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Negative frequency-dependent selection (i.e., declining fitness with increased frequency in the population)

is thought to be one of the factors that maintains biological diversity. In this paper, we give a concrete

mathematical argument supporting this. Our model is as follows: A collection of species derive their fitnesses

via a rock-paper-scissors-type game whose precise payoffs are a function of the environment. The new aspect

of our model lies in adding a feedback loop: the environment changes according to the relative fitnesses of the

species (hence, payoffs change as a function of fitness, which in turn changes as a function of payoffs). The

changes in the payoffs are in keeping with the principle of negative frequency-dependent selection, which is

widespread in nature. In order to model our game as a continuous time dynamical system, we cast it in the

setting of a differential game. We show that for certain parameters, this dynamics cycles, i.e., no species goes

extinct and diversity is maintained.

We believe that our techniques can be applied to optimization and machine learning to show that first order

methods (e.g., gradient descent/ascent) do cycle even in online settings in which the loss function changes

with time.

CCS Concepts: • Theory of computation → Convergence and learning in games; Convergence and

learning in games;

1 INTRODUCTION
Game theory has yielded deep insights into biological phenomena for almost a century. For example,

the work of Fisher, Haldane, and Wright gave the central model of replicator dynamics which has

been used extensively to study evolutionary processes. In this paper, we use game theory to give a

concrete mathematical argument supporting the belief that negative frequency-dependent selection

maintains biological diversity.

Negative frequency-dependent selection (i.e., declining fitness with increased frequency in the

population) is widespread in biology, and is thought to be one of the main factors maintaining

biological diversity within a community [24, 30]. There are many different mechanisms that reduce

the fitness of common genotypes or species, but two interactions are nearly ubiquitous, operating
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at all levels of biological complexity, from microbes to metazoans. First, common organisms tend to

be more susceptible to natural enemies, like predators [24], parasites [19] and pathogens [32, 36].

Pathogens themselves also face negative frequency-dependent selection [12] as they co-evolve with

a rapidly-changing host population. Natural selection often favors traits that increase diversity,

allowing common organisms to produce uncommon offspring. Perhaps the best example of this

is the evolution of eukaryotic sex, which may have evolved and persisted by allowing common

genotypes to generate rare, pathogen-resistant offspring genotypes [23]. Second, the intensity

of competition for limiting resources (e.g., food [10], reproductive opportunities [11], etc.) often
scales with frequency. In fact, a classic pattern observed within community ecology is âĂŸniche

partitioningâĂŹ [7], in which organisms that compete for different limiting resources stably coexist.

When organisms compete for the same limiting resource, the most competitive organism for the

shared limiting resource usually ends up dominating the population [37].

When fitness is frequency dependent, game theoretic approaches that use fixed payoff matrices

do not accurately represent the behavior of the system. One approach is to make the games

dynamic, allowing the payoff matrix to change with time and organismal frequency. Two main

categories of such games are stochastic games [34] which are discrete, with the payoff matrix being

governed by a Markov chain, and differential games [14], the state space of which is described via

a differential equation (continuous time dynamical system). An example of the first is [21], which

studies evolution via the so-called ’multiplicative weights update’ algorithm, and an example of the

second is the recent elegant model of Weitz et al. [38], studying a dynamical version of the tragedy

of the commons.

The work presented here is inspired by the last paper, [38]. A tragedy of the commons occurs

when a large number of agents simultaneously play a Prisoner’s Dilemma-type game. Selfish

behavior on the part of agents, i.e., defection, leads to a highly sub-optimal outcome as compared to

the globally best outcome in which all agents cooperate. An early, and motivating example, of this

phenomena was cattle grazing in a common pasture. Each shepherd’s selfish strategy of letting his

cattle overgraze leads to a depleted pasture land. The novel idea in [38] was to model a situation in

which the actions of the agents slowly change the environment, and hence the payoff matrix, so that

the selfish strategy of agents itself changes. They give differential equations modeling this situation

and show regimes of parameters under which the game cycles between the two extremes of replete

and depleted environments, with selfish behavior cycling between cooperation and defection.

The underlying game analyzed by Weitz et al. is particularly simple in that each agent has only

two strategies. In this paper, we consider a more complex class of games which are non-transitive,

namely rock-paper-scissors, which has three strategies, and its generalization to n strategies. The

rock-paper-scissors (RPS) game belongs to a general class of negative feedbacks in biology caused

by non-transitivity. In such scenarios, there is no global optimum, as each strategy beats one of the

other two, and is beaten by a third. Non-transitive dynamics appear to be widespread in biology,

and rock-paper-scissors games have been reported in diverse organisms, including plants [4, 20],

animals [35], and microorganisms [16–18]. In general, rock paper scissors dynamics maintain

biological diversity (i.e., individuals, genes, or species), as no single strategy is capable of outright

dominance [17, 20, 31]. Most prior models of RPS dynamics used in biology assumed fixed payoff

matrices. This is an incongruity with biology, where the fitness of most strategies will be frequency-

dependent. On the other hand, analyzing complex games, such as RPS, in the setting of differential

games is not straightforward and there is a need to develop techniques for doing this.

Differential games: In a differential game, payoffs change continuously with time and are defined

over a continuous state space. The state variables of such a game evolve over time according
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to a differential equation. These games were first introduced by Isaacs [15] to study pursuer–

evader games, with military applications in mind. Over the years, such games have had numerous

applications in control theory, especially as applied to aerospace, e.g., see [39], and later in economics,

e.g., see [6]. To the best of our knowledge, [38] is the first application of such games to biology.

Our model: Our model is as follows: We assume that the fitness of a collection of species is given

by a rock-paper-scissors-type game. Additionally, the precise payoff matrix is a function of the

environment. The new aspect of our model lies in adding a feedback loop: the environment changes

according to the relative fitnesses of the species; in particular, it gives a boost to the species having

smaller populations. We cast our model in the setting of a differential game and we show that for a

certain setting of parameters, this dynamics cycles.

More precisely, assume a population of n species and let x give the relative population of each

species at any point in time, i.e., xi gives the fraction of population of species i . We define P1, . . . , Pn
to be n RPS-type payoff matrices, where Pi favors species i over other species. At any point in

time, the payoff matrix P is a convex combination of these n matrices given by weights w. We now

define two replicator dynamics:

(1) The population x follows a replicator dynamics based on payoff matrix P .
(2) The weights w change according to a second replicator dynamics, based on x, in such a way

that for smaller population species i , the weight of Pi tends to increase, hence giving species

i a boost.

1.1 Our techniques
For the model defined above, we show that the dynamics as defined in (1) “cycle" in the following

sense: For all but a measure zero of initial population vectors x0 > 0 and weight vectors w0 > 0

(strictly positive coordinates) and for any ϵ > 0, the trajectory of (1) will return to a distance at

most ϵ from (x0,w0) infinitely often (for an illustration of the theorem, see Figures 1,2). In order to

prove this recurrence we follow a proof outline that was developed first by in [28] and [22]. The

proof relies on the Poincaré recurrence theorem 2.3, a well known theorem established a century

ago. In words, the theorem says that systems that satisfy the two conditions of conservation of

volume and that no orbit goes to the boundary will, after finite time, return to a state very close to

the initial state and this will happen an infinite number of times. We proved that under a certain

homeomorphic transformation Π (see Definition 3.2), our dynamics satisfies both conditions of

Poincaré’s theorem.

We established the second condition (Lemma 3.3) by coming up with a log-barrier function (a

similar idea is used in constrained optimization) which is finite in the interior of the state space

and infinite at the boundary and by proving that this function is constant with respect to time. This

suffices to prove that the orbits do not reach the boundary of ∆n × ∆n (and hence the orbits for

the transformed system under Π are bounded). The former condition can be proved via Liouville’s

theorem 2.2 (see also [33]). Finally, it can be shown that Π−1 exists and is continuous, hence the

result for the transformed dynamics carries over to the original dynamics (1). Our results hold for

any dimensions in contrast to [38]; their results hold for 2 dimensions (2 × 2 payoff matrices) only.

1.2 Model
1.2.1 Classic RPS. RPS is a game between two players, each of whom has three strategies. The

payoff matrix can be written as

P =


0 −1 1

1 0 −1

−1 1 0


.
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The RPS game can be generalized to more than three strategies, with the n × n payoff matrix being:

P =



0 −α 0 0 . . . 0 0 α
α 0 −α 0 . . . 0 0 0

...
...

...
...
...

...
...
...

0 0 0 0 . . . α 0 −α
−α 0 0 0 0 . . . α 0



, where α > 0.

In the context of biology, we will have n competing species corresponding to the n strategies, Let x
be the population vector where xi is the fraction of the population that is species i and r be the
fitness vector. Note that r can be computed given x, i.e., r = Px. The replicator dynamics under P
is

x ′i = xi (ri − r ) ∀i,

where r = x⊤Px is the average fitness (if P is antisymmetric, r is zero).
We will call the above the static setting, since P is fixed. Replicator dynamics in zero sum games

have already been analyzed, proving that it has limit cycles or is recurrent (e.g., see [1, 26–28, 33]).

1.2.2 Dynamic payoff matrix. We next define a dynamic setting, where at all times the payoff

matrix is a convex combination of n matrices:

Pw = w1P1 +w2P2 + · · · +wnPn ,

where

P1 = P +



0 µ . . . µ µ
−µ 0 . . . 0 0

...
...
...
...
...

−µ 0 . . . 0 0



, P2 = P +



0 −µ 0 . . . 0

µ 0 µ . . . µ
0 −µ 0 . . . 0

...
...
...
...
...

0 −µ 0 . . . 0



, . . . ,

Pn = P +



0 0 . . . 0 −µ
0 0 . . . 0 −µ
...
...
...
...
...

0 0 . . . 0 −µ
µ µ . . . µ 0



.

Formally, Pi − P is a matrix with entries µ at the i-th row and −µ at the i-th column (rest of the

entries and diagonal entry (i, i ) are zero). It can be seen that for µ > 0 (for the rest of the paper

µ ≥ 0), Pi favors type i by increasing the payoff of i when competing with other types. The weight

vector w = (w1, . . . ,wn ) changes according to the replicator dynamics under the following matrix

=



0 x2 − x1 x3 − x1 . . . xn−1 − x1 xn − x1
x1 − x2 0 x3 − x2 . . . xn−1 − x2 xn − x2
...

...
...

...
...

...
x1 − xn x2 − xn x3 − xn . . . xn−1 − xn 0



.

In words, Pw
changes with time. The idea behind the way w changes, is that species with small

population should be favored. Since is also anti-symmetric and has 0 entries in the diagonal, the

replicator dynamics update rule of w is

w ′i = wi

∑
j

w j (x j − xi ) ∀i .
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By model’s definition,

Pw =



0 −α + µ (w1 −w2) µ (w1 −w3) . . . α + µ (w1 −wn )
α + µ (w2 −w1) 0 −α + µ (w2 −w3) . . . µ (w2 −wn )

...
...

...
...

...
µ (wn−1 −w1) µ (wn−1 −w2) µ (wn−1 −w3) . . . −α + µ (wn−1 −wn )
−α + µ (wn −w1) µ (wn −w2) µ (wn −w3) . . . 0



.

Note that P is anti-symmetric and has 0 entries in the diagonal. The replicator dynamics of x
becomes

x ′i = xi · si ∀i,

where s = Pwx is the fitness vector of population x under Pw
. Summing up, the system of ordinary

differential equations that we would like to analyze is captured by (wi depends on xi )

x ′i = xi
∑
j

Pw
i jx j , w

′
i = wi

∑
j

w j (x j − xi ) ∀i . (1)

Connections to training GANs and min-max optimization in online settings:

Generative Adversarial Networks (GANs) Goodfellow et al. [9] have been really successful over

the last 3 years in Machine/Deep Learning, especially in generating images that look “superficially

authentic". The framework is as follows: There are two deep neural networks, the Generator (G) and

the Discriminator (D). The generator gets noise as input and produces a sample in the same space

of the sampled data set (e.g, an image), with the aim to approximate a sample from the underlying

distribution. In the meantime, the discriminator is trying to discriminate a sample produced from

generator and a true sample. This framework is modeled as a zero sum game between the two

neural nets.

The aforementioned framework and also the framework of WGANs [2] has increased the interest

of researchers in the areas of optimization and machine learning to work on min-max optimization

(generator chooses x and discriminator y):

min

x
max

y
f (x, y). (2)

In [5] the authors showed that using gradient descent on x and gradient ascent on y might yield

cycles for the problem (2). Moreover, in [22] it was essentially proved that any continuous time

learning dynamics that consists an instance of FTRL (Followed the regularized leader), cycles when

f is essentially a bilinear function.

Our setting applies in the online framework of (2) where function f changes with the time

(iterations if the time is discrete, continuously otherwise). Our model is a specific case of such an

online setting, where ft (x, y) = xTAty,At is antisymmetric for all t and in which we showed that

cycles persist. It would be interesting to analyze more general online settings and design learning

algorithms in which the last iterate converges (under assumptions on the sequence {At }t ∈N).

Notation: We denote the probability simplex on a set of size n as ∆n . Vectors in R
n
are denoted in

bold-face letters x and are considered as column vectors. The i-th coordinate is denoted by xi . To
denote a row vector we use x⊤. The time derivative of a function y = y (t ) is denoted by y ′.
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2 PRELIMINARIES
2.1 Dynamical Systems
Let f : S → S be continuously differentiable with S ⊂ Rn , S an open set. A continuous (time)
dynamical system is of the form

y′ ≡
dy
dt
= f (y). (3)

Since f is continuously differentiable, the system of ordinary differential equations (ode (3)) along

with the initial condition y(0) = y
0
∈ S has a unique solution for t ∈ I (y

0
) (some time interval)

and we can present it by ϕ (t , y
0
), called the flow of the system. ϕt (y0) ≡ ϕ (t , y

0
) corresponds to a

function of time which captures the trajectory/orbit of the system with y
0
the given starting point.

It is continuously differentiable, its inverse exists (denoted by ϕ−t (y0)) and is also continuously

differentiable (called diffeomorphism) in the so called maximal interval of existence I. It is also true

that ϕt ◦ϕs = ϕt+s for t , s, t + s ∈ I. y0 ∈ S is called an equilibrium if f (y
0
) = 0. In that case holds

ϕt (y0) = y
0
for all t ∈ I, i.e., y

0
is a fixed point of the function ϕt (y) for all t ∈ I.

If f is globally Lipschitz then the flow is defined for all t ∈ R, i.e., I = R. One way to enforce

the dynamical system to have a well-defined flow for all t ∈ R is to renormalize the vector field

by


f (y)

 + 1, i.e., the resulting dynamical system will be

dy
dt =

f (y)
∥f (y)∥+1

, because the function

becomes globally 1-Lipschitz. The two dynamical systems (before and after renormalization) are

topologically equivalent ([25], p. 184). Formally this means that there exists a homeomorphism H
which maps trajectories of (3) onto trajectories of the renormalized flow and preserves the direction

of time. In words it means that the two systems have the same behavior/geometry (same fixed

points, convergence properties, phase portrait). For the rest of the paper, we may assume that the

flow of dynamics (1) is well-defined for all t ∈ R.

Definition 2.1 (Volume preserving). The differential equation (3) is said to be volume preserving

on S if for any measurable set B ⊆ S, we have ν (ϕt (B)) = ν (B) for all t ∈ R, where ν is the

Lebesgue measure and ϕt the flow of the ode.

The most common way to prove that the flow is volume preserving is via the Liouville’s theorem.

Theorem 2.2 (Liouville theorem [33]). Let y′ = f (y) be an ode with flow ϕt . It holds that

dν (ϕt (B))

dt
=

∫
ϕt (B )

(∇ · f )dν , for each Lebesgue measurable set B.

Therefore, as long as ∇ · f = 0, the flow preserves volume.

In 1890, Poincaré [29] showed that whenever a dynamical system preserves volume, almost all

trajectories return arbitrarily close to their initial position an infinite number of times.

Theorem 2.3 (Poincaré Recurrence [3, 29]). If a flow preserves volume and has only bounded
orbits then for each open set there exist orbits that intersect the set infinitely often.

For more information on dynamical systems see [25] and for readers familiar with game theory

see [13, 33].

2.2 Replicator Dynamics and Evolution
Replicator equations, first were introduced by Fisher [8] in 30’s for genotype evolution. The simplest

form of replicator equations is the following:

x ′i (t ) = xi (t ) ((Ax (t ))i − x (t )⊤Ax (t )).
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where A is a payoff matrix (generally non-negative), x a vector that lies in simplex and (Ax)i
denotes

∑
j Ai jx j . Observe that in the nonlinear dynamics above, simplex is invariant (if we start

from a probability distribution, the vector remains a probability distribution). This dynamics is

called replicator dynamics and has been used numerous times in biology, evolution, game theory

and genetic algorithms. The dynamics we analyze in this paper is a version of replicator dynamics

(on generalized RPS with dynamics payoff matrix).

3 OUR RESULTS
In this section we state and prove our main result. Our main theorem can be stated formally as

follows (see also Figures 1,2):

Theorem 3.1. For all but measure zero of initial positions, the trajectories of the dynamics (1) return
arbitrarily close to their initial position an infinite number of times.

Definition 3.2 (Natural transformation [13]). Wedefine the natural transformationΠ : int(∆n ) →

Rn−1 to be Π(y) =
(
log

( y1
yn

)
, ..., log

(yn−1
yn

))
. In words, we map every point y of the interior of

simplex to a point in Rn−1. It is not hard to see that the map is injective and surjective. The reason

is that Π−1 exists and is equal to Π−1 (z) =
(

ez1
1+

∑n−1
j=1 e

zj , . . . ,
ezn−1

1+
∑n−1
j=1 e

zj ,
1

1+
∑n−1
j=1 e

zj

)
. The points on the

boundary of simplex correspond to vectors with infinity Euclidean norm in Rn−1.

Lemma 3.3. Let (x0,w0) be an initial point in the interior of ∆n × ∆n . The dynamics mapped to
Rn−1 × Rn−1 (under natural mapping (Π,Π)) has bounded orbits (Π(xt ),Π(wt )).

Proof. We define the log-barrier function

D (x) =
n∑
i=1

log

(
1

xi

)
.

Computing the derivative we get,

D ′(x) = −
∑
i

x ′i
xi
= −

∑
i

si = −
∑
i

∑
j

Pw
i jx j

= −
*.
,

∑
j

x j *
,
µ
∑
i

(wi −w j ) + α − α+
-
+/
-

= −µ *.
,

∑
j

x j (1 − nw j )
+/
-

= −µ *.
,
1 − n

∑
j

w jx j
+/
-
.

We also define the log-barrier function

D (w) =
n∑
i=1

log

(
1

wi

)
,
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and we have

D ′(w) = −
∑
i

w ′i
wi
= −

∑
i

∑
j

w j (x j − xi )

= −
∑
j

∑
i

w j (x j − xi )

= −
∑
j

w j (nx j − 1)

= −
*.
,
n
∑
j

w jx j − 1
+/
-
.

Therefore,

D ′(x) + µD ′(w) = −µ *.
,
1 − n

∑
j

w jx j
+/
-
− µ *.

,
n
∑
j

w jx j − 1
+/
-

=
*.
,
n
∑
j

w jx j − 1
+/
-
(µ − µ ) = 0.

Hence,

D (x) + µD (w)

is a constant motion of time (independent of time). It is also clear that D (x),D (w) ≥ 0 and become

infinity only on the boundary of∆n×∆n . SinceD (x0)+µD (w0) is bounded (i.e., (x0,w0) is an interior
point), we get that D (xt ) + µD (wt ) is bounded for all times t , hence there is no subsequence of

times tk so that (xtk ,wtk ) converges to the boundary of ∆n ×∆n . Therefore there is no subsequence

of times tk so that


(Π(xtk ),Π(wtk ))

2 goes to infinity, i.e., the dynamics on Rn−1 × Rn−1 (under

natural mapping (Π,Π)) has bounded orbits. �

Proof of Theorem 3.1. Under the mapping Π for x,w, set y ≡ Π(x) and z ≡ Π(w). We shall

show that the dynamics (y′, z′) = д(y, z) satisfies the conditions of the Poincaré recurrence theorem
(Theorem 2.3), where д is the vector field of the resulting dynamics, after the transformation (Π,Π).

The vector field becomes y ′i =
xn
xi

x ′ixn−xix
′
n

x 2

n
=

x ′i
xi
−

x ′n
xn
=

∑
j (P

w
i j − P

w
nj )x j = α (x1 + xi−1 − xn−1 −

xi+1) + µ (wi −wn ) (with the convention that x0 = xn). Similarly z ′i =
wn
wi

w ′iwn−wiw ′n
w2

n
=

w ′i
wi
−

w ′n
wn
=∑

j w j (xn − xi ) = xn − xi .

After substitution (using Π−1) we get

y ′i = α ·
ey1 + eyi−1 − eyn−1 − eyi+1

1 +
∑n−1

j=1 e
yj

+ µ
ezi − 1

1 +
∑n−1

j=1 e
zj
, z ′i =

1 − eyi

1 +
∑n−1

j=1 e
yj
. (4)

We shall prove that the flow of the dynamics (4) preserves the volume, by showing that ∇ · д = 0

(then it follows from Liouville’s theorem 2.2).

Set S =
∑n−1

j=1 e
yj
. We compute the partial derivatives and we get that
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∂д
∂y1

= α · e
y
1 (1+S )−ey1 (1+ey1−ey2−eyn−1 )

(1+S )2 ,
∂д
∂yj

= −α · e
yj (ey1+eyj−1−eyj+1−eyn−1 )

(1+S )2 , for 2 ≤ j ≤ n − 2,
∂д

∂yn−1
= α · −e

yn−1 (1+S )−eyn−1 (ey1+eyn−2−1−eyn−1 )
(1+S )2 ,

∂д
∂zj

= 0 for 1 ≤ j ≤ n − 1.

(5)

Therefore we get that

∇ · д =
n−1∑
j=1

∂д

∂yj
+

n−1∑
j=1

∂д

∂zj

=
−α ·

∑n−1
j=1 e

yj (ey1 + eyj−1 − eyj+1 − eyn−1 ) + α · (ey1 − eyn−1 ) (1 +
∑n−1

j=1 e
yj )

(1 + S )2
,

with the convention that y0 = yn = 0. We get that all the terms of the form eyjeyj+1 cancel out
(telescopically) and also terms ey1eyj , eyn−1eyj also cancel out for all j , i.e., it turns out that ∇ · д = 0.

Hence we conclude from Liouville theorem that the dynamical system (4) preserves volume.

Using the fact that the flow preserves the volume and that the orbits are bounded (Lemma 3.3),

we apply Poincaré recurrence theorem on (ỹ, z̃) = д(y, z) for a small open ball around any initial

point (ỹ
0
, z̃0) and the claim follows for the transformed dynamics. Since Π−1 is continuous, if the

distance between two points goes to zero in Rn−1×Rn−1, so it does in ∆n ×∆n and the claim follows

for the dynamics (1). �

Fig. 1. Trajectories of the vector x for different initial positions with µ = 0.1. Trajectories intersect due to the
fact 6 dimensions are projected to a 3D figure. The “cycling" behavior is observed.
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Fig. 2. Trajectories of the vector w for different initial positions with µ = 0.1. Trajectories intersect due to the
fact 6 dimensions are projected to a 3D figure. The “cycling" behavior is observed.

4 DISCUSSION
We believe that our work and that of [38] are opening up the possibility of modeling more complex

biological phenomena using the setting of differential games, thereby potentially leading to new

insights into biological phenomena. Additionally, we believe that the kinds of techniques used in

this paper, and highlighted in Section 1.1, will be useful for studying other models of non-transitive

dynamics.

We are not aware of other uses of the Poincaré theorem in differential games. It will be nice to see

other applications of this powerful theorem to learning dynamics, other than replicator dynamics

(such as FTRL), where the state space (payoff matrix) changes as per a differential equation.

There are several generalizations of our model which are worth studying. For example, what

happens if each matrix Pi has its own parameter µi? So far we have not been able to prove cycling

for this general case but simulations indicate that the system does cycle. Understanding the range

of parameters which lead to cycling and those that do not will be interesting.
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