
• 4 .
1

An O(~·IE I) Algorithm for Finding lluim~
Matching in General Graphs

Silvio Jlicali • end Vijay Y. VIU'ira11i ••

University of California -Berkeley

ABSTRACT

In this paper we present An O(JTi!i.fEI) algo
ri thm tor riDding a maxi-= matching in pneral
graphs. '!'his algorithm works in 'phases'. In
each phase a maximal set of disjoint minimum len
gth aUgmenting paths is found, and the existing
matching is increased alcmg these paths.

Our contribution consists in devising a spe
cial Va:J of handling blossoms, which enables an
O(IEI) implementation of a phase. In eaeh phase,
the algorithm grows :Breadth First Search trees at
all unmatched vertices. When it detects the pres
ence of a blossom, it does not '&brink' the blossom
immediately. Instead, it delays the shrinking in
such a way that the f'irst aU8JDSnting path found is
of minimum length. F\lrthermore, it achieves the
effect or shrinking a blossom by a special labeling
pro;:eciure which enables it to find an aupenting
path through a blossom quickly.

PROBLE:·! STATEMENT
AND Pl'lELDUNA.liY DEFDUTIONS

In this paper we present an efficient algo
ri thm t:~r finding a !!!!!XiJIUIII matching in a general
graph. The precise aateaent of the problem is.
as follows:

Let C.(V,E) be a f'i.Dite, lmdirected, connec
ted graph (without loops or IIIUl tiple edges)
Khose set of vertices is V and set or edges
ia E. A matching K is a subset of E such
that no two edges ot M are incident at a com
liOn vertex. A maxi- matching is a II& tching
whose cardinality is III&Xi.Jin.uD.

~e. ci ve the toll owing basic d.efini tiona relative
.to a ll&tching I.!:

It an ad.p is cont.Uned. in •, then it is said
to be 'aa tched', else it is said to be 'unmatched •.

In this paper, matched edges will be dra~-.n 1;iggly
and unmatched edges will be dra1m straight.

~vertex is 'free' if all edges incident at
it are unma.tched.

An 'alternating path 1 is a simple path whose
edges are alternately in ~l and not in :.:.

An 1aupenting path 1 is an altc:natiAg path
between two free vertices.

A HISTORICAL NOTZ

The histor,y of the maximum matchinb problem
besan in 1957 when :Berge proved that a lll.:ltching is
maxicwn if and only if ~e graph has no au~;ment~ng
paths. ln 1965, Edmonds used this re:.ult to give

an 0(JVI 4) algorithm for this problem. Since then
many combinatorists have solved this problem with

better rlmning time. Among them are Gabc1/, Ka.meda

d •• 3 andLa 4 an .• \Ulro , wler • The best previouc running

times were due to Hopcroft and Karp5 for bipartite

graphs (o(JiVi·IEI)), and to Even and Kariv
6

for

general graphs (O{JV1
2

"5). Our algorithm, close
in spirit to that of Even and tal-i v • s, has a runninE
tiwe of o(JiVi·IE\).

SALIENT FEATURES OF
THE ALGOniTH:;

The algorithm presented in this paper finds
sets of augoenting paths in'phases•._ Given a
m& tchi,ng M, a 1 phase 1 ma,y be defined as the proce
ss of finding a maximal set of disjoint minimum
length &U&~J~enting paths (min aug paths) in the
graph, and &U&menting the ~~~atching algng these
paths. As shown by Hopcroft and Karp , only
O(v'tVT) such phases are needed for findin~ a max-
imum matching. ·

This reseaich was supported by NSF Grant liCS-79-037667 and
• fellowship from Consiglio Nazionale della Ricercbe - Italy and
•• Earle C. Anthony sholarship and Eugene C. Gee and l.tor:a Fay Scholarship.

In order to describe the algorithm we f1rst
~ve the following definitions:

evenlevel: !be evenlevel· of a vertex v is the
length of the mi~imum even length alternating
path from v to a free vertex, if any, infin
ite otherwise.

ocldlevel: 'n1e oddlevel of a vertex v is the len
gth o:' the minimum ocld. length altemting
path from v to a free vertex, if' a.ny, infin
ite otherwise.

level: T.he level of a vertex v is the minimum
between evenlevel(v) and oddlevel(v), i.e.
it is the length of the minimum alternating
path from v to a free verte.x.

outer: .i wrtex u outer iff level(v) ia even •.

inner: .i vertex is inner iff level{v) is odd.

other level: If vis outer {inner) then its
oddlevel (evenlevel) will be refered to as
the other level of v.

bridge: .ln edge {u, v) is a bridge if
either both evenlevel(u) and evenlevel(v)
are finite,
or both oddlevel(u) and oddlevel(v) are fin-.
ite.

Jlote that since an augmenting path P ha:: an

odd length, every edge in P is a bridge. Note
also that if' there is a bridge (u, v), then some
vertices {at least u ~d v) have both the evenlev-

el and the oddlevel finite.
-· . -

We now explain the concept 'tenacity of a
bridge':

~naciv: Ginn a bridge (u, v), tenacity ((u,v))
• min (evenlevel(u) + evenlevel(v),

oddlevel(u) + oddlevel(v)) + 1.

So, the tenaci tj· of a bridge represents the mini
.um length of a not necessaril~y simple alternat1ng
path from a tree vertex to a free vertex contain
ing the bricl&e. If such a path is simple , then it
is an aupenting path. It can be proved that any
llin aug path P contains a bridge whose tenacity
equals the length of P.

T.he aJ.&ori thm consists of a main routine,
SE&.RCB, and three subroutines: :m.oss-J.ua (whic.h is
called with two vertices as p&.'&llleters), FINDPATH
azul TOPOLOGIC&.L ERASE.

In each phase, SEARCH grows ilread th Pirst
~arch (l!FS) tnes rooted at the free vertices of
G. in order to find the level of each vertex in a
i.e. to fiDd the evenlevel of' outer vertices and
the oddlevel ot inner vertices. In order to .do ao
SEARCH ataru wi. th the aearch level 0 and gro~1s

2.

the l!FS trees by incrementing the search level by
one each time.

Hhen SEARCH detects that a certain edge (u,v)
is a bridge, it ·.:ill call the subroutine BLOSS-.t.UG
with the parameters u and v. If there is an aug
menting path containing (u, v), its length i~ at
least tenacity((u, v)). In fact, when BLOSS-AUG
is called with parameters u and v, it looks for an
au&menting path of exactly this length. So, if
!LOSS-AUG is called ~~ a lower search level for
bridge~ ha•~ng a lower tenacity, the first aUo~en
ting path found in a phase will have minimum len
gth. Indeed, SEARCH calls BLOSS-AUG at search
level i for bridges whose tenacity is 2iT1• This
if.l accocplished by wtti~ brid.;es \/hose tenacity:

is 2i+1 in the set bridges{i). Then, at the end
of search level i, !LOSS-AUG is called for each
edge in bridges{i).

ln case there i~ no augmenting path of length
tenacity((u,v)) containing the bridge (u, v),
then BLOSS-AUG creates a new'blo~SOQ 1 B (a set of
vertices). l!efore this call, all vertices in B
had exactly one level (even or odd) set to a fin
ite value by SEARCH. Ir~ing the present call,
!LOSS-AUG will set to a finite value the other •
level of the vertices in B. In this process, some
edges may be discovered to be bridges. The ten
acity of these edges is computed, and they are in
serted in the proper zet of bridges.

When !LOSS-AUG detects the pre~ence of an
a~enting path containing (u,v), FilwrATH
finds one such path, P. The present matching is
increased along P; then TOPOLOGICAL ~~4SE remo
ves the edges which, in the present phase, cannot
be part of a min aug path disjoint from P. ln
a phase, if a min aug path is found at search le
vel m, then a maximal set of disjoint 2m+1 long
augmenting paths is :found at the same search le
vel and the phase ends. TOPOLOGICAL ERASE en
sures that these paths are indeed disjoint. The
faci. that the phase end& when there are no more
bridges having tenacity 2m+1 ensures that the set
of min aug paths found is indeed maximal, since,
as said, each min aug path P contains a bridge
whose tenacity equals the length of P.

Since the algorithm executes a phase in
0{ I~ steps, it :finds a maximum matching in
0(-JiVI•IEI) steps.

DESCRIPTION OF ~~CH

During the execution of a phase, SEARCH
grows l!readth First Search trees rooted at the
free vertices of a in order to find the level of
each vertex.

s::A.RCB scans 11n edge at most once (in one of
~he two directions). ~ searched edge may be scanned
in the opposite direction, by BLOS5-AUG. rlhen this
happens BLOSS-AUG marks the edge "used" to prohibit
SEARCH from scanning it again.

At the start of a phase, the evenlevel and
oddlevel ot each vertex of G are set to infinity,
to signify that no alternating path of azzy len.;th
has been found yet. Then, the evenlevel of each
frc~ vertex is reset to zero.

When the search level, i, is even, search is
conducted from each vertex, v, with evenlevel(v)~i
to find vertices u such that the edge (v, u) is
"unused" and unmatched. If the oddlevel of u is
infinity, then it is reset to i+1.

Uhen i is odd, the search is conducted from
each vertex, v, with oddlevel{v)•i, to find the
unique matched neighbour, u, of v. Furthermore,
the evenlevel of u is reset to i+1.

rlhile growing the BPS trees, SEARCH constructs,
for each searched vertex u, the set of its
'predecessors•;

predecessors; Let u be a vertex of C which is not
free. If u is inner and oddlevel(u)•2i+1
then v is a predecessor of u iff
evenlevel(v)•2i and (u,v) ia a member of~.
If u is outer then v is a predecessor of u
iff (u,v) is a matched edge.

~e set of predecessors of each vertex u will be
denoted by 'predecessors(u)•.

ancestor: Is the transitive (but non-reflexive)
closure of the relation predecessor.

In addi:tion, SEARCH constructs, for each inner

vertex u, the set of its 'anomalies•;

anomaly: Let u be an inner vertex and oddlevel(u)
be 2i+1. Then v is an anomaly of u iff
evenlevel(v)>2i+1 and (u, v) ia a member of
{E - M).

'l'he set of anomalies of u will be denoted by
•anomalies(u) •.

EX.Al·l?LE 1 :
In figure 1, s and t are the predecessors of

u, u ia the predecessor of w, and v is an anomaly
of u.

3

While scanning an edge, SEARCH checks to see
if it is a bridge. When SEAnCH discovers that an
edge (u, v) is a bridge, it computes the tenacity
o: the edge, say 2i+1 1 and inserts (u, v) in
bridges(i). At the end of search level i, SEARCH
calls BLOSS-AUG, with parameters u and v, for each
bridge in bridges(i).. If during these calls, an
augmenting path is found (more precisely, a maximal
set of minimum length disjoint augmenting paths
would be found), then the present matching will be
increased and the phase liill end. rr instead, at
the start of the present phase, the matching is
already maximum, no a\l&!llenting paths can be found,
but SEARCH will reach a search level i such that
no vertices will have level i, and the algorithm
will halt.

DESCRIPTION OF BLOSS-AUG

The subroutine BLOS5-AUC is called with ver
tices u and v such that the edge (u,v) is a bridge.
This call will result either in the formation of
a new blossom, or in the discovery of an augmenting
path. A new blossom is formed if and only if the
following condition holds;

BLOSSOMillG COllDITION: there exist vertices, z,
such that
1. z is an ancestor of both u and v.
2. u and v do not have azzy ancestors, other than

z, whose level is equal to level(z).

If the blossoming condition does not hold,
a min aug path is discovered.

CONSTRUCTION OF A NE:l BLOSSO:·i. Assume that the
blossoming condition holds for the bridge (u,v).
'l'hen 11L055-J.UC will construct a new blossom D.
B will consist of all vertices w whose other level
is still infinity, but can be set to a finite value
due to the bridge (u,v), i.e. if w is inner {ou
ter) there is a min even (odd) length alternating
path, containing (u,v), from w to a free vertex.
!le CiVe also an algori tha-oriented definition of
B:

.Among the z•s of the blossoming condition
which do not belong to any blossom, let b be the
vertex whose level is maximum. Then the new blos
som 11 is the set of vertices, w, such that
1. w does not belong to any other blossom when

11 is formed.
2. either "'"u or -v or w is an ancestor of' u or

w ia an ancestor of v.
3. b is an ancestor of w •

.furthermore, b is designated to be the 'base' of :B
and u and v the 'peaks • of :B.

EX.C.!Pl..E 2
Figure 2 shows the fol'lll&tion of a blossom • ..1 t

search level 6, £EARCH detects the bridge (1, m),
and calls 11LOS5-J.UG. During this call, blossom B
is formed.

:Ba fl,m,j,k,g,h,i,d,e,fj •
'l'he base or 11 is c and its peaks are 1 and m.

6

/(. 5

:t :) J; J,.

..3
2

b r f

a.,• ~.RJAJJo

fi)1-4re 2.

'l'he following facta should be pointed out
about bloaaoma:

1. .lt any stap in the algorithm, a vertex has
both levels (even and odd) finite if and only
if it belonga to a blossom at that stage.

2. J. wrte% cu belong to at aost one blossom.

...

3. The base, b, of a blossom :B is always an out
er vertex.

4. b does not belong to B because when B is be
ing formed, there is no odd length alternating
path from b to a free vertex.

5. As a consequence of' fact 2, a peak of a bloss
om B does not necessarily belen~ to B.

6. Since at each search level i, SEA..ttCH scans the
edges in an arbitrary order, the set
bridges(i) is formed in an arbitrary order.
Consequently, our blossoms are not algorithm
independent structures. This point is illus
trated in the next example.

1. If a vertex v belongs to a blossom Band it
is contained in a min aug path P, then P
also contains base(B).

EXA:·lPLE 3
At search level 4, if the bridge (i, j) is

processed before (j, k), then the blossoms formed
are:

. 11. {i,j,f',gJ
The base Jf B

1
is d and its peaks are i and j.

11 ,. {k,h,d,e,b,c}
2

The b~e of 11
2

is a and its peaks are j and k.

However, if {j, k) is processed b~fore (i, j)
then the blossoms formed are:

11
1
.. {j,k,g,h,d,e,b,c}

The base of 11
1

is a and its peaks are j and k.

112· {i,fj

The ba.se of B
2

is a and its peaks are i and j •

t

(, ..) " - . '
h,

4

.3

2.

1

a.,., ~~0

f'1urt .3.

In order 'to accomplish the tasks of construct
ing blossoms and detecting the presence of augment
ing paths within the nmning time of 0(I El) per
phase, !LOSs-AUG performs a 'Double Depth First
Search' (DDFS). 1'he DDFS consists of growing two
Depth First Search trees T

1
and Tr contemporarily,

i.e. if' at a certain stage, the centers of activit
ies o!' T1 and T:r a:re at v

1
and v:r·respectively,

then the DDFS grow 1'
1
if lrnl(v1)~level(vrj,

and it grows 1' otherwise. '1'
1

and T are rooted
:r r

at u and v respectively. !his DDFS has the follow
ing special feature: when the search is conducted
from a vertex w, which is the center of activity of
one of the t:rees, say T

1
, then the DDFS seel-..s only

the vertices of predecessors(w) tor growing '1'
1

•

While scannjng an edge (w, p), where p is a member
of predecessors(w), DDFS marks it "used" so that
SEARCH may DOt scan {w, p) when it :reaches w.

The vertices of '1'
1

are marked "left" and those

of T are marked ":right" so that, in case an aug-r .
menti.Dg path contains these vertices, the function
FIND PATH can :f'ind it.

During the DDFS, the two trees may find two
different f':ree vertices. In this case, an alJ8111f!n
tation is possible. However, the search ma,y not
be so simple, tor the two t:rees may meet at a ver- •
te:x w. Then, clearly, only one of the trees can
claim w and the free vertex reachable from it. So,
first 'l' is allowed to claim w (w is marked "left")
Furtheriore, '1' backs up and t:ries to find a verte:x
as deep as w, :rthus enabling the DDFS to proceed.
However, if' T fails, then T IIIWit claim w (the

1 r
DDFS changes the mark em v to ":right"). llow, Ti

backs up and t:ries to find a vertex as deep as w.
If 'l' is also l1DSuccessf'ul then an aU&~~~entation
involving the edge {u, v) is not possible at this
stage. 'l'hi.s is so because there cannot be two dis
joint al ternati.Dg paths starting at u and v and
:reaching the same level as w. llow, a Dew blossom
is c:rea ted. !he base of' 'this blossom is w, its
PeakL (left peak) is u, &Zid ita PeakR (right peak)
1a v •. 1'be 'blossom contaiDs all of' the vertices of
'l' &Z14 T other thaD w, &Zid the "right" mark on w

1 :r
is removed • .i.t this point the other level of the
vertices s iD ::8 is computed 'by the formula:

· · teDacity((u, v)) - level(s).

Once ::B is formed and the other level of its
vertices is computed, some edges may be discovered
to be 'bridges. Such newly discovered 'bridges are
of' two 'types: 'bridges having 'both endpoints in ::&,
and 'bridges Jlaving cmly one endpoint in :e.

For bridges (s, t). such that both s and t be
long to::&, the blossoming condition clearly holds.
So, no augmenting path would be discovered if
::&LOSs-AUG is called with parameters s and t. Fur
thermore, the blossom ::8' that BLOSS-AUG would cre
ate Will be empty because the other level of no
new vertices can be set to a finite value due to
(s, t). 1'herefore, such bridges are ignored.

For 'bridges (s, t) such that only one vertex,
say s, 'belongs to ::&, it can be shown. that s is an
inner vertex and t is "an anomaly of s. Converse
ly each anomaly of each inner vertex of B is
a newly discovered bridge. So, :BLOSS-AUG computes
the tenacity, say 2j+1, of each such bridge and
inserts it in bridges(j}. Also, it marks the brid·
ge"used". Note that if i is the present search
level, then j> i.

Another special feature of the DDFS is that
while the search is conducted from a vertex w to
scan an edge (w, p), i~ p belongs to a blossom :B

1
then it shifts the center of activity to base*(:B

1
}.

In order to define the function base•(.), we
introduce the partial order ·~· on the bases of
'blossoms:

If ::&
1

and ::&
2

are blossoms, then,

'base(::&)<'base(B
2

) iff
1 .

'base(:B
1

) belongs to ::&
2

•

Furthermore the reflexive and transitive closure
of will be denoted by ·~ '· Then,

base*(:B)
4!f base(l3) iff base(:B)~base(B)

1 1
and there is no B' such that
'base(::B)<base(::B').

This feature of the DDFS has the same effect as
that of'shrinking' each blossom into a macronode
located at its base*.

Clearly-, the function base*(.) could be imple
mented by a Union Find. However, because of the
special structure of blossoms, a path compression
is sufficient to bound by O(IEI) the work done
due to 'base* in a phase. Ease* is implemented by
a path compression as follows:

1. 'base*(::&) • 'base(!) when B is formed, and

2. if just before a new computation of base*(B),
'base*(::B)•base(::&

1
), 'base*{:B

1
)-base(B

2
), •••

'base*(::& l-'base(::B'), and 'base*(B')•base(:B'), . k

'then, the new computation of 'base*(B) leaves
upon terminatiOn
'base*(::B)•'base*(::B)• ••• abase*(B).base(:B').

1 k

'l'he IIUbroutine uses two variables, DCV and
barrier, tdlose tunction needs an expl&ination. At
any stage, DCV (Deepest Common Vertexi point:. to
the deepest vertex which has been discovered by
both 'l' and 'l' • :Before the :first time that such
a vertix is discovered, DCV is undefined. Barrier
accomplishes the :following task: suppose T

1
and Tr

Met at a vertex "• Furthermore, suppose that 'l'
r

backs up all the va.y and fails to :find another
verte~ as deep as v; however, T

1
ia able to accom-

plish this task. Subsequently, T
1

and Tr meet

-.pin. ~s time, 'l'- ahould not back up above w.
r

!his task of limiting T •a backing up is accom:pl
iahed by barrier. llarrler is initialized to v,
and each 'time 'l' fails during backtracking,
barrier ia ahi:fied to the current DCV.

DESCRIPTI01l OF FINDPATH

When :BLOS5-AUG detects the presence of a
&in aug path, i ~ ll<es use of FINDPATH to find
one auch path, P.

FDDPATH is passed two vertices, "high" and
"low" and a blossom :B as parameters. High and low
are such that level(high) ;.level(low) and they
both belong to a common 1Din aug path. FDIDPATH
returns the portion between high and low of one
such path.

FINDPATH performs a Deapth First Search star
ting at high to find low. This Deapth First Search
has some special fedures:

1. When the center of activity is at a vertex v
belonging to B, the blossom passed as a para
•ter, only the predecessors o:f v are conside
red to continue the search. If the center of
activi t,y is transferred to one such predeces
sor, u, v is made the father of u.

2. _It considers shrunk all blossoms other than B:
assume that the center of activity is at a
vertex v not belonging to :B; it can be shown
that v belongs to some other blossom :B 1 , then
only base(B 1)•b is considered to continue the
search. I:f the center of activi t,y is tran
sfered to base(B')•b then v is made the father
of 'b.

3. !be center of activity is never transferred to
a vertex 'dB such that its "left"/"right"
urk is different from that of high, or to a
vertex v tdloae level is less than 'that or low.

When the search succeeds in finding low (i.e.
the center of activity is at low), FINDPATH cons
'iructa the •pneralized path' high•x

1
••• xmalow

'by reversing z.a•••x
1

a the father chain from low
to llich·

'
The path x ••• x is called a 'generalized

1 m
path because it ma;y not be a legal alternating path
:from high to low. This will be the case if x.

J
does not 'belong to :B, for some j=1- ••• m-1.

So for all such x., i:f
any, OPEli is invoked. Its function is to Jopen
properly the blossom, say B•, to which x. belongs

J
by finding an alternating path from x. to
base(:B 1)•xj+l" J

If xj is outer then OPEll calls FIND PATH with

parameters x., x.
1

, :B'.
. J J+
I:f x. is inner, then OPEN makes two calls to

J .
FlllDPATH. Let us assume, w.l.o.g., that x. is . J
marked "left" (mark received at the time of the
formation of B1). Then the first call finds a
path, P, from PeakL(B 1) to x. and the second a
path, P~, from PeakR(B') to Jbase(B')=xj+

1
•

It should be noticed that P
1

and P
2

are disjoint.

Let p-1 denote the reverse of P and "o" the con
catenation operator •. Then the alternating path
from xj to xj+l is given by P;1 o P2•

EXA!·!PLE 4

r
t1IIIIMIVVll\ll 0

b

Ov

fir'~ +.

In\.

.
J

~

In this portion of graph there are two blos
soms, B

1
and :s

2
• B

1
•{k,l,h,il and base(B1).r;

B
2
a{n,o,m,j,f,g,d,e} and b&Se(B2).c.

FDIDPA'm is called with parameters high=p,
low•a and !-'undefined' (i.e. all blossom must be
considered shrunk). !he generalized path returned
will be phfcba. Since hEl3

1
and fEl32 , OPEU Wl.ll

be called twice. !he firet call will construct
'the path hklif (containing the brid&e (k,l) sin
ce h is inner). !he second call will construct the
path fdc • The p-a path will then be

phiclifdcba.

DESCRIPI'ION OF
TOPOLOGICAL ERASE

After FINDPATH has found a min aug path P
and the matching has been increased along P,
TOPOLOGICAL ERASE is called. This subroutine era
ses from 'the craph the path P and all 'those ed&es
which cannot be part of a min aug path disjoint
from P.

TOPOLOGICAL ERASE is very close in apiri t to
the well known topological sort. Each vertex has
a counter which at any stage indicates the number
of ita unerased predecessor edges. A vertex is
erased, along with all edges (predecessors or not)
incident at i~ either when its counter is decreas
ed to zero or when it enters a min aug path detec
ted by FINDPA'm. Since the free vertices do not
have any predecessor edges, their counter is set
to one at the start of a phase, so it will remain
one thro'U&hout the phase. It is not difficult to
see that the total complexity of this routine is
0(lEI) per phase. '

Rote that if a blossom l3 is erased then all
vertices in l3 are erased. Moreover, since FlliD
PA'm puts in the aupenting path P the base of a
blossom l3 wenever it puts in P a vertex belonging
to 13, we can also aa;y that whenever a vertex of
l3 is erased, all vertices in l3 are erased.

7

This work is affectionately dedicated to
David Lichtenstein who gave us all the help a se
nior fellow student can give and much much more,
and to !.1anuel :Blum who supported our research in
all possible ways and in some more ways possible
only for him.

We are also very grateful to Giorgio Ausiello,
Ravi Karman, Richard Karp, Eugene Lawler and Robert
Tarjan for their great patience in bearing with us
through the first version of the algorithm and for
their insightful criticism when we became clearer.

The avenue for approaching clarity was provi
ded by Cheryl Khademan who gave us, as a present,
a very pretty typed version of the routines.

In addition I, Silvio):icali, uould like to
express my deepest gratitude to Shimon Even for
having introduced me to Graph TheorJ in the most
stimulating way.

/

..

s

Routine SEARCH

(0} (initialization) For each vertex v, evenlevel(v):=i.nfinite,
oddlevel(v):=infinite. blossom(v):=undefined, predecessora{v):= ~,
anomalies(v):::: ~ and v is marked "unvisited".
All edges are marked "unused" and "unvisited".
For i:=1 to lVI : bridges{i):= ~ .
i:=-1.

(1) For each free vertex v, evenlevel(v):=O.

(2) i:=i+1.
If no mon "rUoea ha" 1• .. 11 Ua•n HALT.

(3) If i iB even then
for each Y with evenlevel(v)=i tlnd its unmatched, "unused" nei£hbors,

for each such neighbor u:
.If evenlevel{u) is finite

then temp:= {evenlevel(u) + evenlevel{v}}/2.
bridges(temp):=bridges{temp) U f{u, v)l.

else
(a) {handle oddlevel) If oddlevel{u)=infinity then

oddlevel{u):=i+ 1.
(b) {handle predecessors) If oddlevel(u)=i+l then

predecessors(u):=predecessors{u) U fvJ.
{c) (handle anomalies) lf oddlevel(u) < i then

anomalies{u):=anomalies(u) U !vJ.

(4) If i is odd then
for each v with (oddlevel{v)=i and v ~B) take ils matched neighbor u.

(a) {handle bridges) If oddlevel(u)=i then ·
temp:=(oddlevel(u) + oddlevel{v})/2,
bridges{(lemp):=bridges(lemp) U !(u, vH

(b) (handle predecessors) If oddlevel(u)=infinity then
evenlevel{u):=i+ 1,
predecessors{u):= fvJ.

(5) For each edge (u. v) in bridges(i): call BLOSS-AUC(u. v).
If an augmentation occurred

then go to step (0) (end of a phase)
else go to step {2).

:Note:

(1) "u Jr B" stands for "vertex u does not belong to any blossom," Le.,
blossom(u) i: undefined.
"u £ B" stands for "vertex u belongs to a blossom. This blossom was named
B", Le., blossom(u) =B. ·

(2) The function base •(·) is defined in the descriptbn.

(3) The atrina operations; -s" (invenef and •• •(concatena
tion) are explained in the description .

Subroutine BLOSS-AUG (w 1, w 1 : "nrlices).

(0) (initialization) If w 1 and w1 belong to the same blossom then go to step (5}.
(neither is an augmentation possible, nor can a new blossom be created).
Otherwise. if w 1 £ B then v1 :=base • (B)

else 111 := w 1 •

If wa £ B then 11,. :=base • (B)
else 11,. := w,.

llark v1 "left." and 11,. "right".
f(v1) is undefined, DCV is undefined, and barrier:= 11,..

(1.1) If 111 and 11,. are free vertices then ·
P:={ FlNDPATH(1Ut, 11(• undefined)) -lo nNDPATH { Wz, 11,. ,undefined).
Augment the matching along P, do a TOPOLOGICAL ERASE, and go to step {5).

(1.2} (1ft ancl11,. are not. both free "nrlices)
If level(111) S level{ 11,.)

then go to step {2.1)
else 10 to step (3.1).

{2.1) If 111 bas no more "unused" ancestor edges then
U f{ 111) is undefined

then 10 to step {4) (create a new blossom)
else v1 :=f(111) and go to step (1.1).

(2.2) (v1 bas "unused" ancestor edges). Choose an "unused" ancestor edge
111 ...!...u. :Mark e "used".

If u £ B then u:=base • (B).

(a) lf u is unmarked
then mark u "left", f(u):= 111, v1 :=u, and

go to step (1.1).

(b) Otherwise (u is marked)
if u=barrier or u ¢V,.

then go to step (1.1),
else mark u "left", v,. :=f(11,.), 111 :=u.

DCV:=u. and go to step (1.1).

(3.1) If v,. has no more "unused" ancestor edges then
U 11,. =barrier
then 11,. :=DCV, barrier:=DCV, mark v,. "right",

v1 :=f(111), and go to step {1.1),
else 11,. :=f(11,.) and go to step (1.1}.

(3.2) (11,. has "unused" ancestor edges}. Choose an "unused" ancestor edge
v,....Lu. :Mark e used.
lf u £ B then u:=base • (B).

' (a) If u is unmarked then mark it "right", f{u):= v,.. 11,. :=u. and .
10 to step (1.1).

(b) Otberwie (u Is marked)
it u= v1 then DCV:=u.
Go to step (1.1).

10

(4) (Creation of a new blossom)
Remove the "ri&ht" mark from DCV. .
Create a new blossom {a set) B. Let B consist of all Yertices that were
marked "left" or "right" durin& the present call.
peakL{B):= w 1, peakR(B):= w 1, base (B):=DCV.

For each u in B :
blossom(u):=B.

(a) if u is outer then
odd.lenl(u):= 2i + 1- ennlevel{u)

(b) if u is inner then
evenlenl(u):= 2i + 1- odd.level(u),
for each v in anomalies(u) :

temp:= {evenlevel{u) + evenlevel(v)}/2
bridl(es{temp):=bridges{temp) U f{u, v)J.
ll&rk (u, v) "used".

(5) Return to SEARCH.

Function FINDPATH (high. low: vertices,
B: blossom}

0.0 (bound!!')' conditio~!} If_ hiah=:~o~ then Path:=hi&h and 10 to stepiB'~

0.1 (initialization) v:=higb.

1. If v bas no more "unvisited" predecessor edaes
then !==f(v) and ao t'! step (1)·

2. U blonom(v) •·B then choose an "lmviaited" predeceaaor • edge v-u. Mark e "viai ted".
else u:•base{blossom(v}).

3. If u=low then 10 to step {6} (the path bas been found).

4. U (u ia •naited") or (level(u)~level(low)) or

then co to atep (1,1,

5. liark u "mited".

(blossom(u)•ll and u does not have the same
"left"/"right" ~~ark as high)

f(u):=v, v:=u and 10 to step (1).

8. (u=low) Path:=low.
Until v==hilh do: Path:= v Path and v:=f{v}.

'7. (Path=: 1 • • ' Z. • where : 1 =high an_4 ;"' =1~) -F~r i=! to_m.-1_ do:
If' bloasom(x.)~ then replace x. and x. with

J J ~1

OPEN{xj, xj+1) in Path.

8. Return Path.

II

Function OPEN (entrance, base: nrtices)

0. B:=blossom(entrance).

1. lf entrance is outer
then Path:=FINDPATH(entrance, base, B)

and ao to step {3).

2. (entrance is inner} Let PeakL and PeakR be the peak vertices of B.
If entrance is marked "left"

then Path := {nNDPATH(PeakL. entrance, B)) -t FINDPATH(PeakR. base, B)
else Path:= (nNDPATH(PeakR, entrance, B)} -t FINDPATH{Peak~ base, B)

3. Return Path.

References
[1] Edmonds, J., "Paths, Trees and Flowers"; Canadian J. 1965, Vol 17, pp. 449-

467. "lolaximum Matching and Polyhedron with 0,1 Vertices"; Journal of
Research of the National Bureau of Standards, Jan.-June 1965, Vol. 69B, pp.
125-130.

(2] Gabow, H., "An Efficient Implementation of Edmonds' lolaximum lolatching
Algorithm"; June 1972. Technical Report No. 31. Stan-CS, 72-326, to be pub
lished JACM. '1mplementation of Algorithms for lolaximum Matching on
.Non-Bipartite Graphs"; Ph.D. dissertation, Stanford University, 1973.

[3] Kameda. T. and Munro, I., "A D{ IV !·IE I) Algorithm for .Maximum Matching
of Graphs'~; Computing 1974, Vol. 12. pp. 91-98.

[4] Lawler, E.G., ''Combinatorial Optimization Theory"; Holt. Rinehart and \Tins
ton, 1976, Chapter 6, pp. 217-239.

[5] Hopcroft, J.E. and Karp, R.ll., "An nU Algorithm for lolaximum Matching in
Bipartite Graphs''; SIAll J. on Comp. 2, Decefl1ber 1973, pp. 225-231.

[6] Even. S. and Kariv, 0., "An O{nu} Algorithm for lolaximum Matching in Gen
eral Graphs", Proceedings of the 16th Annual Symp. on Foundations of Com
puter Science (FOCS), Berkeley, 1975, pp. 100-112.

