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ABSTRACT 

In this paper we present An O(JTi!i.fEI ) algo
ri thm tor riDding a maxi-= matching in pneral 
graphs. '!'his algorithm works in 'phases'. In 
each phase a maximal set of disjoint minimum len
gth aUgmenting paths is found, and the existing 
matching is increased alcmg these paths. 

Our contribution consists in devising a spe
cial Va:J of handling blossoms, which enables an 
O(IEI) implementation of a phase. In eaeh phase, 
the algorithm grows :Breadth First Search trees at 
all unmatched vertices. When it detects the pres
ence of a blossom, it does not '&brink' the blossom 
immediately. Instead, it delays the shrinking in 
such a way that the f'irst aU8JDSnting path found is 
of minimum length. F\lrthermore, it achieves the 
effect or shrinking a blossom by a special labeling 
pro;:eciure which enables it to find an aupenting 
path through a blossom quickly. 

PROBLE:·! STATEMENT 
AND Pl'lELDUNA.liY DEFDUTIONS 

In this paper we present an efficient algo
ri thm t:~r finding a !!!!!XiJIUIII matching in a general 
graph. The precise aateaent of the problem is. 
as follows: 

Let C.(V,E) be a f'i.Dite, lmdirected, connec
ted graph (without loops or IIIUl tiple edges) 
Khose set of vertices is V and set or edges 
ia E. A matching K is a subset of E such 
that no two edges ot M are incident at a com
liOn vertex. A maxi- matching is a II& tching 
whose cardinality is III&Xi.Jin.uD. 

~e. ci ve the toll owing basic d.efini tiona relative 
.to a ll&tching I.!: 

It an ad.p is cont.Uned. in •, then it is said 
to be 'aa tched', else it is said to be 'unmatched •. 

In this paper, matched edges will be dra~-.n 1;iggly 
and unmatched edges will be dra1m straight. 

~vertex is 'free' if all edges incident at 
it are unma.tched. 

An 'alternating path 1 is a simple path whose 
edges are alternately in ~l and not in :.:. 

An 1aupenting path 1 is an altc:natiAg path 
between two free vertices. 

A HISTORICAL NOTZ 

The histor,y of the maximum matchinb problem 
besan in 1957 when :Berge proved that a lll.:ltching is 
maxicwn if and only if ~e graph has no au~;ment~ng 
paths. ln 1965, Edmonds used this re:.ult to give 

an 0( JVI 4) algorithm for this problem. Since then 
many combinatorists have solved this problem with 

better rlmning time. Among them are Gabc1/, Ka.meda 

d •• 3 andLa 4 an .• \Ulro , wler • The best previouc running 

times were due to Hopcroft and Karp5 for bipartite 

graphs ( o(JiVi·IEI)), and to Even and Kariv
6 

for 

general graphs ( O{JV1
2

"5). Our algorithm, close 
in spirit to that of Even and tal-i v • s, has a runninE 
tiwe of o(JiVi·IE\ ). 

SALIENT FEATURES OF 
THE ALGOniTH:; 

The algorithm presented in this paper finds 
sets of augoenting paths in'phases•._ Given a 
m& tchi,ng M, a 1 phase 1 ma,y be defined as the proce
ss of finding a maximal set of disjoint minimum 
length &U&~J~enting paths (min aug paths) in the 
graph, and &U&menting the ~~~atching algng these 
paths. As shown by Hopcroft and Karp , only 
O(v'tVT) such phases are needed for findin~ a max-
imum matching. · 

This reseaich was supported by NSF Grant liCS-79-037667 and 
• fellowship from Consiglio Nazionale della Ricercbe - Italy and 
•• Earle C. Anthony sholarship and Eugene C. Gee and l.tor:a Fay Scholarship. 



In order to describe the algorithm we f1rst 
~ve the following definitions: 

evenlevel: !be evenlevel· of a vertex v is the 
length of the mi~imum even length alternating 
path from v to a free vertex, if any, infin
ite otherwise. 

ocldlevel: 'n1e oddlevel of a vertex v is the len
gth o:' the minimum ocld. length altemting 
path from v to a free vertex, if' a.ny, infin
ite otherwise. 

level: T.he level of a vertex v is the minimum 
between evenlevel(v) and oddlevel(v), i.e. 
it is the length of the minimum alternating 
path from v to a free verte.x. 

outer: .i wrtex u outer iff level(v) ia even •. 

inner: .i vertex is inner iff level{v) is odd. 

other level: If vis outer {inner) then its 
oddlevel ( evenlevel) will be refered to as 
the other level of v. 

bridge: .ln edge {u, v) is a bridge if 
either both evenlevel(u) and evenlevel(v) 
are finite, 
or both oddlevel(u) and oddlevel(v) are fin-. 
ite. 

Jlote that since an augmenting path P ha:: an 

odd length, every edge in P is a bridge. Note 
also that if' there is a bridge (u, v), then some 
vertices {at least u ~d v) have both the evenlev-

el and the oddlevel finite. 
-· . -

We now explain the concept 'tenacity of a 
bridge': 

~naciv: Ginn a bridge (u, v), tenacity ((u,v)) 
• min (evenlevel(u) + evenlevel(v), 

oddlevel(u) + oddlevel(v)) + 1. 

So, the tenaci tj· of a bridge represents the mini
.um length of a not necessaril~y simple alternat1ng 
path from a tree vertex to a free vertex contain
ing the bricl&e. If such a path is simple , then it 
is an aupenting path. It can be proved that any 
llin aug path P contains a bridge whose tenacity 
equals the length of P. 

T.he aJ.&ori thm consists of a main routine, 
SE&.RCB, and three subroutines: :m.oss-J.ua (whic.h is 
called with two vertices as p&.'&llleters), FINDPATH 
azul TOPOLOGIC&.L ERASE. 

In each phase, SEARCH grows ilread th Pirst 
~arch (l!FS) tnes rooted at the free vertices of 
G. in order to find the level of each vertex in a 
i.e. to fiDd the evenlevel of' outer vertices and 
the oddlevel ot inner vertices. In order to .do ao 
SEARCH ataru wi. th the aearch level 0 and gro~1s 

2. 

the l!FS trees by incrementing the search level by 
one each time. 

Hhen SEARCH detects that a certain edge (u,v) 
is a bridge, it ·.:ill call the subroutine BLOSS-.t.UG 
with the parameters u and v. If there is an aug
menting path containing (u, v), its length i~ at 
least tenacity((u, v)). In fact, when BLOSS-AUG 
is called with parameters u and v, it looks for an 
au&menting path of exactly this length. So, if 
!LOSS-AUG is called ~~ a lower search level for 
bridge~ ha•~ng a lower tenacity, the first aUo~en
ting path found in a phase will have minimum len
gth. Indeed, SEARCH calls BLOSS-AUG at search 
level i for bridges whose tenacity is 2iT1• This 
if.l accocplished by wtti~ brid.;es \/hose tenacity: 

is 2i+1 in the set bridges{i). Then, at the end 
of search level i, !LOSS-AUG is called for each 
edge in bridges{i). 

ln case there i~ no augmenting path of length 
tenacity((u,v)) containing the bridge (u, v), 
then BLOSS-AUG creates a new'blo~SOQ 1 B (a set of 
vertices). l!efore this call, all vertices in B 
had exactly one level (even or odd) set to a fin
ite value by SEARCH. Ir~ing the present call, 
!LOSS-AUG will set to a finite value the other • 
level of the vertices in B. In this process, some 
edges may be discovered to be bridges. The ten
acity of these edges is computed, and they are in
serted in the proper zet of bridges. 

When !LOSS-AUG detects the pre~ence of an 
a~enting path containing (u,v), FilwrATH 
finds one such path, P. The present matching is 
increased along P; then TOPOLOGICAL ~~4SE remo
ves the edges which, in the present phase, cannot 
be part of a min aug path disjoint from P. ln 
a phase, if a min aug path is found at search le
vel m, then a maximal set of disjoint 2m+1 long 
augmenting paths is :found at the same search le
vel and the phase ends. TOPOLOGICAL ERASE en
sures that these paths are indeed disjoint. The 
faci. that the phase end& when there are no more 
bridges having tenacity 2m+1 ensures that the set 
of min aug paths found is indeed maximal, since, 
as said, each min aug path P contains a bridge 
whose tenacity equals the length of P. 

Since the algorithm executes a phase in 
0{ I~ steps, it :finds a maximum matching in 
0( -JiVI•IEI ) steps. 

DESCRIPTION OF ~~CH 

During the execution of a phase, SEARCH 
grows l!readth First Search trees rooted at the 
free vertices of a in order to find the level of 
each vertex. 



s::A.RCB scans 11n edge at most once (in one of 
~he two directions). ~ searched edge may be scanned 
in the opposite direction, by BLOS5-AUG. rlhen this 
happens BLOSS-AUG marks the edge "used" to prohibit 
SEARCH from scanning it again. 

At the start of a phase, the evenlevel and 
oddlevel ot each vertex of G are set to infinity, 
to signify that no alternating path of azzy len.;th 
has been found yet. Then, the evenlevel of each 
frc~ vertex is reset to zero. 

When the search level, i, is even, search is 
conducted from each vertex, v, with evenlevel(v)~i 
to find vertices u such that the edge (v, u) is 
"unused" and unmatched. If the oddlevel of u is 
infinity, then it is reset to i+1. 

Uhen i is odd, the search is conducted from 
each vertex, v, with oddlevel{v)•i, to find the 
unique matched neighbour, u, of v. Furthermore, 
the evenlevel of u is reset to i+1. 

rlhile growing the BPS trees, SEARCH constructs, 
for each searched vertex u, the set of its 
'predecessors•; 

predecessors; Let u be a vertex of C which is not 
free. If u is inner and oddlevel(u)•2i+1 
then v is a predecessor of u iff 
evenlevel(v)•2i and (u,v) ia a member of~. 
If u is outer then v is a predecessor of u 
iff (u,v) is a matched edge. 

~e set of predecessors of each vertex u will be 
denoted by 'predecessors(u)•. 

ancestor: Is the transitive (but non-reflexive) 
closure of the relation predecessor. 

In addi:tion, SEARCH constructs, for each inner 

vertex u, the set of its 'anomalies•; 

anomaly: Let u be an inner vertex and oddlevel(u) 
be 2i+1. Then v is an anomaly of u iff 
evenlevel(v)>2i+1 and (u, v) ia a member of 
{E - M). 

'l'he set of anomalies of u will be denoted by 
•anomalies(u) •. 

EX.Al·l?LE 1 : 
In figure 1, s and t are the predecessors of 

u, u ia the predecessor of w, and v is an anomaly 
of u. 
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While scanning an edge, SEARCH checks to see 
if it is a bridge. When SEAnCH discovers that an 
edge (u, v) is a bridge, it computes the tenacity 
o: the edge, say 2i+1 1 and inserts (u, v) in 
bridges(i). At the end of search level i, SEARCH 
calls BLOSS-AUG, with parameters u and v, for each 
bridge in bridges(i).. If during these calls, an 
augmenting path is found (more precisely, a maximal 
set of minimum length disjoint augmenting paths 
would be found), then the present matching will be 
increased and the phase liill end. rr instead, at 
the start of the present phase, the matching is 
already maximum, no a\l&!llenting paths can be found, 
but SEARCH will reach a search level i such that 
no vertices will have level i, and the algorithm 
will halt. 

DESCRIPTION OF BLOSS-AUG 

The subroutine BLOS5-AUC is called with ver
tices u and v such that the edge (u,v) is a bridge. 
This call will result either in the formation of 
a new blossom, or in the discovery of an augmenting 
path. A new blossom is formed if and only if the 
following condition holds; 

BLOSSOMillG COllDITION: there exist vertices, z, 
such that 
1. z is an ancestor of both u and v. 
2. u and v do not have azzy ancestors, other than 

z, whose level is equal to level(z). 

If the blossoming condition does not hold, 
a min aug path is discovered. 



CONSTRUCTION OF A NE:l BLOSSO:·i. Assume that the 
blossoming condition holds for the bridge (u,v). 
'l'hen 11L055-J.UC will construct a new blossom D. 
B will consist of all vertices w whose other level 
is still infinity, but can be set to a finite value 
due to the bridge (u,v), i.e. if w is inner {ou
ter) there is a min even (odd) length alternating 
path, containing (u,v), from w to a free vertex. 
!le CiVe also an algori tha-oriented definition of 
B: 

.Among the z•s of the blossoming condition 
which do not belong to any blossom, let b be the 
vertex whose level is maximum. Then the new blos
som 11 is the set of vertices, w, such that 
1. w does not belong to any other blossom when 

11 is formed. 
2. either "'"u or -v or w is an ancestor of' u or 

w ia an ancestor of v. 
3. b is an ancestor of w • 

.furthermore, b is designated to be the 'base' of :B 
and u and v the 'peaks • of :B. 

EX.C.!Pl..E 2 
Figure 2 shows the fol'lll&tion of a blossom • ..1 t 

search level 6, £EARCH detects the bridge (1, m), 
and calls 11LOS5-J.UG. During this call, blossom B 
is formed. 

:Ba fl,m,j,k,g,h,i,d,e,fj • 
'l'he base or 11 is c and its peaks are 1 and m. 

6 

/(. 5 

:t :) J; J,. 

..3 
2 

b r f 

a.,• ~.RJAJJo 

fi)1-4re 2. 

'l'he following facta should be pointed out 
about bloaaoma: 

1. .lt any stap in the algorithm, a vertex has 
both levels (even and odd) finite if and only 
if it belonga to a blossom at that stage. 

2. J. wrte% cu belong to at aost one blossom. 

... 

3. The base, b, of a blossom :B is always an out
er vertex. 

4. b does not belong to B because when B is be
ing formed, there is no odd length alternating 
path from b to a free vertex. 

5. As a consequence of' fact 2, a peak of a bloss
om B does not necessarily belen~ to B. 

6. Since at each search level i, SEA..ttCH scans the 
edges in an arbitrary order, the set 
bridges(i) is formed in an arbitrary order. 
Consequently, our blossoms are not algorithm
independent structures. This point is illus
trated in the next example. 

1. If a vertex v belongs to a blossom Band it 
is contained in a min aug path P, then P 
also contains base(B). 

EXA:·lPLE 3 
At search level 4, if the bridge (i, j) is 

processed before (j, k), then the blossoms formed 
are: 

. 11. {i,j,f',gJ 
The base Jf B 

1 
is d and its peaks are i and j. 

11 ,. {k,h,d,e,b,c} 
2 

The b~e of 11
2 

is a and its peaks are j and k. 

However, if {j, k) is processed b~fore (i, j) 
then the blossoms formed are: 

11
1 
.. {j,k,g,h,d,e,b,c} 

The base of 11
1 

is a and its peaks are j and k. 

112· {i,fj 

The ba.se of B 
2 

is a and its peaks are i and j • 

t 

(, ..) " - . ' 
h, 

4 

.3 

2. 

1 

a.,., ~~0 

f'1urt .3. 



In order 'to accomplish the tasks of construct
ing blossoms and detecting the presence of augment
ing paths within the nmning time of 0( I El) per 
phase, !LOSs-AUG performs a 'Double Depth First 
Search' (DDFS). 1'he DDFS consists of growing two 
Depth First Search trees T

1 
and Tr contemporarily, 

i.e. if' at a certain stage, the centers of activit
ies o!' T1 and T:r a:re at v

1 
and v:r·respectively, 

then the DDFS grow 1'
1 
if lrnl(v1 )~level(vrj, 

and it grows 1' otherwise. '1'
1 

and T are rooted 
:r r 

at u and v respectively. !his DDFS has the follow
ing special feature: when the search is conducted 
from a vertex w, which is the center of activity of 
one of the t:rees, say T

1
, then the DDFS seel-..s only 

the vertices of predecessors( w) tor growing '1'
1

• 

While scannjng an edge (w, p), where p is a member 
of predecessors(w), DDFS marks it "used" so that 
SEARCH may DOt scan {w, p) when it :reaches w. 

The vertices of '1'
1 

are marked "left" and those 

of T are marked ":right" so that, in case an aug-r . 
menti.Dg path contains these vertices, the function 
FIND PATH can :f'ind it. 

During the DDFS, the two trees may find two 
different f':ree vertices. In this case, an alJ8111f!n
tation is possible. However, the search ma,y not 
be so simple, tor the two t:rees may meet at a ver- • 
te:x w. Then, clearly, only one of the trees can 
claim w and the free vertex reachable from it. So, 
first 'l' is allowed to claim w (w is marked "left") 
Furtheriore, '1' backs up and t:ries to find a verte:x 
as deep as w, :rthus enabling the DDFS to proceed. 
However, if' T fails, then T IIIWit claim w (the 

1 r 
DDFS changes the mark em v to ":right"). llow, Ti 

backs up and t:ries to find a vertex as deep as w. 
If 'l' is also l1DSuccessf'ul then an aU&~~~entation 
involving the edge {u, v) is not possible at this 
stage. 'l'hi.s is so because there cannot be two dis
joint al ternati.Dg paths starting at u and v and 
:reaching the same level as w. llow, a Dew blossom 
is c:rea ted. !he base of' 'this blossom is w, its 
PeakL (left peak) is u, &Zid ita PeakR (right peak) 
1a v •. 1'be 'blossom contaiDs all of' the vertices of 
'l' &Z14 T other thaD w, &Zid the "right" mark on w 

1 :r 
is removed • .i.t this point the other level of the 
vertices s iD ::8 is computed 'by the formula: 

· · teDacity((u, v)) - level(s). 

Once ::B is formed and the other level of its 
vertices is computed, some edges may be discovered 
to be 'bridges. Such newly discovered 'bridges are 
of' two 'types: 'bridges having 'both endpoints in ::&, 
and 'bridges Jlaving cmly one endpoint in :e. 

For bridges (s, t). such that both s and t be
long to::&, the blossoming condition clearly holds. 
So, no augmenting path would be discovered if 
::&LOSs-AUG is called with parameters s and t. Fur
thermore, the blossom ::8' that BLOSS-AUG would cre
ate Will be empty because the other level of no 
new vertices can be set to a finite value due to 
(s, t). 1'herefore, such bridges are ignored. 

For 'bridges (s, t) such that only one vertex, 
say s, 'belongs to ::&, it can be shown. that s is an 
inner vertex and t is "an anomaly of s. Converse
ly each anomaly of each inner vertex of B is 
a newly discovered bridge. So, :BLOSS-AUG computes 
the tenacity, say 2j+1, of each such bridge and 
inserts it in bridges(j}. Also, it marks the brid· 
ge"used". Note that if i is the present search 
level, then j> i. 

Another special feature of the DDFS is that 
while the search is conducted from a vertex w to 
scan an edge (w, p), i~ p belongs to a blossom :B

1 
then it shifts the center of activity to base*(:B

1
}. 

In order to define the function base•(.), we 
introduce the partial order ·~· on the bases of 
'blossoms: 

If ::&
1 

and ::&
2 

are blossoms, then, 

'base(::& )<'base(B
2

) iff 
1 . 

'base(:B 
1

) belongs to ::&
2

• 

Furthermore the reflexive and transitive closure 
of will be denoted by ·~ '· Then, 

base*(:B ) 
4!f base(l3) iff base(:B )~base(B) 

1 1 
and there is no B' such that 
'base(::B)<base(::B' ). 

This feature of the DDFS has the same effect as 
that of'shrinking' each blossom into a macronode 
located at its base*. 

Clearly-, the function base*(.) could be imple
mented by a Union Find. However, because of the 
special structure of blossoms, a path compression 
is sufficient to bound by O(IEI) the work done 
due to 'base* in a phase. Ease* is implemented by 
a path compression as follows: 

1. 'base*(::&) • 'base(!) when B is formed, and 

2. if just before a new computation of base*(B), 
'base*(::B)•base(::&

1
), 'base*{:B

1
)-base(B

2
), ••• 

'base*(::& l-'base(::B'), and 'base*(B')•base(:B'), . k 

'then, the new computation of 'base*(B) leaves 
upon terminatiOn 
'base*(::B)•'base*(::B )• ••• abase*(B ).base(:B'). 

1 k 



'l'he IIUbroutine uses two variables, DCV and 
barrier, tdlose tunction needs an expl&ination. At 
any stage, DCV (Deepest Common Vertexi point:. to 
the deepest vertex which has been discovered by 
both 'l' and 'l' • :Before the :first time that such 
a vertix is discovered, DCV is undefined. Barrier 
accomplishes the :following task: suppose T

1 
and Tr 

Met at a vertex "• Furthermore, suppose that 'l' 
r 

backs up all the va.y and fails to :find another 
verte~ as deep as v; however, T

1 
ia able to accom-

plish this task. Subsequently, T
1 

and Tr meet 

-.pin. ~s time, 'l'- ahould not back up above w. 
r 

!his task of limiting T •a backing up is accom:pl
iahed by barrier. llarrler is initialized to v, 
and each 'time 'l' fails during backtracking, 
barrier ia ahi:fied to the current DCV. 

DESCRIPTI01l OF FINDPATH 

When :BLOS5-AUG detects the presence of a 
&in aug path, i ~ ll&ltes use of FINDPATH to find 
one auch path, P. 

FDDPATH is passed two vertices, "high" and 
"low" and a blossom :B as parameters. High and low 
are such that level(high) ;.level( low) and they 
both belong to a common 1Din aug path. FDIDPATH 
returns the portion between high and low of one 
such path. 

FINDPATH performs a Deapth First Search star
ting at high to find low. This Deapth First Search 
has some special fedures: 

1. When the center of activity is at a vertex v 
belonging to B, the blossom passed as a para
•ter, only the predecessors o:f v are conside
red to continue the search. If the center of 
activi t,y is transferred to one such predeces
sor, u, v is made the father of u. 

2. _It considers shrunk all blossoms other than B: 
assume that the center of activity is at a 
vertex v not belonging to :B; it can be shown 
that v belongs to some other blossom :B 1 , then 
only base(B 1 )•b is considered to continue the 
search. I:f the center of activi t,y is tran
sfered to base(B' )•b then v is made the father 
of 'b. 

3. !be center of activity is never transferred to 
a vertex 'dB such that its "left"/"right" 
urk is different from that of high, or to a 
vertex v tdloae level is less than 'that or low. 

When the search succeeds in finding low (i.e. 
the center of activity is at low), FINDPATH cons
'iructa the •pneralized path' high•x

1 
••• xmalow 

'by reversing z.a•••x
1

a the father chain from low 
to llich· 

' 
The path x ••• x is called a 'generalized 

1 m 
path because it ma;y not be a legal alternating path 
:from high to low. This will be the case if x. 

J 
does not 'belong to :B, for some j=1- ••• m-1. 

So for all such x., i:f 
any, OPEli is invoked. Its function is to Jopen 
properly the blossom, say B•, to which x. belongs 

J 
by finding an alternating path from x. to 
base(:B 1 )•xj+l" J 

If xj is outer then OPEll calls FIND PATH with 

parameters x., x. 
1

, :B'. 
. J J+ 
I:f x. is inner, then OPEN makes two calls to 

J . 
FlllDPATH. Let us assume, w.l.o.g., that x. is . J 
marked "left" (mark received at the time of the 
formation of B1 ). Then the first call finds a 
path, P, from PeakL(B 1 ) to x. and the second a 
path, P~, from PeakR(B') to Jbase(B')=xj+

1
• 

It should be noticed that P
1 

and P
2 

are disjoint. 

Let p-1 denote the reverse of P and "o" the con
catenation operator •. Then the alternating path 
from xj to xj+l is given by P;1 o P2• 

EXA!·!PLE 4 

r 
t1IIIIMIVVll\ll 0 

b 

Ov 

fir'~ +. 

In\. 

. 
J 

~ 

In this portion of graph there are two blos
soms, B

1 
and :s

2
• B

1
•{k,l,h,il and base(B1).r; 

B
2
a{n,o,m,j,f,g,d,e} and b&Se(B2).c. 



FDIDPA'm is called with parameters high=p, 
low•a and !-'undefined' (i.e. all blossom must be 
considered shrunk). !he generalized path returned 
will be phfcba. Since hEl3

1 
and fEl32 , OPEU Wl.ll 

be called twice. !he firet call will construct 
'the path hklif (containing the brid&e (k,l) sin
ce h is inner). !he second call will construct the 
path fdc • The p-a path will then be 

phiclifdcba. 

DESCRIPI'ION OF 
TOPOLOGICAL ERASE 

After FINDPATH has found a min aug path P 
and the matching has been increased along P, 
TOPOLOGICAL ERASE is called. This subroutine era
ses from 'the craph the path P and all 'those ed&es 
which cannot be part of a min aug path disjoint 
from P. 

TOPOLOGICAL ERASE is very close in apiri t to 
the well known topological sort. Each vertex has 
a counter which at any stage indicates the number 
of ita unerased predecessor edges. A vertex is 
erased, along with all edges (predecessors or not) 
incident at i~ either when its counter is decreas
ed to zero or when it enters a min aug path detec
ted by FINDPA'm. Since the free vertices do not 
have any predecessor edges, their counter is set 
to one at the start of a phase, so it will remain 
one thro'U&hout the phase. It is not difficult to 
see that the total complexity of this routine is 
0( lEI) per phase. ' 

Rote that if a blossom l3 is erased then all 
vertices in l3 are erased. Moreover, since FlliD
PA'm puts in the aupenting path P the base of a 
blossom l3 wenever it puts in P a vertex belonging 
to 13, we can also aa;y that whenever a vertex of 
l3 is erased, all vertices in l3 are erased. 
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Routine SEARCH 

(0} (initialization) For each vertex v, evenlevel(v):=i.nfinite, 
oddlevel(v):=infinite. blossom(v):=undefined, predecessora{v):= ~, 
anomalies(v):::: ~ and v is marked "unvisited". 
All edges are marked "unused" and "unvisited". 
For i:=1 to lVI : bridges{i):= ~ . 
i:=-1. 

(1) For each free vertex v, evenlevel(v):=O. 

(2) i:=i+1. 
If no mon "rUoea ha" 1• .. 11 Ua•n HALT. 

(3) If i iB even then 
for each Y with evenlevel(v)=i tlnd its unmatched, "unused" nei£hbors, 

for each such neighbor u: 
.If evenlevel{u) is finite 

then temp:= {evenlevel(u) + evenlevel{v}}/2. 
bridges(temp):=bridges{temp) U f{u, v)l. 

else 
(a) {handle oddlevel) If oddlevel{u)=infinity then 

oddlevel{u):=i+ 1. 
(b) {handle predecessors) If oddlevel(u)=i+l then 

predecessors(u):=predecessors{u) U fvJ. 
{c) (handle anomalies) lf oddlevel(u) < i then 

anomalies{u):=anomalies(u) U !vJ. 

(4) If i is odd then 
for each v with (oddlevel{v)=i and v ~B) take ils matched neighbor u. 

(a) {handle bridges) If oddlevel(u)=i then · 
temp:=(oddlevel(u) + oddlevel{v})/2, 
bridges{(lemp):=bridges(lemp) U !(u, vH 

(b) (handle predecessors) If oddlevel(u)=infinity then 
evenlevel{u):=i+ 1, 
predecessors{u):= fvJ. 

(5) For each edge (u. v) in bridges(i): call BLOSS-AUC(u. v). 
If an augmentation occurred 

then go to step (0) (end of a phase) 
else go to step {2). 

:Note: 

(1) "u Jr B" stands for "vertex u does not belong to any blossom," Le., 
blossom(u) i: undefined. 
"u £ B" stands for "vertex u belongs to a blossom. This blossom was named 
B", Le., blossom(u) =B. · 

(2) The function base •(·) is defined in the descriptbn. 

(3) The atrina operations; -s" (invenef and •• •(concatena
tion) are explained in the description . 



Subroutine BLOSS-AUG ( w 1, w 1 : "nrlices). 

(0) (initialization) If w 1 and w1 belong to the same blossom then go to step (5}. 
(neither is an augmentation possible, nor can a new blossom be created). 
Otherwise. if w 1 £ B then v1 :=base • (B) 

else 111 := w 1 • 

If wa £ B then 11,. :=base • (B) 
else 11,. := w,. 

llark v1 "left." and 11,. "right". 
f( v1 ) is undefined, DCV is undefined, and barrier:= 11,.. 

(1.1) If 111 and 11,. are free vertices then · 
P:={ FlNDPATH( 1Ut, 11( • undefined)) -lo nNDPATH { Wz, 11,. ,undefined). 
Augment the matching along P, do a TOPOLOGICAL ERASE, and go to step {5). 

(1.2} (1ft ancl11,. are not. both free "nrlices) 
If level( 111 ) S level{ 11,. ) 

then go to step {2.1) 
else 10 to step (3.1). 

{2.1) If 111 bas no more "unused" ancestor edges then 
U f{ 111 ) is undefined 

then 10 to step {4) (create a new blossom) 
else v1 :=f( 111 ) and go to step (1.1). 

(2.2) ( v1 bas "unused" ancestor edges). Choose an "unused" ancestor edge 
111 ...!...u. :Mark e "used". 

If u £ B then u:=base • (B). 

(a) lf u is unmarked 
then mark u "left", f(u):= 111, v1 :=u, and 

go to step (1.1). 

(b) Otherwise (u is marked) 
if u=barrier or u ¢V,. 

then go to step (1.1), 
else mark u "left", v,. :=f( 11,. ), 111 :=u. 

DCV:=u. and go to step (1.1). 

(3.1) If v,. has no more "unused" ancestor edges then 
U 11,. =barrier 
then 11,. :=DCV, barrier:=DCV, mark v,. "right", 

v1 :=f( 111 ), and go to step {1.1), 
else 11,. :=f( 11,. ) and go to step (1.1}. 

(3.2) ( 11,. has "unused" ancestor edges}. Choose an "unused" ancestor edge 
v,....Lu. :Mark e used. 
lf u £ B then u:=base • (B). 

' (a) If u is unmarked then mark it "right", f{u):= v,.. 11,. :=u. and . 
10 to step (1.1). 

(b) Otberwie (u Is marked) 
it u= v1 then DCV:=u. 
Go to step (1.1). 
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(4) (Creation of a new blossom) 
Remove the "ri&ht" mark from DCV. . 
Create a new blossom {a set) B. Let B consist of all Yertices that were 
marked "left" or "right" durin& the present call. 
peakL{B):= w 1, peakR(B):= w 1, base (B):=DCV. 

For each u in B : 
blossom( u):=B. 

(a) if u is outer then 
odd.lenl(u):= 2i + 1- ennlevel{u) 

(b) if u is inner then 
evenlenl(u):= 2i + 1- odd.level(u), 
for each v in anomalies(u) : 

temp:= {evenlevel{u) + evenlevel(v)}/2 
bridl(es{temp):=bridges{temp) U f{u, v)J. 
ll&rk (u, v) "used". 

(5) Return to SEARCH. 

Function FINDPATH (high. low: vertices, 
B: blossom} 

0.0 (bound!!')' conditio~!} If_ hiah=:~o~ then Path:=hi&h and 10 to stepiB'~ 

0.1 (initialization) v:=higb. 

1. If v bas no more "unvisited" predecessor edaes 
_then !==f(v) and ao t'! step (1)_· 

2. U blonom(v) •·B then choose an "lmviaited" predeceaaor • edge v-u. Mark e "viai ted". 
else u:•base{blossom(v}). 

3. If u=low then 10 to step {6} (the path bas been found). 

4. U (u ia •naited") or (level(u)~level(low)) or 

then co to atep (1,1, 

5. liark u "mited". 

(blossom( u)•ll and u does not have the same 
"left"/"right" ~~ark as high) 

f(u):=v, v:=u and 10 to step (1). 

8. (u=low) Path:=low. 
Until v==hilh do: Path:= v Path and v:=f{v}. 

'7. (Path=: 1 • • ' Z. • where : 1 =high an_4 ;"' =1~) -F~r i=! to_m.-1_ do: 
If' bloasom(x.)~ then replace x. and x. with 

J J ~1 

OPEN{xj, xj+1) in Path. 

8. Return Path. 



II 

Function OPEN (entrance, base: nrtices) 

0. B:=blossom(entrance). 

1. lf entrance is outer 
then Path:=FINDPATH(entrance, base, B) 

and ao to step {3). 

2. (entrance is inner} Let PeakL and PeakR be the peak vertices of B. 
If entrance is marked "left" 

then Path := {nNDPATH(PeakL. entrance, B)) -t FINDPATH(PeakR. base, B) 
else Path:= (nNDPATH(PeakR, entrance, B)} -t FINDPATH{Peak~ base, B) 

3. Return Path. 
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