
level(s). I~et p~ be an evenlevel(s) path. Now, p~, p~ and (u,v), together with
an evenlevel(u, uo) path (if u0 7 ~ u), and evenlevel(v,vo) path (if v0 7 ~ v) gives a
maxlevel(uo) path. This path concatenated with p~ gives an oddlevel(w) path of
length t -minlevel (w) . This proves that tenacity(w)=t and w E support(u, v).

(ii). There are two disjoint paths, one from u0 to f and the other from v0 to
f ' , in H(S,T). As in (i), these correspond to disjoint paths in G which yield an
augmenting path from f to f~. I

Remark. The bottleneck s found in case (i) will be the base of a blossom iff te-
nacity(s) > tenacity(u,v). Fig. 13(@ shows an example in which tenacity(s1) =
tenacity(u1, vl).

Let the search level be i. MAX imposes an arbitrary ordering on the bridges
of tenacity 2 i+1 , say gl,g2,.. . ,gk, and calls DDFS with the bridges in this order.

102 V. V. VAZ1RANI

For the purposes of efficiency, the working of DDFS is different in two ways from
the above-stated idealized setting. We explain the differences below.

Firstly, a vertex may be in the support of more than one bridge. For example
vertex w in Fig. 13(a) is in support of (Ul, vl) and (u2, v2). Now, w will be visited by
MAX only once and will be assigned to one bridge: to (Ul, vl) if DDFS is called with
(Ul,Vl) before (u2,v2), and to (u2,v2) otherwise. Define petal(gi)=support(g1)-
[.J support(gj). DDFS finds the petals of gl ...gk, rather than their supports.

j < i
Notice that unlike blossom and support which are graph-theoretically defined,
petals are algorithmically defined since they depend on the ordering imposed on the
bridges. Suppose (u l ,v l) is processed before (u2,v2) in Fig. i3(a). The first DDFS
ends with bottleneck sl (notice that tenacity(s1) = tenaeity(ul, Vl)), and the second
with s2. Define the base of a petal to be its bot t leneck. Thus base(petal(u1, Vl))=
sl and base(petal(u2,v2)) = s2. Also, if w E petal(u,v), define base(w) to be
base(petal(u,v)). If the newly found petal is non-empty as an implementational
convenience, DDFS creates a new node; all the vertices of the petal point to the
node, and the node points to the base. This is illustrated in Fig. 13(b) and 14.
These figures also show the 'L' and 'R' marks left by DDFS.

u[YI u2 Y2

I I I I

I / I
I I I

I I

Fig. 13

Ul Pl g2 122

I I I

b)

The second difference is that the graph H(S,T) is not constructed explicity;
DDFS is run on graph G(V,E) itself as follows. Suppose the center of activity
is at v and u is a predecessor of v. If u is not in any petal, then the center of
activity moves to u. Otherwise (in this case tenacity(u) < tenacity(v)), the center
of activity moves to base*(u). The function base*(u) is defined below:

f u n c t i o n base* (u)

if u is not in a petal then return u

else return base*(base(u)).

end;

One more point needs to be mentioned. Suppose DDFS is called with bridge (u,v).
If u is in a petal, then the left center of activity starts from base*(u); similarly for v.

THEORY OF ALTERNATING PATHS 103

V

\ [

I

Fig. lg

Having found the vertices of tenacity 2 i § 1, MAX determines their maxlevels.
For each such vertex v, and for each anamoly u of v, MAX also determines the
tenacity of bridge (u,v).

12. P r o o f o f c o r r e c t n e s s o f M I N a n d M A X

In Theorem 9, we will show why the synchronization works, and we will
establish several properties of petals and buds in order to prove the correctness
of MIN and MAX.

Theorem 9. Let m be the length of a minimum length augmenting path in G. Then
MIN and M A X correctly find the minlevel of all vertices having minlevel < m and
the maxlevel of all vertices having tenacity < m.

Proof. By induction on i, the search level, we will prove the following stronger
statement:

Induction Hypothesis. Let t = 2i + 1. At the end of search level i:
1) all vertices v s.t. minlevel(s) < i + 1 get their correct minlevel; the remaining
vertices have their minlevel set at oo.

104 V.V. VAZIRANI

2) all vertices v s.t. tenacity(v) <_ t get their correct maxlevel, and are assigned a
petal. The petal of vertices of higher tenacity is still undefined, and their maxlevel
is set at cx~.
3) for any vertex v s.t. tenacity(v)<t, base*(v)=base>t(v).

The hypothesis is clearly true for search level 0. Assmning its t ru th for search
levels< i, we prove it true for search level i.
(1.) At the beginning of search level i the following holds: if i is even (odd),
every vertex u having an evenlevel (oddlevel) of i would have gotten it. (If rain-
level(u) = i, this follows from (1). If maxlevel(u) = i, then tenacity(u) < 2i - 1,
and the assertion follows from (2)). Suppose min leve l (v)= i+ 1, and let (u,v) be
the last edge on a minlevel(v) path. By the above-stated fact, MIN will find v
while searching from u. In this manner, MIN finds all the predecessors of v, and is
correctly able to distinguish props from bridges.
(2.) This involves proving the following three statements: (i). All bridges of tenacity
2i + 1 are found at the end of execution of MIN during search level i.
(ii). When called with bridge (u,v), DDFS finds support(u,v).
(iii). For every vertex v, every maxlevel(v) path contains a bridge having tenaci-
ty = tenacity(v).
Statement (iii) is proven in Theorem 7. Since MIN correctly distinguishes between
props and bridges, to prove the first s tatement, we only need to show that the
tenacity of bridges is determined 'well in time'; this is done below in Lemma 15 for
bridges having non-empty support.

Let g l ,g2- . .gk be an arbi trary ordering imposed by MAX on the bridges of
tenacity t = 2 i + 1. By induction on j , we will prove that when DDFS is called on
gj it finds petal(gj), thereby proving the second statement.

The induction basis follows from Proposition 1 and induction hypothesis (3),
because DDFS is essentially being run on the associated graph H(S,T) . We prove
the induction step below.

Consider the situation when DDFS is called with bridge gj. We make the
following observations: Suppose vertex v is in petal, and suppose u, a predeces-
sor of v, is not a petal. Then clearly u = base*(v). Secondly, if vertex v is in
a petal and tenacity(v) = t, then bud*(v) is pred~ of v. From the first observa-
tion it follows that if DDFS arrives at v, it is sufficient to continue search from
bud*(v) only. From the second observation it follows that DDFS visits all ver-
tices in support (g j) - Ul<jpetal(gl).But by the induction hypothesis~ this set is

support (gj) - Ul <j supp~) = petal (gj).
(3 0 Let v be a vertex of tenacity t, and b = bud*(v) at the end of search level i.
Clearly, b is pred~ of v. Since b is not in the support of any bridge of tenacity t,
tenacity(b) > t. Now, by Lemma 14, base(v) = b. Next suppose tenacity(v) < t.
Let b' be bud* (v) at the end of search level i - 1. By induction hypothesis (3), b ~ =
base>t(v). If tenacity(b') >t , b ~ will be bud*iv) at the end of search level i also. If
tenaeity(b 0 = t, b = bud*(b I) will be base*(v) at the end of search level i. By the
above-stated argument, b = base>~(v). |

Remark. Let b be an outer vertex of tenacity > t, and let Bb, t be the blossom having
base b and tenacity t. Then, hypothesis (3) implies that at the end of search level
i, the set {vEVIbud*(v)=b}=Bb, t.

T H E O R Y OF A L T E R N A T I N G PATHS 105

Lemma 15. Let (u,v) be a bridge of tenacity 2i + 1 having non-empty support.
Assuming the induction hypothesis of Theorem 9, the algorithm will determine the
tenacity of (u,v) by the end of execution of MIN during search level i.

Proof. Suppose (u,v) is matched. By Theorem 7(e), oddlevel(u)= oddlevel(v)=i.
Therefore, during the execution of MIN during search level i, (u, v) will be examined
and its tenacity will be ascertained.

Next suppose (u, v) is unmatched. W.l.o.g assume evenlevel(u) <_ evenlevel(v).
Since tenacity(u,v)= 2 i + 1 , evenlevel(u)< i. Edge (u,v) will be examined from
u at search level evenlevel(u). If evenlevel(v) is determined at this stage, tenaci-
ty(u,v) is ascertained. Otherwise, evenlevel(v) must be > i. If so, by Theorem 7(c),
tenacity(v) < 2 i + 1 . This implies evenlevel(v)oddlevel(v), i.e. v is inner. Since u
is not a predecessor of v, evenlevel(u) + 1 > oddlevel(v). So, while searching from
u at search level evenlevel(u). MIN will make u an anamoly of v. Now, at search
level (tenacity(v)- 1)/2, i.e. before search level i, evenlevel(v) will be given, and
tenacity(u,v) will be ascertained. |

Remark. A matched bridge (u, v) has non-empty support, since its support contains
u and v. One can extend Lemma 15 to unmatched bridges having empty support
using the following easily proven assertions (assume (u,v) is an unmatched edge):
a). if u is not a predecessor of v and v is inner, then tenacity(v)<tenacity(u,v).
b). if v is outer, then evenlevel(v) < (tenacity(u,v) - 1)/2.

w 23 w'

z u 21 '

\ /
I I I \vp

I I

"-4
I

Fig. 15

Figure 15 illustrates the importance of this synchronization. Notice that tena-
city(z, z ~) = 25 is ascertained at search level 10 while processing bridge (u, y/). So,

106 V. V. VAZIRANI

why not call DDFS with (z, z I) at search level 10? If this is done, then the vertices
visited may not be in support(z,z~), and so DDFS will not be able to ascertain
their tenacity. For example, v will be visited, even though v E support(w,w ~) and
has tenacity 23.

13. Finding minimum length augmenting paths

If the current matching, M, is not maximum then at search level (m - 1)/2
DDFS will eventually be called with a bridge that is on a minimum length aug-
menting path, and will end up at two unmatched vertices; m denotes the length of
a minimum length augmenting path w . r . t . M . At this point procedure FINDPATH
is invoked to find such a path between the two vertices. On the other hand, if the
current phase executes for (I V I - 1)/2 search levels without finding an augmenting
path, matching M is maximum, and the algorithm halts.

DDFS marks petals appropriately so that FINDPATH may find a path through
the petals efficiently. Suppose DDFS is called with bridge (u,v). Let u0 = bud*(u)
and v0 = bud*@), and assume that the left and right centers of activity start at u0
and v0 respectively. After the new petal P is formed, the following are set (assuming
P is non-empty): L-peak(P)=u and R - p e a k (P) = v . As shown in Figs. 13(b) and
13 the new petal-node points to L-peak and R-peak.

Furthermore, if u0 ~ u, DDFS sets exit - bud(u, v) = uo. Similarly, if V0
v, ex i t -bud(v ,u) = vo. Suppose DDFS visits vertex x, y is a predecessor of
x, y is already in a petal, and Y0 = bud*(y). Then, DDFS visits Y0, and sets
e x i t - bud(y,x) -- Yo. In this case, Y0 is pred~ of x, where t = tenacity(u,v) =
tenacity(x). This is illustrated in Fig. 14.

Let us say that u is bud+(v) if u=bud*(v) at some point during the execution
of the current phase. FINDPATH is called with two vertices, say x and y, as
parameters, where y is bud+(x). It returns an even-alternating path from y to x
of length evenlevel(x) -evenlevel(y). Assume x is in petal P, is marked R and
has tenacity T. FINDPATH is a recursive procedure; it first finds the 'shell' of the
required path.

First suppose x is an outer vertex. FINDPATH simply follows predecessors
till it gets to bud(x): suppose it is at vertex z c P and w is a predecessor of z.
If w C P, FINDPATH adds w to the shell. If w ~ P, it finds exi t -bud(w,z) , say
w I, and adds w and w / to the shell. It then continues search from w ~. If bud(x) r
y, FINDPATH continues the above process; notice that bud(x) is outer and y is
bud + (bud(x)). Finally, FINDPATH fills in the 'gaps' in the shell (such as (w, w')) by
recursively calling FINDPATH (e.g. on parameters w, w~). When all the reeursive
calls are complete, the path from y to x has been found. For example, the call
FINDPATH(o,q) in Fig. 16 results in the shell m n o q. The recursive call to fill
the gap is FINDPATH(o,q).

If x is an inner vertex, the process is more involved since the path from y to
x will use the bridge of P. FINDPATH first finds the left and right peaks of p, say
u and v. Suppose exi t -bud(u ,v)= uo and exi t -bud(v ,u)= vo. FINDPATH now
grows a DFS tree rooted at v0 and consisting only of the R marked vertices of P
till it finds x. This yields a shell from x to v0. It then grows another DFS tree

THEORY OF ALTERNATING PATHS

U 12

I I

~ -r ~
I I I

I

l ,

I I I

71 5
Fig. 16"

107

rooted at u0 and consisting only of the L marked vertices of P till it finds bud(x).
These shells are filled in through recursive calls. Also paths are found from u0 to
u and v0 to v. These concatenated with (u,v) give an even-alternating path from
bud(x) to x. The pa th from y to bud(z) is found as stated above. For example,
the call F INDPATH(j , f l) in Fig. 16 results in the two shells f e d c b and g h i j ;
these have no gaps. These are concatenated with the path b a f l from b to f l -

Suppose DDFS is called with bridge (u,v) at search level (m - 1) / 2 , and
ends at unmatched vertices x and y. Suppose u0 = bud*(u) and v0 =
bud*(v). Then, an augmenting pa th from x to y is found by the following:
FINDPATH(u0,x) o FINDPATH(u, u0). In Fig. 16, the augmenting pa th is ob-
rained by FINDPATH(u, f l) o (FINDPATH(v, f2) -1 . This results in the recursive
cans FINDPATH(N, f~), FINDPATH(m, q) and FINDPATH(s, ~).

After a pa th p is found, MAX invokes procedure T O P O L O G I C A L ERASE.
This procedure erases p and all vertices which cannot be in a minimum length
augmenting pa th disjoint form p as follows: T O P O L O G I C A L ERASE first erases
all vertices of p and all edges incident at these vertices. Then, it successively
removes any remaining vertices which have no predecessors left. After this, MAX
continues processing the remaining bridges of tenacity m to find augmenting paths
in the remaining graph. In this manner it finds a maximal set of disjoint minimum
length augmenting paths.

108 V. V. V A Z I R A N I

14. R u n n i n g t i m e of t h e a l g o r i t h m

Finally, we analyse the time taken by algorithm to execute one phase. Since
MIN examines each edge only once, it takes O(IEI). A vertex belongs to at most
one petal, and DDFS examines its predecessor edges once during the formation
of this petal. However, DDFS also has to compute bud* of vertices. This can
be accomplished in O(IE I oc (IEI, IVI)) t ime using the set union algorithm of [15];
here c< is the inverse Ackerman function. By resorting to the RAM model of
computat ion (in which operations on O(logn) bit numbers are assumed to take unit
time), Gabow and Tarjan [7] have given an incremental tree set union algorithm
which gives a linear implementation of bud* on the RAM model. We leave the open
problem of obtaining a linear implementation of bud* in the pointer machine model
of computat ion (see [11] for a precise definition). One avenue for accomplishing
this is to prove the claim in [14] that because of the special structure of blossoms,
if bud* is implemented using only pa th compression, its cost can be charged to the
edges and is linear.

Let us analyse the t ime taken by FINDPATH in a phase. Suppose vertex v
which is in petal P is on a minimum length augmenting pa th p. Let b= base>m(v),
where rn is the length of p. Clearly. b is also on p. Let Bb,m be the blossom having
base b and' tenacity rn. Clearly P C_ Bb,rn. Now, a minimum length alternating pa th
from any unmatched vertex to a vertex in Bb,rn must use b. Therefore, the vertices
in Bb, m - p cannot be on a minimum length augmenting pa th disjoint from p, and
will be deleted by T O P O L O G I C A L ERASE. Therefore, F INDPATH does at most
two DFS's in petal P.

Let (u,v) be a prop, with u predecessor of v. Define petal(u,v) to be petal(u),
and define the size of a petal to be the number of edges in it. By the above-
stated remarks, the work done by DDFS in a petal is linear in its size. Therefore,
the total t ime taken by FINDPATH in a phase is O(IEI). It is easy to see that
T O P O L O G I C A L ERASE also takes linear time. This proves that the running of
the algorithm on the RAM model is O(~-[~IEI) .
Acknowledgements. A very special thanks to: Silvio Micali for memorable times
spent discovering this algorithm; to Richard Karp for sharing his perspective on
graph algorithms and for introducing me to matching theory; to Manuel Blum for
his encouragement and enthusiasm for this work; and to Steve Mitchell and Umesh
Vazirani for spending several days verifying the proofs. Thanks also to the numerous
other people who saw parts of this proof at various points during its development.

R e f e r e n c e s

[1] M. L. BALINSKI: Labelling to obtain a maximum matching, in Combinatorial Math-
ematics and its Application, Eds.: R. C. Bose and T. A. Downing, University
of North Carolina Press, 1969, 585-602.

[2] C. BERGE: Two theorems in graph theory, Proc. Natl, Acad. Sci. 43 (1957), 842-
844.

THEORY OF ALTERNATING PATHS 109

[3] N. BLUM: A new approach to maximum matchings in general graphs, Proceedings of
the 17th International Colloquium on Automata, Languages and Programming
(1990), 586-597.

[4] J. EDMONDS: Paths, trees, and flowers, Canad. J. Math. 17 (1965), 449-467.

[5] S. EVEN, and O. KARIV: An O(n 2"5) algorithm for maximum matching in general
graphs, Proc. 16th Annual IEEE Symposium on Foundations of Computer
Science (1975), 100-112.

[6] H. GABOW: An efficient implementation of Edmonds' algorithm for maximum match-
ing on graphs, JACM 23 (1976), 221 234.

[7] H. N. GABOW, and R. E TARJAN: A linear-time algorithm for a special case of
disjoint set union, J. Comput. System Sci. 30 (1985), 209-221.

[8] H. N. GABOW, and R. E. TARJAN: Faster scaling algorithms for general graph
matching problems, technical report CU-CS-432-89, University of Colorado at
Boulder.

[9] J. E. HOPCROFT, and R. M. KAHP: An n 5/2 algorithm for maximum matching in
bipart i te graphs, SIAM J. Comput. 2 (1973), 225-231.

[10] T. KAMEDA, and I. MUNRO: A O(IVIIEI) algorithm for maximum matching of
graphs, Computing 12 (1974), 91 98.

[11] D. E. KNUTH: The art of computer Programming, Vol. 1: Fundamental Algorithms,
2nd ed., Addison-Wesley, Reading, MA, 1973.

[12] E. L. LAWLER: Combinatorial Optimization: Network and Matroids, Holt, Rinehart
and Winston, New York, 1976.

[13] L. LovXsz, and M. PLUMMER: Matching Theory, Academic Press, Budapest, Hun-
gary, (1986).

[14] S. MICALI, and V. V. VAZIRANI: An O(X//[-~IIEI) algorithm for finding maximum
matching in general graphs, Proc. 21st Annual IEEE Symposium in Foundation
of Computer Science, 1980, 17-27.

[15] R. E. TARJAN: Efficiency of a good but not linear set union algorithm, J. Assoc.
Comput. Mach. 22 (1975), 215 225.

[16] C. WHITZGALL, and C. ZAHN: Modification of Edmonds' maximum matching algo-
rithm, J. Res. Nat. Bur. Standards Sect. B 69 (1965), 91-98.

Vi jay V. Vazirani

Department of Computer Science ~4 Engg.
Indian Institute of Technology
New Delhi 110016, India
vazirani@cse, iitd. ernet, in

