An $O(\sqrt{|v|}|E|)$ Algorithm for Finding Marimum Matching in General Graphs

Silvio Micali * and Vijay V. Vazirari**
University of California - Berkeley

ABSTRACT

In this paper we present an $O(\sqrt{|V|} \cdot|\mathbb{I}|)$ elgorithm for finding a maximum matching in general grapha. This algorithm vorks in 'phases'. In each phase a marimal set of disjoint minimum lengith augmenting paths is found, and the existing matching is increased along these paths.

Our contribution consists in devising a special was of handling blossoms, which enables an $0(|E|)$ implementation of a phase. In each phase, the algorithm grows Breadth First Search trees at all umatched vertices. then it detects the presence of a blossom, it does not 'ahrink' the blossom immediately. Instead, it delays the shrinking in such a way that the first augmenting path found is of minimum length. Furtherwore, it achieves the effect of ahrinking a blossom by a special labeling procedure which enables it to find an augrenting path through a blossom quickly.

PROBLET STATETENT
AND PRELININARY DEFINITIONS
In this paper we present an efficient algo rithm for finding a macimum matching in a general graph. The precise satenent of the problem is. as follows:

Let $G(\nabla, E)$ be a finite, undirected, connec-
ted graph (without loops or multiple edges)
whose set of vertices is V and set of edges
is E. A matching n is a subset of E such
that no two edges of N are incident at a com-
mon vertex. A maximum matching is a matching
whose onrdinality is marimum.
He give the following bssic definitions relative to a matching K :

If an edge is contrined in X, then it is said to be 'matched', elae it is said to be 'unmatched'.

In this paper, matched edges will be drakn wiggly and unatched edges will be draum straight.
a vertex is 'free' if all edges incident at it are unmatched.

An 'alternating path' is a simple path whose edges are alternately in n and not in : $:$

An 'augmenting path' is an altcinating path between two free vertices.

A HISTORICAL NOTE

The history of the maximum matching problem began in 1957 when Berge proved that a matching is maximum if and only if the graph has no amomentang paths. In 1965, Edmonds used this result to give an $U\left(|V|^{4}\right.$) algorithm for this problem. Since then many combinatorists have solved this problem with better Tunning time. Among them are Gabou' ${ }^{2}$, Kameda and :"unro ${ }^{3}$, and Lawler ${ }^{4}$. The best previous muning times were due to Hoperoft and Karp ${ }^{5}$ for bipartite graphs $(O(\sqrt{\mid V I} \cdot|E|))$, and to Even and Kariv ${ }^{6}$ for general graphs $\left(O\left(|V|^{2.5}\right)\right.$. Our algorithm, close in spirit to that of Even and Kariv's, has a running tine of $O(\sqrt{|V|}|E|)$.

SALIENT FFATURES OF
 THE ALCORITHE:

The algorithm presented in this paper finds sets of augrenting paths in'phases'. Given a matching K, a 'phase' may be defined as the process of finding a maximal set of disjoint manimun length augmentiag pathe (min aug paths) in the graph, and augmenting the matching along these paths. $4 s$ shown by Hoperoft and Karp ${ }^{2}$, only $O(\sqrt{|V|})$ such phases are needed for finding a maximum matching.

[^0]In order to describe the algorithm we first five the following definitions:
evenlevel: The evenlevel of a vertex v is the length of the miaimum even length alternating path from v to a free vertex, if any, infinite otherwise.
odalevel: The odalevel of a vertex v is the length of the minimum odd length alternating path from v to a free vertex, if any, infinite otherwise.
level: The level of a vertex v is the minimun between evenlevel(v) and oddevel(v), i.e. it is the length of the minimum alternating path from v to a free vertex.
outer: A vertex is outer iff level(v) is even. .
inner: A vertex is inner iff level(v) is oda.
other level: If v is outer (inner) then its odalevel (evenlevel) will be refered to as the other level of v.
bridge: an edge (u, v) is a bridge if aither both evenlevel(u) and evenlevel(v) are finite, or both oddlevel(u) and oddevel(v) are fin-. ite.

Hote that since an augnenting path P har an odd length, every edge in P is a bridge. Note also that if there is a bridge (u, v), then some vertices (at least u and v) have both the evenlevel and the odilevel finite.

We now explain the concept 'tenacity of a bridge':
tenacity: Given a bridge (u, v), tenacity ((u, v)) - min (evenlevel $(u)+$ evenlevel (v), oddlevel(u) + oddlevel $(v))+1$.
So, the tenacits of a bridge represents the minimum length of a not necessarily simple alternating path from a free vertex to a free vertex containing the bridge. If auch a path is simple, then it is an augmenting path. It can be proved that any min aug path P contains a bridge whose tenacity equals the length of P.

The aigorithm oonsists of a main routine, SEARCH, and three subroutines: BLOSS-AUC (which is called with two vertices as parameters), PINDPATH and TOPOLOGICNL ERASE.

In oach phase, SEARCE grows öreadth First search (BFS) trees rooted at the free vertices of G in order to find the level of each vertex in G i.e. to find the ovenlevel of outer vertices and the oddevel of inner vertices. In order to do so SEARCE starts with the search level 0 and grows
the BFS trees by incrementing the search level by one each time.

When SEARCH detects that a certain edge (u, v; is a bridge, it :ill call the subroutine BLOSS-AUC with the parameters u and v. If there is an augmenting path containing (u, v), its length is at least tenacity (u, v)). In fact, when BLOSS-AUC is called with parameters u and v, it looks for an augmenting path of exactly this length. So, if BLOSS-AUG is called it a lower gearch level for bridges having a lower tenacity, the first augmenting path found in a phase will have minimum lenGth. Indeed, SEARCH calls BLOSS-AUS at search level i for bridges whose tenacity is $2 i+1$. This is acconplished by putting bridĩes uhose tenacity : is $2 i+1$ in the set bridges(i). Then, at the end of search level i, BLOSS-AUG is called for each edge in bridges(i).

In case there is no augmenting path of length tenacity ($(u, v))$ containing the bridge ($u, v)$, then BLOSS-AUG creates a new'blosson' B (a set of vertices). Before this call, all vertices in B had exactly one level (even or odd) set to a finite value by SRARCH. Draring the present call, BLOSS-AUG will set to a finite value the other. level of the vertices in B. In this process, some edges may be discovered to be bridges. The tenacity of these edges is computed, and they are inserted in the proper set of oridges.

When BLOSS-AUG detects the presence of an augmenting path contining (u, v), PIDFATH finds one such path, P. The present matching is increased along P; then TOFOLOGICAL EJiSE removes the edges which, in the present phase, cannot be part of a min aug path disjoint from P. In a phase, if a min alg path is found at search level m, then a maximal set of disjoint $2 m+1$ long augmenting paths is found at the same search level and the phase ends. TOPOLOGICAL ERASE ensures that these paths are indeed disjoint. The fact that the phase ends when there are no more bridges having tenacity $2 m+1$ ensures that the set of min aug paths found is indeed maximal, since, as said, each min aug path P contains a bridge whose tenacity equals the length of P.

Since the algorithm executes a phase in O (|E|) steps, it finds a marimum matching in $O(\sqrt{|V| \cdot \mathbb{E} \mid})$ steps.

DESCRIPTION OF SEARCH

During the execution of a phase, search grows Breadth First Search trees rooted at the free vertices of 0 in order to find the level of each vertex.

SAARCH scans an edge at most once (in one of the two directions). i searched edge may be scanned in the opposite direction, by BLOSS-AUC. When this happens BLOSS-AUG marks the edge "used" to prohibit SEARCH from acanning it again.

At the atart of a phase, the evenlevel and odalevel of each vertex of G are set to infinity, to signify that no alternating path of any leñth has been found yet. Then, the evenlevel of each free vertex is reset to zero.

When the search level, i, is even, search is conducted from each vertex, v, with evenlevel $(v)=i$ to find vertices u such that the edge (v, u) is "uniused" and unmatched. If the oddlevel of u is infinity, then it is reset to $i+1$.
then i is odd, the search is conducted from each vertex, v, with oddevel $(v)=i$, to find the unique matched neighbour, n, of v. Purthermore, the evenlevel of u is reset to $i+1$.
inile growing the BFS trees, SEARCH constructs: for each searched vertex n, the set of its 'predecessors':
predecessors: Let u be a vertex of G which is not free. If u is inner and oddlevel(u)=2i+1 then v is a predecessor of u iff
evenlevel $(v)=2 i$ and (u, v) is a member of L. If u is outer then v is a predecessor of u iff (u, v) is a matched edge.

The set of predecessors of each vertex u will be denoted by 'predecessors(u)'.
ancestor: Is the transitive (but non-reflexive) closure of the relation predecessor.

In addition, SLARCE constructs, for each inner vertex u, the set of its 'anomalies':
anomaly: Let u be an inner vertex and oddevel(u) be $2 i+1$. Then v is an anomaly of u iff evenlevel(v) $>2 i+1$ and (u, v) is a member of ($\mathrm{E}-\mathrm{K}$).

The set of anomalies of u will be denoted by 'anomalies(u)'.

EXAKPLE 1:

In figure 1, s and t are the predecessors of u, v is the predecessor of w, and v is an anomaly of u.

figure 1.

While scanning an edge, SEARCH checks to see if it is a bridge. When SEARCH discovers that an edge (u, v) is a bridge, it computes the tenacity O.: the edge, say $2 i+1$, and inserts (u, v) is bridges(i). At the end of search level i, SEARCH calls BLOSS-AUG, with parameters u and v, for each bridge in bridges(i).. If during these calls, an augnenting path is found (more precisely, a marimal set of minimum length disjoint augmenting paths would be found), then the present matching will be increased and the phase will end. If instead, at the start of the present phase, the matching is already maximum, no augmenting paths can be found, but SEARCH will reach a search level i such that no vertices will have level i, and the algorithm will halt.

DESCRIPTION OF BLOSS-AUC

The subroutine BLOSS-AUG is called with vertices u and v such that the edge (u, v) is a bridge. This call will result either in the formation of a new blossom, or in the discovery of an augmenting path. A new blossom is formed if and only if the following condition holds:

BLOSSOMIMG COMDITION: there exist vertices, 2 , such that

1. z is an ancestor of both u and v.
2. u and v do not have any ancestors, other than 2 , whose level is equal to level(2).

If the blossoming condition does not hold, a min aug path is discovered.

CONSTRUCTION OF A NE: BLOSSOM. Assume that the blossoming condition holds for the bridge (u, v). Then BLoss-aw will construct a new blossom I. B will consist of all vertices whose other level is still infinity, but can be set to a finite value due to the bridge (u, v), ie. if w is inner (ourter) there is a min even (odd) length alternating path, containing (u, v), from w to a free vertex. lie give also an algorithm-oriented definition of B:

Among the z's of the blossoming condition which do not belong to any blossom, let b be the vertex whose level is maximum. Then the new biossom B is the set of vertices, w, such that

1. W does not belong to any other blossom when B is formed.
2. either wu or $w=v$ or w is an ancestor of u or w is an ancestor of v.
3. b is an ancestor of w.

Furthermore, b is designated to be the 'base' of B and u and v the 'peaks' of B.

EXAMPLE 2 .

Figure 2 shows the formation of a blossom. at search level 6, SRARCH detects the bridge ($1, \mathrm{~m}$), and calls BLOSS-AUG. During this call, blossom B is formed.

$$
B=\{1, m, j, k, g, b, i, d, e, f\} .
$$

The base of B is c and its peaks are 1 and m.

figure 2.

The following facts should be pointed out about blossoms:

1. Lt any stage in the algorithm, a vertex has both levels (even and odd) finite if and only if it belongs to a blossom at that stage.
2. 4 vertex can belong to at most one blossom.
3. The base, b, of a blossom B is always an outer vertex.
4. b does not belong to B because when B is being formed, there is no odd length alternating path from b to a free vertex.
5. Ls a consequence of fact 2 , a peak of a biosOm B does not necessarily belong to B.
6. Since at each search level i, SEaRCH scans the edges in an arbitrary order, the set bridges(i) is formed in an arbitrary order. Consequently, our blossoms are not algorithmindependent structures. This point is illusrated in the next example.
7. If a vertex v belongs to a blossom B and it is contained in a min aug path P, then P also contains base (B).

EXAMPLE 3

At search level 4, if the bridge (i, j) is processed before (j, k), then the blossoms formed are:

$$
B_{1}=\{i, j, f, g\}
$$

The base of B_{1} is d and its peaks are i and j.

$$
B_{2}=\{k, b, d, e, b, c\}
$$

The base of B_{2} is a and its peaks are j and k.
However, if (j, k) is processed before (i, j) then the blossoms formed are:

$$
B_{1}=\{j, k, g, h, d, e, b, c\}
$$

The base of $B, i s$ a and i ts peaks are j and k.

$$
B_{2}=\{i, f\}
$$

The base of B_{2} is a and its peaks are i and j.

figure 3.

In order to accomplish the tasks of constructing blossoms and detecting the presence of augnenting paths within the rumaing time of $O(|E|)$ per phase, BLOSS-AUG performs a Double Depth First Search' (DDFS). The DDFS consiets of growing two Depth First Search trees T_{1} and T_{r} contemporarily, i.e. if at a certain stage, the centers of activities of T_{1} and T_{5} are at v_{1} and v_{r} respectively, then the DDFS grows T_{1} if level $\left(v_{1}\right) \geqslant$ level ($v_{r} i_{1}$, and it grows T_{T} otherwise. T_{1} and T_{T} are rooted at u and v respectively. This DDFS has the following apecial feature: when the search is conducted from a vertex w, which is the center of activity of one of the trees, say T_{1}, then the DDFS aeeks only the vertices of predecessors(w) for growing T_{1}.
While acanning an edge (w, p), where p is a member of predecessors (w), DDFS marks it "used" so that SEARCH may not scan (w, p) when it reaches w.

The vertices of T_{1} are marked "left" and those of T_{r} are marked "right" so that, in case an augmenting path contains these vertices, the function FINDPATH can find it.

During the DDFS, the two trees may find two different free vertices. In this case, an augmentation is possible. However, the search mav not be so simple, for the two trees may meet at a vertex w . Then, clearly, only one of the trees can claim w and the free vertex reachable from it. So, first T is allowed to claim w (w is marked "left") Furtherwore, I backs up and tries to find a vertex as deep as W , $\mathrm{T}_{\text {thus enabling the DDFS to proceed. }}$ However, if T_{1} fails, then T_{r} must claim (the DDFS changes the mark on v to "right"). How, Tj backs up and tries to find a vertex as deep as w . If T is also unsuccessfiul then an augmentation involving the odge (u, v) is not possible at this stage. This is so because there cannot be two disjoint altermating pathe starting at u and v and reaching the ame lovel as w. How, a new blossom is created. The base of this blossom is w, its Peakl (left peak) is u, and its PeakR (right peak) ia v.. The blossom contains all of the vertices of T_{1} and T_{T} other than w, and the "right" mark on w is removed. At this point the other level of the vertices 8 in B is compated by the formula:

$$
\text { tenacity }((u, v))-\text { level }(s)
$$

Once B is formed and the other level of its vertices is computed, some edges may be discovered to be bridges. Such newly discovered bridges are of two types: bridgee heving both ondpoints in B, and bridges having only one andpoint in B.

For bridges (s, t) such that both s and t belong to B, the blossoming condition clearly holds. So, no augmenting path would be discovered if BLOSS-AUG is called with parameters s and t. Furthermore, the blossom B^{\prime} that BLOSS-AUG would create will be empty because the other level of no new vertices can be aet to a finite value due to (s, t). Therefore, auch bridges are ignored.

For bridges (s, t) such that only one vertex, say s, belongs to B, it can be shown that s is an inner vertex and t is an anomaly of s. Conversely each anomaly of each inner vertex of B is a newly discovered bridge. So, BLOSS-AUC computes the tenacity, say $2 j+1$, of each such bridge and inserts it in bridges(j). Also, it marks the brid. ge"used". Note that if i is the present search level, then $j>i$.

Another special feature of the DDFS is that while the search is conducted from a vertex w to scan an edge (w, p), if p belongs to a blossom B_{1} then it shifts the center of activity to base* $(B, 1$. In order to define the function base*(.), we introduce the partial order ' $<$ ' on the bases of blossoms:

> If B_{1} and B_{2} are blossoms, then,
> base $\left(B_{1}\right)<$ base $\left(B_{2}\right)$ iff
> base $\left(B_{1}\right)$ belongs to B_{2}.

Furthermore the reflexive and transitive closure of will be denoted by ' \leqslant '. Then,

$$
\begin{aligned}
\text { base } *\left(B_{1}\right) \stackrel{\text { def }}{=} & \text { base }(B) \text { iff base }\left(B_{q}\right) \leqslant \text { base }(B) \\
& \text { and there is no } B^{\prime} \text { such that } \\
& \text { base }(B)<\text { base }\left(B^{\prime}\right) .
\end{aligned}
$$

This feature of the DDFS has the same effect as that of'shrinking' each blossom into a macronode located at its base*.

Clearly, the function base* (.) could be implemented by a Union Find. However, because of the apecial structure of blossoms, a path compression is sufficient to bound by $O(|E|)$ the work done due to base* in a phase. Base* is implemented by a path compression as follows:

1. base*(B) = base (B) when B is formed, and
2. if just before a new computation of base* (B), base* $(B)=\operatorname{base}\left(B_{1}\right)$, base $*\left(B_{1}\right)=$ base $\left(B_{2}\right), \ldots$ base*(B_{k})-base (B^{\prime}), and base* (B^{\prime}) =base (B^{\prime}), then, the new computation of base* (B) leaves upon termination base $\#(B)=$ base* $\left(B_{1}\right)=\ldots$ base $\left(B_{k}\right)=$ base $\left(B^{\prime}\right)$.

The subroutine uses two variables, DCV and barrier, wose function needs an explaination. At any stage, DCV (Deepest Common Vertex; points to the deepest vertex which has been discovered by both T, and T. Before the first time that such a vertēx is discovered, DCV is undefined. Barrier eccompliakes the following task: suppose T_{1} and T_{T} met at a vertex W. Furthermore, suppose that T_{r} backs. up all the way and fails to find another vertex as deep as W_{i} however, T_{1} is able to accomplish this task. Subsequently, T_{1} and T_{T} meet again. This time, T_{Γ} should not back up above w. This tabk of limiting T 's backing up is accomplished by barrier. Barrier is initialized to v, and each time T fails during bacitracking, barrier is ghiffed to the current DCV.

DESCRIPTION OF FINDPATH

When BLOSS-AUG detects the presence of a min aus path, it makes use of FINDPATH to find ane such path, P.

FIFPDPATH is passed two vertices, "high" and "low" and a blossom B as parameters. High and low are such that level(high) \geqslant level(low) and they both belong to a common min aug path. FIPDPATH returns the portion between high and low of one such path.

PINDPATH performs a Deapth First Search starting at high to find low. This Deapth First Search has some special feetures:

1. When the center of activity is at a vertex v belonging to B, the blossom passed as a parameter; only the predecessors of v are considered to continue the search. If the center of activity is transferred to one such predecessor, u, ∇ is made the father of u.
2. It considers shrunk all blossoms other than B: assume that the center of activity is at a vartex V not belonging to $B ;$ it can be shown that V belongs to some other blossom B^{\prime}, then only bese (B^{\prime})=b is considered to continue the search. If the center of activity is tranafered to base ($B^{\prime} j=b$ then v is made the father of b .
3. The center of activity is never transferred to a vertex veB ouch that its "left"/"rigtt" mark is difforent from that of high, or to a vertex v whose level is less than that of low.

When the aearch encceads in finding low (i.e. the conter of activity is at low), PINDPATH constructa the 'generalized path' high=x,...x $=$ low by revarsing $x_{m} \ldots . . x_{1}$, the father chain from low to high.

The path $x_{1} \ldots x_{m}$ is called a 'generalized peth because it may not be a legal alternating patb from higit to low. This will be the case if x_{j} does not belong to B, for some $j=1 \ldots$....

So for all such x_{j}, in ary, OPEN is invoked. Its function is to ${ }_{j}$ open properly the blossom, say B^{\prime}, to which x_{j} belongs by finding an alternating path from x_{j} to
base $\left(B^{\prime}\right)=x$ base (B^{\prime}) $=x_{j+1}$.

If x_{j} is outer then OPEN calls FINDPATH with parameters $x_{j}, x_{j+1}, B^{\prime}$.

If x_{j} is inner, then OPEN makes two calls to PIRDPATH. Let us essume, w.1.0.E., that x_{j} is marked "left" (mark received at the time of the formation of $B 1$). Then the first call finds a path, P_{1}, from Peakl(B^{\prime}; to x_{j} and the second a path, P_{2}^{1}, from PeakR(B^{\prime}) to $j_{\text {base }}\left(B^{\prime}\right)=x_{j+1}{ }^{\text {. }}$ It should be noticed that F_{1} and P_{2} are disjoint. Let P^{-1} denote the reverse of P and " 0 " the concatenation operator. Then the alternating path from x_{j} to x_{j+1} is given by $P_{1}^{-1} \circ P_{2}$.

EXRPLE 4

In this portion of graph there are two blossoms, B_{1} and B_{2}. $B_{1}=\{k, 1, h, i\}$ and base $\left(B_{1}\right)=f$; $B_{2}=\{n, 0, m, j, f, g, d, e\}$ and base $\left(B_{2}\right)=c$.

FINDPATH is called with parameters high=p, low=a and $B=' u n d e f i n e d '$ (i.e. all blossom mast be considered shrunk). The generalized path returned will be phfcba. Since $h \in B_{1}$ and $f \in B_{2}$, OPEN wlll
be called twice. The first call will construct the path hklif (containing the bridge $(k, 1)$ sinoe h is inner). The second call will construct the path fde. The p-a path will then be
phelifdcba.

DESCRIPTION OF

TOPOLOGICAL ERASE
After FINDPATH has found a min aug path P and the matching has been increased along P, TOPOLOGICAL ERASE is called. This Bubroutine erases from the graph the path P and all those edges which cannot be part of a min aug path disjoint from P.

TOPOLOGICAL ERASE is very close in spirit to the well bnown topological sort. Each vertex has a counter which at any stage indicates the number of its unerased predecessor edges. 1 vertex is erased, along with all edges (predecessors or not) incident at if either when its counter is decreased to zero or when it enters a min aug path detected by FINDPATH. Since the free vertices do not have any predecessor edges, their counter is set to one at the start of a phase, so it will remain one throughout the phase. It is not difficult to see that the total complerity of this routine is $O(|E|)$ per phase.

Hote that if a blossom B is erased then all vertices in B are erased. Noreover, since FIMDPaTH puts in the augmenting path P the base of a blossom B werever it puts in P a vertex belonging to B, we can also eay that whenever a vertex of B is erased, all vertices in B are arased.

ACKNO:REDGE:THTAS

This work is affectionately dedicated to David Lichtenstein who gave us all the help a senior fellow student can give and much much more, and to Hanuel Blum who supported our research in all possible ways and in some more ways possible only for him.

He are also very grateful to Giorgio Ausiello, Ravi Kannan, Richard Karp, Eugene Lawler and Robert Tarjan for their great patience in bearing with us through the first version of the algorithm and for their insightful criticism when we became clearer.

The avenue for approaching clarity was provided by Cheryl Khademan who gave us, as a present, a very pretty typed version of the routines.

In addition I, Silvio Kicali, would like to express my deepest gratitude to Shimon Even for having introduced me to Graph Theory in the most stimulating way.
(0) (initialization) For each vertex v, evenlevel $(v):=$ infinite, oddlevel(\mathbf{v}):=infinite, blossom(v):=undefined, predecessors(v):= ϕ. anomalies(v):= ϕ and v is marked "unvisited".
All edges are marked "unused" and "unvisited".
For $\mathrm{i}=1$ to $|\mathrm{V}|$: bridges $(\mathrm{i}):=\phi$.
$\mathrm{i}=-1$.
(1) For each free vertex \mathbf{v}, evenlevel($\mathbf{v}):=0$.
(2) $i=i+1$.

If no more vertiees have loval ithon HALT.
(3) If in even then
for each v with evenlevel $(v)=i$ ind its unmatched, "unused" neighbors, for each such neighbor u:
If evenlevel(u) is finite
then temp: $=$ (evenlevel $(u)+$ evenlevel $(v)) / 2$,
bridges $($ temp $):=$ bridges $($ temp $) \cup\{(u, v)\}$.

else

(a) (handle oddlevel) If oddlevel(u)=infinity then oddlevel(u): $=1+1$.
(b) (handle predecessors) If oddlevel(u) $=\mathrm{i}+1$ then predecessors(u):=predecessors(u) $\cup\{v\}$.
(c) (handle anomalies) If oddlevel(u) <ithen anomalies(u):=anomalies(u) $\cup\{v\}$.
(4) If i is odd then
for each v with (oddlevel $(v)=i$ and $v \& B$) take its matched neighbor u.
(a) (handle bridges) If oddlevel(u) $=i$ then

> temp: $=($ oddlevel(u) + oddlevel $(v)) / 2$, bridges $(($ temp $):=$ bridges $($ Lemp $) \cup\{(u, v)\}$
(b) (handle predecessors) If oddlevel(u)=infinity then

$$
\text { evenlevel(u): }=i+1 \text {. }
$$

predecessors(u):=\{v\}.
(5) For each edge (u, v) in bridges(i): call BLOSS-AUC(u, v).

If an augmentation occurred then go to step (0) (end of a phase) else go to step (2).

Note:
(1) " u ع B " atands for "vertex u does not belong to any blomsom," i.e., blossom(u) $=$ undefined.
" $u \in E$ " stands for "vertex u belongs to a blossom. This blossom was named $B^{\prime \prime}$, i.e., blossom(u) = B.
(2) The function base * (\cdot) is defined in the description.
(3) The atring operations: :-1" (inverse) and "o (concatenation) are explained in the description.
(0) (initialization) If w_{1} and w_{e} belong to the same blossom then go to step (5). (neither is an augmentation possible, nor can a new blossom be created). Otherwise, if $w_{1} \in B$ then $v_{1}:=$ base * (B)

$$
\text { else } v_{l}:=w_{1}
$$

If $w_{R} \in B$ then $u_{\Gamma}:=$ base * (B) else $\nu_{r}:=w_{2}$.
Mark v_{l} "left" and v_{r} "right".
$f\left(v_{l}\right)$ is undefined, $D C V$ is undefined, and barrier: $=v_{\boldsymbol{r}}$.
(1.1) If ν_{l} and ν_{r} are free vertices then
$P:=\left(\right.$ FINDPATH $\left(w_{1}, v_{l}\right.$, undefined)) ${ }^{-1}$ o FINDPATH (w_{2}, v_{r}, undefined). Augment the matching along P. do a TOPOLOGICAL ERASE, and go to step (5).
(1.2) (ν_{l} and ν_{τ} are not both free vertices)

If level $\left(\nu_{t}\right) \leq$ level $\left(\nu_{r}\right)$
thengo to step (2.1)
else go to step (3.1).
(2.1) If v_{l} has no more "unused" ancestor edges then
if $f\left(v_{1}\right)$ is undefined
then go to step (4) (create a new blossom)
else $v_{l}:=f\left(v_{l}\right)$ and go to step (1.1).
(2.2) (v_{l} has "unused" ancestor edges). Choose an "unused" ancestor edge
v_{1} enu. Marke "used".
If $u \in B$ then $u:=$ base * (B).
(a) If u is unmarked
then mark u 'left", $f(u):=\nu_{l}, \quad v_{l}:=u$, and goto step (1.1).
(b) Otherwise (u is mariked)
if $u=$ barrier or $u * \nu_{r}$
then go to step (1.1).
else mark u "left", $v_{r}:=f\left(v_{r}\right), v_{t}:=u$,
$D C V:=u$, and go to atep (1.1).
(3.1) If v_{T} has no more "unused" ancestor edges then
if $\nu_{r}=$ barrier
then $\nu_{r}:=D C V$, barrier:=DCV, mark u_{ν} "right".
$v_{l}:=f\left(v_{l}\right)$, and go to step (1.1).
else $u_{r}:=f\left(u_{r}\right)$ and go to step (1.1).
(3.2) (u_{r} has "mused" ancestor edges). Choose an "unused" ancestor edge
ureu. Marke used.
If u \in B then $u:=$ base * (B).
(a) If u is unmarked then mark it "right", $f(u):=u_{r}, u_{r}:=u$, and go to step (1.1).
(b) Otherwise (u is marked)
if $u=v_{t}$ then DCV: $=u$.
Go to step (1.1).
(4) (Creation of a new blossom)

Remove the "right" mark from DCV.
Create a new blossom (a set) B. Let B consist of all vertices that were marked "left" or "right" during the present call.
peaklu(B): $=\boldsymbol{w}_{1}, \quad \operatorname{peak} R(B):=w_{g}$, base $(B):=D C V$.
For each u in B :
blossom(L): $=\mathrm{B}$.
(a) if u is outer then
oddlevel(u): $=2 \mathrm{i}+1$ - evenlevel(u)
(b) if u is inner then

$$
\text { evenlevel(u):= } \mathrm{i}+1 \text { - oddievel(u). }
$$

for each ∇ in anomalies(u) :
temp: = (evenievel(u) + evenievel(v))/2
bridges(temp):=bridges(temp) $\cup\{(u, v)\}$.
Mark (u, v) "used".
(5) Return to SEARCH.

Function FINDPATH (high, low : vertices,
B : blossom)
0.0 (boundary condition) It high=low then Path:=high and go to step $(8 / 2$
0.1 (initialization) $\mathrm{r} .=\mathrm{high}$.

1. If v has no more "unvisited" predecessor edges
then $v:=f(v)$ and go to step (1).
2. If blosanam(v) $=. B$ then choose an "unvisited" predecessor edge v-u. Mark e "visited".
else u:=base(blossom(v)).
3. If u=low then go to step (6) (the path has been found).
4. If (u is "risited") or (level(u) \leqslant level(low)) or (blossom(u)=B and u does not have the aame "left"/"right" mark as high)
then $g 0$ to step (1)
5. Mark u "visited". $\mathrm{f}(\mathrm{u}):=\mathrm{v}, \quad \mathrm{r}=\mathrm{u}$ and go to step (1).
6. (u=low) Path:=low.

Until v=high do: Path:=v Path and $v:=f(v)$.
T. $\left(\right.$ Path $=x_{1} \cdots x_{m}$. where $x_{1}=$ high and $I_{m}=$ low For $j=1$ to $m-1$ do: If bloasom $\left(x_{j}\right) \neq B$ then replace x_{j} and x_{j+1} with
$\therefore \quad \operatorname{Opman}\left(x_{j}, x_{j+1}\right)$ in Path.
8. Return Path
O. B:=blossom(entrance).

1. If entrance is outer
then Path: =FINDPATH (entrance, base, B)
and go to step (3).
2. (entrance is inner) Let Peakl and PeakR be the peak vertices of B. H entrance is marked "left" then Path $:=\left(\right.$ FINDPATH (Peaki, entrance, B)) ${ }^{-1}$ FINDPATH(PeakR, base, B) else Path $:=(\text { FINDPATH (PeakR, entrance, B) })^{-1}$ FINDPATH (PeakL, base, B)
3. Return Path

References

[1] Edmonds. J., "Paths, Trees and Flowers"; Canadian J. 1965, Vol 17, pp. 449467. "Kaximum Matching and Polyhedron with 0.1 Vertices": Journal of Research of the National Bureau of Standards, Jan.-June 1965, Vol. 69B, pp. 125-130.
[2] Gabow, H., "An Eficient Implementation of Edmonds' Maximum Matching Aggorithm": June 1972. Technical Report No. 31. Stan-CS. 72-328, to be published JACM. "Implementation of Algorithms for Maximum Matching on Nor-Bipartite Graphs"; Ph.D. dissertation, Stanford University, 1973.
[3] Kameda, T. and Munro, 1., "A $O(|V| \cdot|E|)$ Algorithm for Maximum Matching of Graphs"; Computing 1974, Vol. 12, pp. 91-98.
[4] Lawler, E.G., "Combinatorial Optimization Theory"; Holt. Rinehart and Winston. 1976, Chapter 6, pp. 217-239.
[5] Hopcroft. I.E and Karp, RM., "An \boldsymbol{n}^{28} Algorithm for Maximum Matching in Bipartite Graphs'; SIAM J. on Comp. 2. December 1973, pp. 225-231.
[8] Even. S. and Kariv, O., "An $0\left(n^{2.3}\right)$ Algorithm for Maximum Matching in General Graphs". Proceedings of the 16th Annual Symp. on Foundations of Computer Science (FOCS), Berkeley. 1975, pp. 100-112.

[^0]: This research was supported by NSF Grant MCS-79-037867 and

 - fellowship from Consiglio Nazionale della Ricerche-Italy, and
 - Earle C. Anthony sholarship and Eugene C. Gee and Mona Fay Scholarship.

