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Web People Search via Connection Analysis
Dmitri V. Kalashnikov Zhaoqi Chen Sharad Mehrotra Rabia Nuray-Turan

Abstract— Nowadays, searches for webpages of a person with
a given name constitute a notable fraction of queries to web
search engines. Such a query would normally return webpages
related to several namesakes, who happened to have the queried
name, leaving the burden of disambiguating and collecting pages
relevant to a particular person (from among the namesakes) on
the user. In this article we develop a Web People Search approach
that clusters webpages based on their association to different
people. Our method exploits a variety of semantic information
extracted from Web pages, such as named entities and hyperlinks,
to disambiguate among namesakes referred to on the Web pages.
We demonstrate the effectiveness of our approach by testing
the efficacy of the disambiguation algorithms and its impact on
person search.

Index Terms— Web People Search, Entity Resolution, Graph-
based Disambiguation, Social Network Analysis, Clustering

I. I NTRODUCTION

Searching for entities is a common activity in Internet search
today. Searching for webpages related to a person accounts for
over 5% of the current Web searches [24]. Currently, it is done
using keywords. A search engine, such as Google or Yahoo,
returns a set of Web pages, in ranked order, where each Web
page is deemed relevant to the search keyword entered (the person
name in this case).1 A search for a person, such as say “Andrew
McCallum” will return pages relevant toanyperson with the name
Andrew McCallum.

A next generation search engine can provide significantly more
powerful models for person search. Assume (for now) that for
each such Web page the search-engine could determine which
real entity (i.e.,which Andrew McCallum) the page refers to.
This information can be used to provide a capability ofclustered
person search where instead of a list of Web pages of (possibly)
multiple persons with the same name, the results are clustered
by associating each cluster to a real person. The clusters can be
returned in a ranked order determined by aggregating the rank
of the Web pages that constitute the cluster. With each cluster
we also provide a summary description that is representative of
the real person associated with that cluster (for instance in this
example the summary description may be a list of words such
as “computer science, machine learning, professor”). The user
can hone in on the cluster of interest to her and get all pages
in that cluster, i.e., only the pages associated withthat Andrew
McCallum.

Such cluster-based people search could potentially be very
useful. Imagine searching for the Web page of “George Bush”
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1There are other people information search services as well (such as

http://people.yahoo.com and http://find.intelius.com) that provide “background
information” about people, such as current and previous addresses and a host
of other information when available; our interest and focus is on Web pages
relevant to a person on the public Internet.

who used to live in your neighborhood in Champaign, Illinois
using Google today. This is virtually impossible (or at least very
tiring) since the first 20-30 pages of a Google search of “George
Bush” returns pages only about the President. In the clustered
approach, ideally, all of the President’s pages will be folded
into a single cluster giving his namesakes an opportunity tobe
displayed in the first page of search results. One might arguethat
the use of context could improve the results of the standard search
engines today and thus there is no need for clustering approaches.
However, this is not the case if you have very little knowledge
about the person you are searching for. For example, assume that
we are searching for “Tom Mitchell, the psychology professor”
with his name and keywords “psychology” and “professor”. The
search engine, e.g., Google, returns more than 2 different people
(to be exact 13 different persons in the top 100 pages). Hence,
the task of clustering the pages related to different peopleis still
valid even for the queries that include context.

While the example above shows the clustered approach in a
positive light, in reality, it is not that obvious that it indeed is a
better option compared to searching for people using keyword-
based search supported by current search engines. Intuitively,
if clusters identified by the search engine corresponded to a
single person, then the clustered-based approach would be agood
choice. On the other hand, if clusters contained errors (multiple
people merged into the same cluster, or alternatively, pages of
the same person spread over multiple clusters) the advantages
of a cluster-based approach are not obvious. For instance, if the
Web pages were randomly assigned to clusters, the cluster-based
approach could be worse compared to the state-of-the-art. The
key issue is the quality of clustering algorithms in disambiguating
different web pages of the namesake.

In this paper, we make the following contributions. First, we
develop a novel algorithm for disambiguating among people that
have the same name. Our algorithm is based on extracting ‘signif-
icant’ entities such as the names of other persons, organizations,
and locations on each Web page, forming relationships between
the person associated with the Web page and the entities extracted,
and then analyzing the relationships along with features such as
TF/IDF, as well as other useful content including hyperlinkinfor-
mation to disambiguate the pages. We then design a cluster-based
people search approach based on the disambiguation algorithm.
We conduct a detailed experimental study to (1) determine the
effectiveness of the disambiguation algorithm and, (2) compare
traditional people search supported by current search engines with
the clustered entity search built on top of the disambiguation
algorithm. Our results show that clustered person search offers
significant advantages. The main contributions of this article are:

• A new approach for Web People Search that shows high-
quality clustering results (Sections II–IV).

• A thorough empirical evaluation of the proposed solution
(Sections VII).

• A new study of the impact on search of the proposed
approach (Sections VII-C).
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In the subsequent sections we describe the proposed approach in
more detail. We start by presenting an overview of the overall
approach in the next section.

II. OVERVIEW OF THE APPROACH

In this section we provide an overview of all the necessary algo-
rithms and components for implementing the Web People Search
system. We take the middleware-based approach to develop our
algorithms. In the proposed approach the processing of a user
query consists of the following steps:

1) User Input. A user submits a query to the middleware via
a specialized web-based interface.

2) Webpage Retrieval.The middleware queries a search en-
gine with this query via the search engine API and retrieves
a fixed number (topK) of relevant Web pages.

3) Preprocessing.The retrieved Web pages are preprocessed:

a) TF/IDF. Preprocessing steps for computing TF/IDF
are carried out. They include: stemming, stop word
removal, noun phrase identification, inverted index
computations, etc.

b) Extraction.Named entities, and web related informa-
tion is extracted from the Web pages.

4) Graph Creation. The entity-relationship graph is generated
based on data extracted on the preprocessing step (Sec-
tion III).

5) Clustering. The clustering algorithm takes the graph,
TF/IDF values, and model parameters and disambiguates
the set of (K) Web pages (Section IV). The result is a set
of clusters of these pages with the aim being to cluster Web
pages based on association to real person.

6) Cluster Processing.Each resulting cluster is then processed
as follows (Section V):

a) Sketches.A set of keywords that represent the web
pages within a cluster is computed for each cluster.
The goal is that the user should be able to find the
person of interest by looking at the sketch.

b) Cluster Ranking.All clusters are ranked by a chosen
criterion to be presented in a certain order to the user.

c) Web page Ranking.Once the user hones in on a
particular cluster, the Web pages in this cluster are
presented in a certain order, computed on this step.

7) Visualization of Results.The results are presented to the
user in the form of clusters (and their sketches) correspond-
ing to namesakes and which can be explored further.

The following sections will elaborate all of these steps in detail.

III. G ENERATING A GRAPH REPRESENTATION

The core of our approach is based on analyzing entities,
relationships, and features (instantiated attributes of entities)
present in the dataset. For example, the word distribution inside
a webpage/document is frequently utilized as a topic feature of
that webpage/document in the literature. A webpage topic can
be captured using the TF/IDF methodology [5], or by other
techniques [8], [39]. Our goal is to exploit entities and relation-
ships for disambiguation. However, unlike the problem settings
of many disambiguation methods which work off a normalized
database, e.g. [2], [12], [15], [16], [20], in our problem setting
we do not have the entities and relationships associated with
each Web page already available for use. Rather such entities and
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Fig. 1. Extraction of Named Entities and Web-related Info from a Webpage.

relationships need to beextractedoff the Web pages which we do
using information extraction (IE) software. In addition toNamed
Entities (NEs), we also extract hyperlinks and email addresses
from the Web pages, see Figure 1.

The abstract representation we wish to construct is a graph
where the nodes correspond to the different Web pages and
entities and the edges correspond to the relationships between
the Web pages and entities or among entities. The graph creation
algorithm is illustrated in Figure 2. When an NE is extracted, a
node is created for that NE to represent all NEs with the same
name. For example, a person ‘John Smith’ might be extracted
from two different Web pages. A single node will be created
for ‘John Smith’, regardless whether the two pages refer to the
same person or to two different people. The node represents the
group of persons that share the same name. The same holds for
locations and organizations. A node is also created per eachof the
(topK) Web pages. A relationship edge is created between a node
representing a Web page and a node corresponding to each NE
extracted from that Web page. The relationship edges are typed. A
relationship edge between a Web page (node) and a person (node)
will have a type distinct from a relationship edge between a Web
page (node) and an organization (node) or a location (node).Any
hyperlinks and email addresses extracted from the Web page are
handled in an analogous fashion, that is, with nodes being created
to correspond to these hyperlinks and email addresses and edges
corresponding to the relationship with the page they are extracted
from, see Figure 3.

A hyperlink has the form [www.]d m. · · · .d 2.d 1/
p1/p 2/ · · · /p n. For example, for the URL
www.cs.umass.edu/˜mccallum/ , we have d3 =cs ,
d2 =umass, d1 =edu , and p1 =˜mccallum . We create
a node for that hyperlink and connect it to the webpage via
the edges that correspond to the ‘webpage-contains-hyperlink’
relationship. Then we create a node for a shorter hyperlink,
without pn: dm. · · · .d 2.d 1/p 1/p 2/ · · · /p n−1 and connect
it to the node with pn via edge of type ‘hyperlink-partof-
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CREATE-GRAPH(D)
1 V ← ∅ //V is the node set
2 E ← ∅ //E is the edge set
3 NE← ∅ //NE is the set of named entities
4 L← ∅ //L is the set of hyper links in the document
5 for eachdi ∈ D
6 vi ← CREATE-NODE(di)
7 V ← V ∪ {vi}
8 NE← EXTRACT-ENTITIES(di)
9 for each nej ∈ NE

10 vj ← CREATE-NODE(nej)
11 V ← V ∪ {vj}
12 E ← E ∪ {(vi, vj)}
13 L← EXTRACT-HYPERLINKS-EMAILS(di)
14 for each linkk ∈ L
15 vk ← CREATE-NODE(linkk)
16 V ← V ∪ {vk}
17 E ← E ∪ {(vi, vk)} //create an edge
18 (Vl, El)← CREATE-L INK -GRAPH(linkk, vk)
19 V ← V ∪ Vl

20 E ← E ∪ El

21 G← {V, E}
22 return G

Fig. 2. Graph Creation Algorithm.

CREATE-L INK -GRAPH(L, v)
1 V ← v //V is the node set with type
2 E ← ∅ //E is the edge set
3 v0 ← v
4 i← 1
5 S ← (SUB-DOMAIN(L))
6 while S still has sub domain
7 vi ← CREATE-NODE(S, link)
8 V ← V ∪ {vi}
9 E ← E ∪{(vi−1, vi)}// type of relation issubdomainof

10 S ← (SUB-DOMAIN(S))
11 inc i
12 S ← (PART-OF(L))
13 vi ← CREATE-NODE(S, link)
14 V ← V ∪ {vi}
15 E ← E ∪ {(v0, vi)}// type of relation ispartof
16 while S still has sub directories (part of)
17 inc i
18 S ← PART-OF(S)
19 vi ← CREATE-NODE(S, link)
20 V ← V ∪ {vi}
21 E ← E ∪ {(vi−1, vi)}// type of relation ispartof
22 return V, E

Fig. 3. Link Graph Creation Algorithm.

hyperlink’, see Figure 1. We continue this process forpn−1,
pn−2 and so on, until onlydm. · · · .d 2.d 1 part remains. We
then create a node for a shorter hyperlink, this time without
dm: dm−1. · · · .d 2.d 1 and connect it to that withdm via
edge of type ‘subdomainof’. We continue this process until only
d2.d 1 remains. Figure 1 illustrate this process for hyperlink
cs.umass.edu/˜mccallum/bio.html , which is linked
via a chain of edges toumass.edu . Each of the hyperlinks
that correspond to the nodes in that chain are also mentioned
separately from the webpage itself, thus those nodes are shown
to be connected to the webpage.

At the end of this process, we have a complete graph repre-
sentation of the information that a clustering or disambiguation
algorithm can now work with. The algorithm is now abstracted
from any of the extraction details and can in fact self-tune itself

to optimize based on the nature of the graph.

IV. D ISAMBIGUATION ALGORITHM

This section describes the algorithm for clustering Web pages
that is employed by the proposed solution. It takes as input the
entity relationship graph described in Section III. It thenuses
a Correlation Clustering (CC) algorithm to cluster the pages, as
discussed in Section IV-A. The outcome is a set of clusters with
each cluster corresponding to a person. Sections IV-B and IV-C
explain how to assign edge label, used by CC, with the help of
a carefully designed similarity function. Finally, Sections IV-D
and IV-E discuss how to calibrate this similarity function.

A. Correlation Clustering

We group the nodes representing the Web pages that belong
to the same person by employing aCorrelation Clustering (CC)
algorithm [7]. Correlation clustering has been applied in the past
to group documents of the same topic and to other problems.
It assumes that there is a similarity functions(u, v) that for
any objects (e.g., documents)u and v returns whether or not it
believes thatu andv are similar to each other. Such a function is
typically learned on the past data. The overall clustering problem
is represented as a fully-connected graph, where each object
becomes a node in the graph. Each(u, v) edge is assigned “+”
(similar) or “−” (different) label, according to the similarity
function s(u, v). The goal is to find the partition of the graph
into clusters that agrees the most with the assigned labels.An
interesting property of CC is that, unlike many other types of
clustering, it does not takek (the number of the resulting clusters)
as its input parameter, whereask is often difficult to determine
beforehand. Instead, CC determinesk from the labeling itself.

The goal of CC is formulated formally as either to maximize
the agreement (the number of positive edges inside the clusters
plus the number of negative edges outside the clusters), or to
minimize the disagreement (the number of negative edges inside
the clusters plus the number of positive edges). If the ‘+’ and
‘−’ labels are assigned perfectly bys(u, v), the right clustering
can be trivially obtained by removing all the negative edgesin
the graph: the remaining connected components will represent the
right clusters. CC is designed for the cases wheres(u, v) is not
perfect and can mislabel some of the edges (this case is of direct
interest to us), or when there is no notion of exact clusters (e.g.,
clusters are for document topics).

For example, if the labeling is such that edges(u, v) and(v, w)

are labeled ‘+’, but edge(u, w) is labeled ‘−’, there will not be
a clustering with perfect agreement with the labeling. In general,
the more accurates(u, v) in its labeling, the higher the quality of
the overall clustering.

The problem of CC is known to be NP-hard and various
approximation algorithms have been proposed in the literature.
We do not propose any new CC algorithm per se, we instead
focus on developing and learning a new accurates(u, v) function.

B. Connection Strength

To define the similarity functions(u, v) we will need to use the
notion of the Connection Strengthc(u, v) between two objectsu
andv, which is defined in this section.

Various disambiguation approaches have been developed fora
variety of applications. These approaches can be classifiedalong
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several facets. One of these facets is thetypeof information the
approach is capable of analyzing. For example, to decide if two
object descriptions (or two tuples in a table) co-refer (i.e., refer to
the same entity/object), the traditional approaches wouldanalyze
primarily object features[22], [35]. Another example arerela-
tional approaches, that analyze dependencies among co-reference
decisions [32], [38]. Our proposed disambiguation algorithm is
based on analyzingtwo types of information: object features and
the Entity-Relationship graph (ER graph) for the dataset. In [17],
[27], [28] it has been shown that complementing the traditional
methodology of analyzing object features with analysis of the ER
graph can lead to the improved quality of disambiguation.

The idea is that many real datasets are relational, and thus
can be viewed as a graph of entities, represented as nodes,
interconnected via relationships, represented as edges. To decide
whether two object descriptions co-refer, the approach analyzes
not only their features, but also the paths that exist in the ER
graph between those two object descriptions.

The motivation behind analyzing features of two objectsu and
v is based on the assumption that similarity of features ofu and
v defines certain affinity/attraction between those objectsf(u, v),
and if this attraction is sufficiently large, then the objects are likely
to be the same. The intuition behind analyzing paths is similar:
the assumption is that each path between two objects carries
in itself certain degree of attraction. A path betweenu and v

semantically captures (perhaps complex and indirect) interactions
between them via intermediate entities. If the combined attraction
of all these paths is sufficiently large, the objects are likely to
be the same. An in-depth insight into the motivation for this
methodology is elaborated in [27].

Formally, the attraction between two nodesu and v via paths
is measured using theconnection strengthmeasurec(u, v), which
is defined as the sum of attractions contributed by each path:

c(u, v) =
∑

p∈Puv

wp. (1)

HerePuv denotes the set of allL-short simple paths between
u and v, and wp denotes the weight contributed by pathp. A
path isL-short if its length does not exceedL and issimple, if it
does not contain duplicate nodes. The weight pathp contributes
is derived from the type of that path, and thus paths of the same
type contributes the same weight. The sequence of nodes types
and edge types determine the type of a path: two paths having the
nodes of the same type connected via edges of the same type are
considered to be of the same path type. The number of possible
path types, forL-short simple path, is limited per each domain.
Let wk be the attraction associated with a path of typek. Let Puv

consist ofc1 paths of type 1,c2 paths of type 2, . . . ,cn paths of
type n. Then Eq. (1) can be equivalently written as:

c(u, v) = c1w1 + c2w2 + · · ·+ cnwn. (2)

In the next section we will discuss how the concept of connec-
tion strengthc(u, v) can help designing a better similarity function
s(u, v).

C. Similarity Function

Our goal is to design a powerful similarity functions(u, v) that
would minimize mislabeling of the data. We will design a flexible
function s(u, v), such that it will be able to automatically self-
tune itself to the particular domain being processed. We construct

our functions(u, v) as a combination of the connection strength
c(u, v) and feature similarityf(u, v):

s(u, v) = c(u, v) + γf(u, v). (3)

The similarity function s(u, v) labels data by comparing the
s(u, v) value against the thresholdτ , whereτ is a nonnegative real
number. Namely, we use theδ-band (“clear margin”) approach,
which labels each(u, v) edge according to the following rules:







+1 if s(u, v) > τ + δ;

−1 if s(u, v) < τ − δ;

0 otherwise.
(4)

That is, if the value ofs(u, v) is inside theδ-band ofτ , then the
algorithm is uncertain whetheru and v are similar and reflects
that by assigning the zero (“don’t know”) label to the(u, v)

edge. It assigns the+1 label to (u, v), whens(u, v) exceeds the
threshold by the clear positiveδ margin; and it assigns the−1

label similarly. This labeling scheme allows the algorithmto avoid
committing to+ or − decision, when it does not have enough
evidence for that.

TF/IDF. The proposed solution employs the standard TF/IDF
scheme from the area of Information Retrieval to compute its
feature-based similarityf(u, v) [5]. First, the standardpreprocess-
ing steps are applied to all the documents, including elimination
of stop words, stemming, using only noun phrases for keywords,
and deriving larger terms [5].2 Assume that the entire document
corpus consists ofK documents (that is, topK webpages) and
containsN distinct termsT = {t1, t2, . . . , tN}. Then each docu-
mentu can be characterized by vectoru = {wu1, wu2, . . . , wuN}.
Herewui is the weight assigned to termti for documentu. This
weight is computed aswui =

(

1
2

+ nui

2 max` nu`

)

log K
ni

, where
ni is the number of documents in the corpus that contain term
ti and nui is the number of occurrences of termti in u. The
similarity f(u, v) between two documentsu and v is computed
using the cosine measure,f(u, v) = cos(u,v) = u·v

|u||v|
=

∑

N

i=1
wuiwvi

√

∑

N

i=1
w2

ui

√

∑

N

i=1
w2

vi

.

D. Training the Similarity Function

As in traditional learning, to train thes(u, v) function, we
assume the past data is available. That data is fully and accurately
labeled with ‘+’ and ‘−’ for each (u, v) edge. The learning of
s(u, v) is carried based on the way the algorithm assigns the
labels, that is, according to rules (4) from the previous section.
Namely, for each(u, v) edge, we should require that:

{

s(u, v) > τ + δ if (u, v) is labeled ‘+’ ;
s(u, v) < τ − δ if (u, v) is labeled ‘−’ .

(5)

However, in practices(u, v) is unlikely to be perfect, and that
would manifest itself in cases where Ineqs. (5) will be violated for
some of the(u, v) edges, making the whole system (5) intractable.
This problem is analogous to that found in SVMs, and it can be
resolved in a similar manner: by adding slack to each inequality
in (5) and then requiring that the overall slack be minimized. The

2The larger terms have been constructed from the neighboring key-
words/terms that, when taken together, constitute a distinct concept in an
ontology. We have used DMOZ ontology.
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overall system becomes:


































Constraints:
δ = δ0
s(u, v) + ξuv > τ + δ for all ‘+’
s(u, v)− ξuv < τ − δ for all ‘−’
0 ≤ ξuv for all u, v

Objective: Minimize
∑

uv
ξuv

(6)

Here, s(u, v) is computed according to Eq. (3), whereinc(u, v)

is computed according to Eq. (2). The task becomes to solve the
linear programming problem (6) to determine the optimal values
for path type weightsw1, w2, . . . , wn and thresholdτ . Linear
programming is known to have efficient solutions [25].

There are two interesting properties of Linear Program (6).
First, in many disambiguation techniques, and in clustering in
general, it is often a nontrivial issue to set the thresholdτ , whereas
in this caseτ is simply learned from data. Second, finding the
exact value of the optimalδ0, to get the best results, turned out
to be not a critical issue, as wide range of values neighboring
the optimal δ0 will lead to similar results. The reason is that
the constraints of Linear Program (6) do not include standalone
constants except forδ0: they includew’s, ξ’s, τ ’s, δ’s, which are
variables, andγ (a variable) multiplied by various constants that
correspond to the according TF/IDF values. This creates theeffect
where all these variables scale up, ifδ0 is increased, and down if
it is decreased, tuning itself toδ0 and the labeling.

E. Choosing Negative Weight

Loosely speaking, with ‘+’/‘−’ labeling, a correlation cluster-
ing algorithm will assign an entityu to a cluster if the number
of positive edges betweenu and the other entities in the cluster
outnumbers that of negative edges. In other words, the number of
positive edges is more than half (i.e., 50%). However, we observe
that when CC is applied to a particular real-world domain, an
entity might need to be assigned to a cluster for a different fraction
of positive edges than 50%. For instance, if for a given domain,
to keep an entity in a cluster, it is sufficient to have only 25%
percent of positive edges, then by usingw+ = +1 weight for
all positive edges andw− = − 1

3
weight for all negative edges

will achieve the desired effect (since0.25 × 1 = 0.75 × 1
3
). One

solution for choosing a good value for the weight of negative
edgesw− is to learn it on past data.

It is possible to design a better solution, based on the following
observation. Assume for now that we know the number of
namesakesn in the top k Web pages being processed by the
algorithm. If n = 1 then choosingw− as small as possible, that
is w− = 0, is likely to produce the best result. This is because
when w− = 0, there will be no ‘negative weight’ for CC to
prevent merging and all the pair connected via positive edges will
be merged. Similarly, ifn = k, it is best to choosew− = −1.
This would produce maximum negative evidence for pairs not
to be merged. Thus, instead of using a fixed value forw−, it
might be possible to pick a good value forw− specifically for
the topk webpages being processed, based on a function ofn:
w− = w−(n).

This observation raises two issues. The first one is thatn is not
known to the algorithm beforehand. The second is how to choose
w−(n) function.

While n is not known, we can compute its estimated value
n̂, by running the disambiguation algorithm with a fixed value
of w−. The algorithm would output certain number of clusters
n̂, which can be employed as an estimation ofn. It should be
noted that the overhead for this extra computation is minimal:
the paths once discovered, need not be rediscovered second time.
Thus the extra cost of such an estimation is equivalent to thecost
of running pure CC algorithms on already labeled graph, which
is less than a millisecond.3

The next question we need to address is how to choosew−(n̂)

function. A straightforward solution would be to try to fit a curve
to data. While this approach succeeded for smaller web datasets,
in practice the following simple function has proven to workwell
across all the web datasets. The value ofw−(n̂) is chosen to be
zero when̂n is less than a certain threshold, and it is chosen to be
−1 when it is above this threshold. The value for this threshold
itself is learned from data.

V. I NTERPRETINGCLUSTERING RESULTS

Given a set of Web pages related to a particular name the
disambiguation approach above generates a set of clusters.We
now describe how these clusters are used to build people search.
Recall that for people search our goal is to first provide the user
with a set of clusters based on association to real person. The
task is now to: (i) Rank the clusters. (ii) Provide a summary
description with each cluster. Ranking and summarization are
defined as follows:

Cluster rank: Search engines (e.g., Google) return pages in
order of relevance to the query based on the algorithm they use.
For each cluster we simply select the highest ranked page (i.e., the
page with the numerically least order based on standard search-
engine result) and use that as the order of the cluster. The cluster
orders now form the basis for cluster ranks.

Cluster sketch: We coalesce all pages in the cluster into a
single page. Then after removing the stop words we compute the
TF/IDF of the remaining words for the coalesced page. The set
of terms above a certain threshold (or topN terms) is selected
and used as a summary for the cluster.

Web page rank: When the user explores a particular cluster
we first display all pages in that cluster. These pages are displayed
according to their original search engine order. We also take the
remainder pages (i.e., pages in the topK not in the selected
cluster) and compute their affinity to the selected cluster.The
remainder pages are then displayed in order of the affinity tothe
selected cluster. Affinity is defined as:

Affinity to cluster: The affinity between a Web pagep and a
clusterC is defined as the sum of the similarity values between
the pagep and each pagev in the clusterC:

affinity(p, C) =
∑

v∈C

s(p, v).

The clustering is not always perfect and it may be the case
that the pages for one real individual are actually spread across
multiple clusters. However, since remainder pages are displayed
as well, the user has the option to get to these Web pages too
ultimately. Also it may be that based on the cluster summaries the

3We believe that the value ofn can serve as an important factor for choosing
values for other parameters of any web disambiguation techniques, because
web data can be quite diverse. Thus, the described techniques for pickingw−

based onn might be helpful in choosing other parameters in general as well.
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A2

A4
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P3 P4 A6 P5

O1

O2

Visited Grad School

D1 D2

Fig. 4. SampleGL
uv : plotted

G6

A1A5
. ‘Pruned’GL

uv is obtained
by removing certain edge types:
say by removing all ‘visited’ edges.

A1 A3P1 P2 A5

Department

O Organization
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P Publication

D

Fig. 5. Name co-occurrence
subgraph for G6

A1A5
: used by

[10]–[13], which rely on the co-
occurrence property. If it does not
hold for a domain, then no graph will
be extracted.

user may not be able to identify the cluster of pages associated
with the real person she is looking for. We also provide the
original list of (unclustered) pages from the standard search-
engine and in this case the user can examine this list of pages.

VI. RELATED WORK

Disambiguation and entity resolution techniques are key toany
Web people search applications. In Section IV-B we have already
overviewed several existing entity resolution approaches, pointing
out that they rely primarily on analyzing object features for mak-
ing their co-reference decisions. In this section we first overview
our past work and compare it with existing disambiguation work
in Section VI-A. We then discuss existing Web people search
applications in Section VI-B.

A. Disambiguation

We have developed several disambiguation approaches in the
past. The approaches in [27], [28], [36] solve a disambiguation
challenge known as Fuzzy Lookup. To address the web page
clustering problem, studied in this article, one needs to address
a different type of disambiguation, known as Fuzzy Grouping.
These disambiguation challenges are related but different, and we
are unaware of any work that would solve the former using the
latter. In Lookup, the algorithm is given a list of objects and the
goal is for each references in the dataset to identify which object
from that list it refers to [27], [28]. For grouping, no such list is
available, and the goal is to simply group all of the references
that co-refer [10], [13].

Besides the differences in the types of problems, the solution in
[27], [28], [36] is also completely different: it reduces the disam-
biguation challenge into a global optimization problem whereas in
this article a clustering approach is employed. While the solution
in [17], [18] also addresses the entity resolution problem,the
clustering algorithm proposed in this article, however, isdifferent:
it is based on correlation clustering (Section IV-A) and it employs
a supervised learning approach for tuning to the dataset being
processed (Section IV-D).

Most related techniques.The differences among our disam-
biguation methodology and most related existing work are multi-
level (see Table I). Critical to understanding the differences is
the notion of theconnection subgraphGL

uv for two nodesu

andv, which is defined as the subgraph of the entity-relationship
graph formed by the nodes and edges of allL-short simple paths
betweenu andv [21]. The differences can be summarized as:

• Level 1: Problem Type. There are two different common
types of the disambiguation challenge: (fuzzy) Lookup [27],
[28], and (fuzzy) Grouping [10], [13].

A1 A3

A2

A4

A5

A6

Fig. 6. Analyst-derived graph out of
G6

A1A5
: People connected via ‘are-

related’ edges that correspond to co-
authorships. Used by [31]. All in-
formation not about “author-writes-
paper” is lost.

A1 A5

O2

Visited Grad School

Fig. 7. G2

A1A5
: this is what is

used by [33]. The graph for the
shortest path, used by [26], hap-
pens to be the same.

• Level 2: Data wrt GL
uv. Most of the existing techniques are

different from our methodology as they do not analyze the
same type of data: specifically our methodology is based on
analyzingGL

uv and the majority of the existing techniques
do not analyzeGL

uv at all. For example, in the recent Web
People Search Task (WEPS) at SemEval workshop [3], the
participated algorithms that achieved the top three placesall
exploit extended rich features such as Named Entities or
URLs extracted from the web pages, while no relationships
are analyzed as in our approach. Then, there are some recent
techniques that might be able to analyze portions ofGL

uv if
certain conditions are met, e.g. see Table I. Let us take, for
instance [12] by Bhattacharya and Getoor, which summarizes
the approaches covered in [10], [11], [13]:

– Name co-occurrence.The approach in [12] analyzes
only co-occurrences of names of authors via publi-
cations for a publication dataset. Figure 4 illustrates
a sampleGL

uv for the scenario where authors write
publications and can be associated with some depart-
ments and organizations. When analyzing authorsA1

and A4, the approach in [10], [11], [13] would only
be interested in authorA3, which is a co-occurring
author in publicationsP1 andP2, which are connected
to A1 and A4 respectively. That is, [12] would be
interested only in the subgraph shown in Figure 5. Our
methodology instead analyzes the wholeGL

uv.
– Restrictions on types.The approach in [12] under-

stands only one type of relationship (“writes” in this
case) and only two types of entities: person (“author”)
and container (“publication”). Our approach can analyze
all of the types of relationships and entities present in
GL

uv.

There is also recent work, e.g. [26], [31], [33], which builds
on our work, but often still analyzes just portions ofGL

uv.
For instance, [26] analyzes only the shortest path between
u and v. The adaptive approach in [33] analyzesG2

uv, see
Figure 7. Another interesting solution [31] simply looks at
people and connect then via ‘are-related’ relationships, see
Figure 6. There, people can be ‘related’ if for instance their
names co-occur on the same webpage. The solution however
can analyze only one type of the ‘are-related’ relationship,
whereas there can be different types of such relationships
in a given domain, since people can be related for different
reasons.

• Level 3: Analysis of GL
uv. Those existing research efforts

that analyzeGL
uv do it differently from our methodology.

Our methodology is based on analyzing paths inPuv and
building mathematical models forc(u, v), which are affinity-
on RandomWalk-based models. The existing work (e.g.,



7

TABLE I

DIFFERENCES AMONG EXISTING TECHNIQUES WITH REGARD TO THE WAYTHEY ANALYZE GL
uv .

Approach Problem Data wrt GL
uv Analysis of GL

uv Overall Solution Dom. Dep.

Proposed Grouping GL
uv Supervised Learning Correlation Clustering Indep.

[27], [28] Lookup PrunedGL
uv RandomWalk Optimization Problem Indep.

[36] Lookup GL
uv Adaptive Optimization Problem Indep.

[17] Restricted
Grouping

PrunedGL
uv RandomWalk Partitioning Indep.

[18] Grouping GL
uv Adaptive Merging Indep.

[10], [11] Grouping Name co-occurrence Group Distance Merging Some domains
[13] Grouping Name co-occurrence Group Probability LDA, Gibbs Sampling Some domains
[12] Grouping Name co-occurrence Summary of [10], [13] Summary of [10], [13] Some domains
[31] Grouping [Are-related Graph]a Limited RandomWalk Hierarchical Clustering Some domains
[20] Grouping [Co-ref. Dep. Graph]b Analysis of co-reference

dependencies
Merging Indep.

[8] Group Iden-
tification

[Web Graph]c Analysis of ‘Link Struc-
ture’ intersections

LS + A/CDC Some domains

[26] Lookup Shortest Path Length of SP Ranking based on LSP Some domains
[33] Lookup G2

uv (e.i., L = 2) Adaptive RandomWalk Sparse Matrix Multipli-
cation, Kernel, Ranking

Indep.

[24] Version of
Lookup

Name co-occurrence Similarities among the
nodes

Minimum spanning tree,
ranked output

Some domains, requ-
ires knowledge bases

aAre-related Graphis an analyst-derived graph of people (nodes), connected via “are-related” edges.
bCo-ref. Dependence Graphis an analyst-derived graph, encoding dependencies (edges) among co-reference decisions (nodes).
cWeb Graphis a graph with one type of nodes (webpages) and one type of edges (hyperlinks).

[27], [28]) is often not path-centric and uses domain-specific
or probabilistic (e.g., [13]) techniques to analyze the direct
neighbors. Some techniques are based on just analyzing the
shortestu-v path [26].

• Level 4: Way to usec(u, v). Finally, onceGL
uv is analyzed,

disambiguation approaches have to use the results of this
analysis in making their co-reference decisions. The way
we use it is also different. For instance, [10], [11] employ
agglomerative clustering. In our previous work [27], [28] the
disambiguation problem is converted into an optimization
problem, which is then solved iteratively. In this article,a
correlation clustering approach is employed (Section IV-A)
which utilizes supervised learning for tuning itself to the
dataset being processed (Section IV-A).

• Level 5: Domain-independence.Once our framework is
provided with the entity-relationship graph for a dataset,it
processes it the same way, regardless of the domain, that is,
it is domain-independent. Some of the existing techniques
are applicable to only certain types of domains or just one
domain. For instance, the approach in [12] only applies
to datasets where “noisy references to person entities (e.g.
author names) are observed together (e.g. in publications)”,
i.e. domains where the co-occurrence property holds.

WSD. Natural Language Processing area studies related
problems of “Word Sense Disambiguation” and “Word Sense
Discrimination” [34], [37]. The goal of the first problem is to
determine the exact sense of an ambiguous word given a list
of word senses. The task of the second is to determine which
instances of the ambiguous word can be clustered as sharing the
same meaning.

The research on WSD mostly focuses on how to match the

contextual features of word with the knowledge of word senses. It
is important to decide which information to include for the context
features to best represent the ambiguous word. On the other hand,
how to use the external knowledge sources and what knowledge
to exploit is a fundamental problem to solve in WSD. Many
researchers have proposed various approaches, such as using
lexical knowledge associated with a dictionary, building semantic
network as is done by WordNet, etc. There are both supervised
and unsupervised approaches for WSD problem, depending on
whether or not there is a sense-tagged corpus available as training
dataset. For unsupervised approaches, a trend is to use iterative or
recursive algorithms to sense-tag the words with a finite number
of processing cycles. In each step, such algorithms would either
remove irrelevant senses or tag some words by synthesizing the
information from previous steps. For supervised approaches, both
hidden models (e.g., EM) and explicit models (e.g., Log Linear
Model) have been used, depending on whether the features are
directly associated with the word sense in training data.

If we view the ambiguous word as a reference and the word
sense as an entity, then the two instances of WSD problem are
similar to the Lookup and Grouping instances of Entity Resolu-
tion/WePS. Because of this similarity, the proposed approaches
are frequently similar at a high level. There are some lower-level
differences among the WSD and WePS problems. For instance,
for WSD we can often assume that there is a dictionary of
all word senses (perhaps imperfect), which can be employed
sometimes quite effectively. Currently, such a complete dictionary
is infeasible for WePS.4 In addition, while a word typically has
only a few semantic meanings, a reference to a person, e.g.,

4That is, there is no complete list of all people in the world andno dataset
exists that associates the right keywords/tags/information with every person.
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“J. Smith”, can be much more uncertain. The different natures
of domains also contribute to the differences of the WSD and
WePS problems and solutions. For example, the part of speechtag
associated with a word can significantly help in disambiguating
the word sense in WSD. On the other hand, the POS tag assigned
to a reference play much less significant role in the case of WePS.

There are many other interesting related disambiguation tech-
niques, and we could not mention all of them in this article.
Instead, we next describe the techniques and applications that
deal directly with Web Search.

B. Web People Search

There are some research efforts [1], [4], [8], [14], [40], [41]
that have explored the problem of entity disambiguation in the
Web setting. We empirically compared our approach to some of
the state of the art techniques in Section VII. Web people search
applications can be implemented in two different settings.One
is a server-sidesetting where the disambiguation mechanism is
integrated into the search-engine directly. The other setting is a
middlewareapproach where we build people search capabilities
on top of an existing search-engine such as Google by “wrapping”
the original engine. The middleware would take a user query,
use the search engine API to retrieve topK Web pages most
relevant to the user query, and then cluster those Web pages based
on their associations to real people. The middleware approach is
more common, as it is difficult to conduct realistic testing of the
server-side approach, due to the lack of direct access to thesearch
engine internal data. In this paper, we also take the middleware
based approach to develop our algorithms.

There are a few publicly available Web search engines
that offer related functionality in that Web search results
are returned in clusters. Clusty (http://www.clusty.com)from
Vivisimo Inc., Grokker (http://www.grokker.com), and Kartoo
(http://www.kartoo.com) are search engines that return clustered
results. However the clusters are determined based on intersection
of broad topics (for instance research related pages could form
one cluster and family pages could form another cluster) or page
source, also the clustering does not take into account the fact that
multiple persons can have the same name. For all of these engines,
clustering is done based on entire Web page content or based on
the title and abstract from a standard search-engine result.

ZoomInfo (http://www.zoominfo.com) search engine is an ex-
ample of person search on the web. This search engine is similar
to the one proposed in this article. It also extracts the named-
entities and after that applies some machine learning and data
mining algorithms to identify different people on the web. But
this system has high cost and low scalability because the person
information in the systems is collected primarily manually.

Among research efforts, such as [1], [4], [8], [11], [14], [40],
[41], the approach of [24] is somewhat similar to our approach in
that there is exploitation of relationships for disambiguation; how-
ever the assembly of relationships and approach to exploiting such
relationships are quite different as we now explain. The approach
in [24] starts with constructing a ‘sketch’ of each Web page
(representative of a person with the name) which is essentially a
set of attribute-value pairs for ‘common’ distinguishing attributes
of a person such as his affiliation, job title etc. To construct the
sketch however a variety of existing data sources (such as DBLP)
and some pre-constructed specialized knowledge bases (such as
TAP) are used. This approach is thus restricted to person searches

where the persons are famous or prominent (famous enough for
us to have compiled information about them in advance), whereas
our approach does not rely on any such pre-compiled knowledge
and thus will scale to person search for any person on the Web.
Even in the case where pre-compiled knowledge exists the sketch
comparison approach of [24] is limited since it relies on name co-
occurrence, see Table I.

The approach of [8] is based on exploiting the link structureof
pages on the Web, with the hypotheses that Web pages belonging
to the same real person are more likely to be linked together.
Three algorithms are presented for disambiguation, the first is just
exploiting the link structure of Web pages, the second algorithm is
based on word similarities between documents and does clustering
using Agglomerative/Conglomerative Double Clustering (A/DC),
the third approach combines link analysis with A/DC clustering.

VII. E XPERIMENTAL RESULTS

In this section we empirically evaluate the proposed approach.
First, in Section VII-A we describe the experimental setup.
Next, Section VII-B covers experiments that evaluate the overall
disambiguation quality of various algorithms. Then, Section VII-
C studies the impact of the new cluster-based interface on web
search. Finally, Section VII-D concludes the experimentalevalua-
tion with a study of the efficiency of the approach. Specifically, it
shows that the overall query response time is largely determined
by the time needed to preprocess the webpages, and that the
clustering time itself is just a small fraction of the response time.

A. Experimental setup

Datasets. We conduct experiments on several real data sets
for disambiguation of people on the Web. Each dataset has been
created by querying the web using the Google or Yahoo search
engine with a number of different queries. A query is either a
person name, or a person name along with context keywords.
The top 100 returned webpages of the Web search were gathered
for each person. To get the “ground truth” for these datasets, the
pages for each person name have then been assigned to distinct
real persons by manual examination. The three datasets we have
at our disposal are:

1) WWW’05 Dataset. Dataset used by Ron Bekkerman and
Andrew McCallum in WWW’05 [8]. It contains webpages
for 12 different people names.

2) WEPS Dataset. Dataset used in Web People Search Task
(WEPS) at SemEval workshop [3]. The original WEPS data
consist of theTrial, Training, andTestportions. The WEPS
Trial portion contains webpages for 9 person names, and it
is the same dataset used by Artiles et al. in [4]. The WEPS
Training consists of webpages for 49 person names: 7 from
Wikipedia, 10 from ECDL, and 32 from the U.S. Census.
The WEPS Test part consists of 30 person names: 10 from
Wikipedia, 10 from ACL06, and 10 from U.S. Census.

3) Context Dataset. This dataset is generated by us, by
issuing 9 queries to Google, each in the form of a person
name along with context keywords.

From the pages of the datasets, we constructed the graph to
be analyzed, by extracting entities and creating the relationships
as described in Section II. We used GATE [19] system for the
extraction of named-entities (NEs) from the Web pages in the
dataset. We used the system “as-is” i.e., without providingany
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TABLE II

OVERALL QUALITY COMPARISON

WWW’05 Dataset WEPS Training dataset WEPS Test dataset
Method B-Cubed FP B-Cubed FP B-Cubed FP

Baseline 0.746 0.821 0.719 0.791 0.663 0.732
s(u, v) = c(u, v) 0.795 0.844 0.757 0.816 0.739 0.791
s(u, v) = c(u, v) + γf(u, v) 0.805 0.850 0.771 0.837 0.763 0.814
s(u, v) = c(u, v) + γf(u, v), w− = w−(n̂) 0.824 0.864 0.780 0.843 0.770 0.820

additional training, rules or data. The extraction of entities, while
not perfect, is of reasonably high accuracy. We also employed
some standard word stemming and fuzzy matching (consolidating
“U.S.” and “United States”, etc.) over the extracted entities as a
cleaning step.

To train the free parameters of our algorithm we apply leave-
one-out cross-validation on smaller datasets, including WWW’05,
WEPS Trial, and Context datasets. For the full WEPS dataset,
before the “ground truth” for its WEPS Test portion was released
by the organizers of the workshop, we tested our approach on
the WEPS Training set by two-fold cross-validation. That is, we
randomly divided the dataset into two halves, such that eachof
the subsets (i.e., Wikipedia, ECDL and US Census) are divided
randomly into two halves. Then we trained on the 1st half and
tested on the 2nd, and vice versa, and then we reported the average
of the results. After the “ground truth” of WEPS Test portion
became available, we trained our algorithm on the whole WEPS
Training portion and tested on the WEPS Test portion.

Quality Evaluation Measures. Following suit of WEPS
challenge [3] and Artiles et al. [4], we use the B-cubed [6]
and FP measures for assessing the quality of disambiguation.5

B-cubed is considered to be a better measure thanFP and
many other measures, as it is more fine-grained and it does not
have as many measuring anomalies (counterintuitive measuring
outcomes). Thus we will use B-cubed as our primary measure.
More detailed discussion of quality metrics is beyond the scope
of this paper.

Baseline Methods. In addition to comparing our algorithm
to prominent solutions and the state of the art, we also use the
Agglomerative Vector Space clustering algorithm with TF/IDF
as our Baseline method. This method is widely employed as a
benchmark to evaluate similar tasks, e.g. in [4], [8]. The threshold
parameter for this method is trained the same way as discussed
above.

Statistical significance test. We used the standard 1-tailed
paired t-test, withα = 0.05, to measure the statistical significance
of our results when compared to other approaches. All of the

5B-cubed: For each referencer (where references are webpages in this
case) B-cubed computes setSr of references that co-refer withr according
to the ground truth. The term “co-refer” means refer to the sameobject. It also
computes setAr of references that co-refer withr according to the clustering
produced by the algorithm. For referencer it computesPrecisionr =

|Ar∩Sr|
|Ar|

and Recallr =
|Ar∩Sr|

|Sr|
. It then computesPrecision (Recall)

as averagePrecisionr (Recallr) over all references. Finally, it computes
FB as the harmonic mean ofPrecision andRecall.

FP : FP is computed as a harmonic mean ofPurity and
InversePurity. Let S = {S1, S2, . . . , S|S|} be the set of the original
(ground truth) clusters of references (webpages in this case). Let A =

{A1, A2, . . . , A|A|} be the set of clusters according to a disambigua-

tion algorithm. ThenPurity =

∑

Ai∈A

|Ai|
|R|

maxSj∈S
|Ai∩Sj |

|Ai|
and

InversePurity =

∑

Sj∈S

|Sj |

|R|
maxAi∈A

|Ai∩Sj |

|Sj |
, whereR is he set

of all references (all webpages).

results have been found to be significant, even forα as low
as 0.001 for some experiments. The exception is the context
experiment, where the results have been found to be significant
for α = 0.07.

B. Testing Disambiguation Quality

In this section we present a set of experiments that study the
quality aspect of the proposed approach. Experiment 1 assesses
the overall quality of the proposed approach. Experiment 2
evaluates its quality on a disambiguation problem known as the
Group Identification. Experiment 3 studies the quality on queries
with context. The last experiment in this section evaluatesthe
quality of the algorithm for generating cluster sketches.

Experiment 1 (Disambiguation Quality: Overall). Table II
demonstrates the overall disambiguation quality results on
WWW’05 and WEPS datasets. Here,s(u, v) = c(u, v) represents
the approach where only the connection strength is employedfor
disambiguation. That approach relies only on the extractednamed
entities and hyperlink information, and it does not use TF/IDF.
Method s(u, v) = c(u, v) + γf(u, v) complements the previous
method with the analysis of the features of webpagesf(u, v),
in the form of their TF/IDF similarity. The last row in the table
represent the approach which, in addition to the above, alsopicks
w− according to the functionw−(n̂) of the predicted number of
namesakes, as has been discussed in Section IV-E.

The table shows that, as expected, each subsequent method
achieves better results than the previous one. The proposed
approach gains 7.8% improvement in terms of B-cubed measure
over the baseline approach on WWW’05 dataset and it gets 6.1%
improvement on WEPS Training dataset (training is by two-fold
cross-validation) and 10.7% improvement on WEPS Test dataset
(training is on the whole WEPS Training set). The improvement
is statistically significant at the 0.05 level for WWW’05 dataset
and at the 0.001 level for WEPS datasets. The improvement is
also evident in terms ofFp measure.

We also compare the results with the top runners in WEPS
challenge [3]. The first runner in the challenge reports 0.78
for Fp and 0.70 for B-cubed measures. The proposed algorithm
outperforms all of the WEPS challenge algorithms. Some of the
learning approaches in WEPS challenge have not shown as good
results as anticipated. This has been attributed to the factthat
(1) the WEPS Training and Test datasets are small, and (2)
these datasets have different properties such as differentaverage
ambiguity. These factors might have resulted in overfittingfor the
models used. On the other hand, Table II shows that the proposed
learning model is stable on the WEPS dataset.

Disambiguation Quality per Namesake. Tables IV and V
demonstrate more detailed (per queried name) results for the
experiments on WEPS trial and and WWW’05 datasets. WEPS
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TABLE III

QUALITY OF GROUP IDENTIFICATION. VALUES IN BRACKETS SHOW THE ABSOLUTE IMPROVEMENT OVER[8].

WWW’05 Algo. Baseline Algo. New Algo.
Name #W #C #I F-measure #C #I F-measure #C #I F-measure

Adam Cheyer 96 62 0 78.5 75 1 87.2(+8.7) 94 0 98.9(+20.4)
William Cohen 6 6 4 75.0 5 0 90.9(+15.9) 4 0 80.0(+5.0)
Steve Hardt 64 16 2 39.0 40 7 72.1(+33.1) 51 2 87.2(+48.2)
David Israel 20 19 4 88.4 14 2 77.8(-10.6) 17 2 87.2(-1.2)
Leslie Kaelbling 88 84 1 97.1 66 0 85.7(-11.4) 88 1 99.4(+2.3)
Bill Mark 11 6 9 46.2 9 17 48.6(+2.4) 8 1 80.0(+33.8)
Andrew McCallum 54 54 2 98.2 52 0 98.1(-0.1) 54 1 99.1(+0.9)
Tom Mitchell 15 14 5 82.4 15 2 93.8(+11.4) 12 5 75.0(-7.4)
David Mulford 1 1 0 100.0 0 1 0.0(-100.0) 1 0 100.0(+0.0)
Andrew Ng 32 30 6 88.2 27 1 90.0(+1.8) 25 1 86.2(-2.0)
Fernando Pereira 32 21 14 62.7 23 17 63.9(+1.2) 25 11 73.5(+10.8)
Lynn Voss 1 0 1 0.0 1 0 100.0(+100.0) 0 0 0.0(+0.0)
Overall 455 313 47 80.3 327 47 82.4(+2.1) 379 24 92.1(+11.8)

TABLE IV

QUALITY ON WEPS TRIAL DATASET. VALUES IN BRACKETS SHOW THE

ABSOLUTE IMPROVEMENT OVER[4].

Name # B-Cubed FP

Ann Hill 55 92.0 92.9(+4.9)
Brenda Clark 23 88.1 93.2(+5.0)
Christine King 29 79.0 84.6(+17.6)
Helen Miller 38 92.8 93.9(+31.9)
Lisa Harris 30 74.2 76.3(-6.7)
Mary Johnson 54 90.6 90.6(+15.6)
Nancy Thompson 47 78.6 81.7(+0.7)
Samuel Baker 38 70.8 72.8(-6.2)
Sarah Wilson 62 91.4 93.0(+23.0)
Mean/Overall 42 84.2 86.5(+9.5)

trial dataset has also been used by Javier Artiles et al. in SIGIR’05
[4]. From these tables we can see that that 9 person names are
queried in WEPS trial dataset and 12 names in WWW’05 dataset.
The ‘#’ field shows the number of namesakes for a particular
name in the corresponding 100 webpages. Table IV compares the
results of the proposed approach with those of [4]. In [4] the
authors employ an enhanced version of agglomerative clustering
based on TF/IDF. The table shows that the proposed approach
outperforms that of [4] by 9.5% in terms ofFP measure.6 The
achieved improvement is statistically significant at the 0.05 level.
Table V demonstrates the results for a similar experiment, but on
WWW’05 dataset.

The improvement is achieved since the proposed disambigua-
tion method is simply capable of analyzing more information,
hidden in the datasets, and which [4], [8] do not analyze.

Experiment 2 (Disambiguation Quality: Group Identifica-
tion). In [8] the authors propose an unsupervised approach for
Group Identification: a related-but-different problem to the one
studied in this paper. In that problem the algorithm is givenN

names ofN people that are somehow related, e.g., these names
are found in somebody’s address book. The task is to find the
webpages related to the meantN people.

We have modified our algorithm to apply it to that problem,
as explained in the electronic appendix in more detail. That

6FP is referred to asFα=0.5 in [4].

TABLE V

QUALITY ON WWW’05 DATASET.

Name # B-Cubed FP

Adam Cheyer 2 97.9 99.0
William Cohen 10 87.3 93.1
Steve Hardt 6 80.4 88.3
David Israel 19 85.0 85.5
Leslie Kaelbling 2 98.9 99.4
Bill Mark 8 89.2 79.5
Andrew McCallum 16 93.3 95.2
Tom Mitchell 37 83.1 85.5
David Mulford 13 78.8 86.5
Andrew Ng 29 82.0 86.2
Fernando Pereira 19 71.4 78.8
Lynn Voss 52 42.1 59.6
Mean/Overall 18 82.4 86.4

algorithm outperforms [8] by 11.8% of F-measure as illustrated
in Table III. In this experiment F-measure is computed the same
way as in [8].7 The field “#W” in Table III is the number of the
to-be-found webpages related to the namesake of interest. The
field ‘#C’ is the number of webpages found correctly and the
field ‘#I’ is the number of pages found incorrectly in the resulting
groups. We can see that the baseline algorithm also outperforms
the algorithm proposed in [8]. The baseline algorithm utilizes only
one free parameter, the threshold, which in our case is trained
from data. The difference between WWW’05 algorithm and our
new algorithm is statistically significant at the 0.05 level.

The work in [9] is the latest follow up to the work in
[8] we are aware of. In it, the authors have extracted all the
hyperlinks contained in the 1085 webpages of WWW’05 dataset
and crawled the Web three hops from those links, retrieving
additional webpages. This costly process has resulted in 669,847
webpages overall. By analyzing all these webpages, the authors
achieved 83.9% F-measure. This is still 8.2% less than the results
of the approach proposed in this paper, which achieves 92.1%and
it does not yet analyze all this additional data.

7F-measure: letSi be the set of the correct webpages for cluster-i, and
Ai be the set of the webpages assigned to cluster-i by the algorithm. Then,
Precisioni =

|Ai∩Si|
|Ai|

, Recalli =
|Ai∩Si|

|Si|
, andF is their harmonic mean.
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TABLE VI

RESULTS FOR THECONTEXT DATASET.

Baseline New Alg
Query Query Text # Pages # B-Cubed FP B-Cubed FP

Q1 “Andrew McCallum” music 100 29 53.5 69.6 73.8 81.7
Q2 “Andrew McCallum” poster 100 4 87.6 93.5 76.5 86.6
Q3 “Andrew McCallum” dance 100 30 57.7 68.7 65.0 75.1
Q4 “Andrew McCallum” uci 100 1 78.3 88.9 95.9 98.0
Q5 “George Bush” bible scholar 98 13 61.7 77.5 74.1 84.6
Q6 “William Cohen” cmu 100 7 89.4 94.5 91.1 95.4
Q7 “William Cohen” uci 100 17 71.7 82.4 55.1 73.8
Q8 “Tom Mitchell” psychology 98 17 63.2 78.4 76.0 85.5
Q9 “Tom Mitchell” soccer 97 40 56.6 69.3 69.6 77.9

Mean 99 18 68.9 80.3 75.2 84.3

Experiment 3 (Disambiguation Quality: Queries with Con-
text). We generated a dataset by querying Google with a person
name and context keyword(s) that is related to that person. We
used 9 different queries. The statistics for this dataset isillustrated
in Table VI. For instance, the table shows that for queryQ8 =

“Tom Mitchell” psychology, 98 meaningful pages were found
(the rest are empty pages) and there are 13 namesakes for Tom
Mitchell in those pages. Table VI presents the disambiguation
quality results for the proposed and baseline algorithms. The
proposed approach outperforms the baseline by 6.3% of B-
cubed measure. The difference between the baseline and the new
algorithm is significant at the 0.07 level.

While the proposed algorithm factors in the same information
used by the baseline, it ultimately makes its own decisions,
which are largely driven by analyzing the connections. Table VI
demonstrates that point: the results are worse than those ofthe
baseline for the two cases, but they are better on average.

Experiment 4 (Quality of Generating Cluster Sketches). In
Section II we have presented an algorithm for generating repre-
sentative keywords to summarize each cluster. Table VII illus-
trates the output of that algorithm for ‘Andrew McCallum’ query
on WWW’05 dataset. The keywords and phrases are shown in
their stemmed versions. The table shows only the top-10 keywords
for each cluster for the sake of clarity. Each cluster has different
set of keywords. So if the search is for UMass professor Andrew
McCallum, his cluster can easily be identified with the termslike
“machine learning” and“artificial intelligence” , as well as with
the keywords likeextract, model, andclassification.

C. Impact on Search

Comparing the effectiveness of cluster-based people search
to the traditional search is a complex task, as it implies too
many unknowns: what the user is looking for exactly, which
background/context information she knows and intends to use in
her query, how the user will react on partially examined output
in the returned results, and so on. To perform a quantitative
comparison, we used the following methodology.

User Observations. A user is interested in retrieving the
webpages of a particular person. The user queries the search
engine with the name of that person, e.g. William Cohen, and then
scans through the topK pages in order to satisfy the objective of
finding all the webpages of that person among the topK pages.
In case of a traditional search interface, at eachobservation i,

TABLE VII

RESULTSFOR “A NDREW MCCALLUM ” QUERY IN WWW’05 DATASET.

Group Name Cluster Summary

UMASS Professor learn, artifici intellig, machin, proceed, machin
learn, extract, model, classif, comput, data

ACOSS President3 student, incom, univers, educ, fee, famili, low, east
timor, timor, cent

ACOSS President11 acoss, childcar, welfar, australian, council, servic,
social servic, incom, famili, presid,

Teacher aclandburghlei, camden, burghlei, sch, acland,
school, english, month, biographi, uk

Writer competit, stori, read, toowrit, winner, author, mous,
nep, toowritepoetri, children

Artist3 philosophi, mentalfloss, festiv, scienc, blog,
pietersen, ultim, coburg, guthri, flyer

Artist1 rockbox, jukebox, archo, studio, tedford, stuart,
bod, boru, donaghi, melih

Photographer amico, imag, collect, librari, conspir, davidrumsei,
penitentiari, trial, williamstown, court

Kid theatr, shakespear, tempest, grouch, juliet, romeo,
crew, dream, festiv, night

Medical Professor1 ccfp, kari, kgh, leroyv, med, puddi, queensu, jennif,
em, md

Customer Support initil, opensr, domain, tucow, loui, dn, chronolog,
protect, sent, client

Humanist dreambook, humanist, color, human, ge, homepag,
plz, secular, vacat, individu

Painter height, imag, larger, price, sherwin, keith, cub,
leopard, sefton, richard

ACOSS President1 hospit, nurs, health, australian, servic, treatment,
kingston, accid, local, care

Medical Professor1 inquest, ontario, coron, ministri, death, eastern on-
tario rugbi union, ontario rugbi union, ottawa, rugbi
union, union and leagu,

Poll Analyst declan, zealand, fc, jul, video, game, horn, censor-
ship, fitug, offici

Poll Analyst regul, electron, transact, swain, act, notic, paper,
disclosur, internetnz, discuss

Economist acidif, soil, cost, farm, acid, agricultur, land,
econom, lime, research

Technician chemistri, depart, otago, chemic, comput, labora-
tori, univers, calm, comput support cooper work

wherei = 1, 2, . . . , K, the user looks at the sketch provided for
the i-th returned webpage. We assume that by doing so the user
can decide whether the page isrelevant to the person she was
looking for or irrelevant.

For the new interface, supported by a cluster-based people
search, the user first looks at the “people search” interface. The
user sequentially reads cluster sketches/descriptions, until on the
m-th observation the user find the cluster of interest. The user
then clicks on that cluster, and the systems then shows the original
set of K Web pages returned by the search engine, except that
the webpages are ordered differently. Specifically, first are the
set of pagesS that our algorithm identified for that namesake,
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Fig. 8. UMass Prof: Recall
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Fig. 9. UMass Prof: Precision
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Fig. 10. UMass Prof: F1-measure
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Fig. 11. Cust. Sup.: Recall
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Fig. 13. Cust. Sup.: F1-measure

next are the pages in the order of their similarity to the pages
in S. At each subsequent observation, the user examines the
sketch for each page, as in the standard interface, and decides
relevant/irrelevant in a similar fashion. Notice that in a cluster-
based search, it is possible that none of the cluster definitions
satisfies the user (i.e., matches the person she is interested in).
In such a case, the user can retrieve the originalK webpages
returned by the search engine. Notice that in practice the user can
make mistakes in deciding relevant/irrelevant based on sketches.
Thus, the reported quality results will be optimistic for both the
new and standard search interfaces.

Measures.We compare the quality of the new and standard
interface using Precision, Recall, and F-measure. On thei-th
observation the precision shows the fraction of relevant pages
among all the webpages examined so far. The recall on thei-
th observation shows the fraction of related webpages out ofall
the related pages, discovered so far. Notice that using the new
interface the user starts examining the 1-st webpage only onthe
(m + 1)-th step, after locating the right cluster on them-th step.

Recall plots are useful in computing another metric: how many
observations are needed to discover a certain fraction of relevant
pages. In general, the fewer observations are needed in a given
interface, the faster the user can find the related pages, andthus
the better is the interface. Each figure in this section shows
three curves: one for the standard interface and two for the new
interface. The new interface knows the number of webpages|S|

in the clusterS the user chooses to explore. The user may opt to
examine only those|S| webpages suggested by the algorithm and
then stop. This case is represented by ‘New’ curve in the figure.
Optionally, the user might choose to continue exploring therest
of the webpages. The latter situation is represented with ‘New
Optional’ curve.

Experiment 5 (Impact on Search). This experiment consists of
three parts. The first two parts study two common cases (1) A
search for a namesake whose webpages form the largest cluster,
these webpages also tend to be first pages in search, and (2) A
search for a regular cluster. The third part studies the overall
performance averaged over all the namesakes in the dataset.

Case 1: First-Dominant Cluster. Figures 8–10 plot the measures
for Andrew McCallum the UMass Professor. His pages tend to
appear first in Google, they form the first group, which is also
the largest one. The Recall figure shows that one needs to do 44
observations in the standard interface to discover half (50%) of
the pages (27 out of 54) of the UMass Prof., while in the new
interface one need to do just 33 observations total. To discover
90% of the relevant pages, one needs to do 92 observations in the
standard interface and only 55 in the new one. The general trend
in the plots in this section is that the Precision, Recall, and F-
measure for the new interface either dominate, or are comparable
to, those of the standard interface.
Case 2: Regular Cluster. Figures 11–13 plot the same measures
for Andrew McCallum the Customer Support person. His cluster
consists of 3 pages that appear more toward the end in Google
search. His group is one of the last groups. To get 50% of his
cluster one needs to do 51 observations in the standard interface
and only 16 observations in the new interface. For 90%, it is 79
observations in for the standard interface and 17 observations for
the new interface.
Case 3: Average. Figures 14–16 plot the average of Recall,
Precision, and F measures for search impact on WWW’05 dataset,
by averaging over all the namesakes in this dataset. It should be
noted that some of the person names have many namesakes, e.g.,
David Israel has 45 namesakes, Bill Mark has 52 namesakes, etc.
Therefore, for some of the namesakes, both the standard and new
interfaces would require first doing many observations to find
even the first relevant webpage. After averaging, this leadsto
small overall values for measures. Figures 14–16 show that,even
with the imperfect clustering, the curves for the new interface
largely dominate those for the standard interface. The figures do
not capture another advantage of the new interface: its ability to
suggest when to stop the search, since the algorithm knows the
number of elements in each cluster.

Impact on Search With Context. In general it is not hard
to imagine scenarios where a good choice of keywords would
identify a person really well, so that all the returned topK

webpages would belong to just one namesake. In that case
one can expect to see no difference between the new and the
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Fig. 17. Umass, Music: Recall
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Fig. 18. Umass, Music: Precision
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Fig. 19. Umass, Music: F1-measure
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Fig. 20. Musician: Recall
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Fig. 21. Musician: Precision
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Fig. 22. Musician: F1-measure

standard interface. But quite often searches with context still
return results that contain several namesakes, see for example
Table VI. Figures 17–22 plot the impact on search when context
is used. In this case the query is:“Andrew McCallum” music.
The number of namesakes for that query is surprisingly large:
23. The reason is that webpages often contain advertisements,
e.g. links to websites that sell music. Figures 17–19 plot the
impact results for the case where the user in his query has meant
Andrew McCallum the UMass professor, who is interested in
music. Figures 20–22 plot the same for the case where the user
meant Andrew McCallum the DJ/musician. In both cases the new
interface performs better than the standard one. The user finds the
90% of the documents related to DJ/musician in 20 observations
with the new interface, whereas it takes 90 observations with
the standard interface. On the other hand to find the 90% of the
documents for the UMass professor, user should examine the 60
pages in the new interface (90 pages with the current interface).

D. Efficiency

Experiment 6 (Efficiency). The overall approach first downloads
and preprocesses pages before applying the actual clustering
algorithm. That takes 3.82 seconds per webpage mainly due tothe
fact that we use a third party Named Entity extractor, GATE, to
extract named entities, the speed of which we cannot control.8

However, the preprocessing cost disappears if the server-side
approach is employed instead of the wrapper approach, sincethis

8Our preliminary experiments indicate that it takes 0.36 seconds per
webpage for another extractor, called Stanford Named EntityRecognizer [23].
The quality of the results of SNER vs. GATE are comparable.

preprocessing can be done off line beforehand. The clustering
algorithm itself executes in 4.7 seconds on average per queried
name.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper we only evaluated our core technique. We have
attempted to answer the question of which maximum quality our
approach can get if it uses only the information stored in the
top-k webpages being processed. There are several interesting
directions for future work. One of the most promising directions
is to employ external data sources for disambiguation as well.
This includes using ontologies, encyclopedias, and the Web[30].
Another direction is to use more advances extraction capabilities
that would allow: (a) a better interpretation of extracted entities
by taking into account the roles they play with respect to each
other (boss of somebody, student of somebody) (b) extraction
of relationships, as currently the algorithm relies primarily on co-
occurrence relationships only. We plan to develop disambiguation
algorithms for other people search problems that have different
settings. Finally, we would like to work on algorithms for a
genericentity search, where entities are not limited to people.
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APPENDIX

Group Identification
In [8] the authors have developed an unsupervised Web disam-

biguation algorithm that exploits Web links present in the data set.
Since we had adopted the data set produced by [8], we wanted to
compare the quality of the two disambiguation algorithms. The
problem we faced was that the disambiguation problem studied
in this article is different from the one studied in [8]. Thisarticle
solves a well-recognized Web Page Clustering problem, while
the approach in [8] addresses less studiedGroup Identification
problem.

In the formulation of the Group Identification problem, it is
assumed thatN (e.g., N=12) people names are found together,
for instance, on a conference Web page, or in somebody’s email
folder, etc. The mere fact that those names are mentioned together
indicate that specific real people are meant there, which arerelated
in some unknown way. The task is to gain more information about
thoseN meant people.

Specifically, Google is queriedN times, for each person, with
the person’s name as the query. The top-100 web pages returned
by Google are stored per each person. The goal is to identify
among those Web pages only those pages that refer to theN

specific people, that were meant by the list of names.

GROUP-IDENTIFICATION(Q, K, Ontology)

1 C ← ∅ // sets of set of clusters
2 Q← Person-Names
3 R← ∅ // pages mentioning the persons in the groups
4 Ontology← LOAD-ONTOLOGY()
5 for each person queryqi ∈ Q
6 Ci ← PROCESS-QUERY(qi, K, Ontology)
7 for each person queryqi ∈ Q
8 X ← Search the occurrence of other names(Q− qi) in Ci

9 R← R ∪X
10 return R

Fig. 23. Naive Algorithm for Group Identification Problem.

Even though the two disambiguation challenges are different,
it is easy to design a naive algorithm for solving the Group
Identification problem, that would build on any Web Page Clus-
tering algorithm. The pseudo-code for one such algorithm is
illustrated in Figure 23. The naive approach first performs web
page clustering on each set of the top-100 web pages, per each
of N persons, to determine their namesakes. After that, the task
becomes to identify the right (meant) namesake per each name.
That is, for namesakes of Andrew McCallum, the algorithm
should identify which namesake is the meant one (the UMass
Professor in this case). The naive algorithm does this by counting
which groups contain web pages that mention at least one of
the otherN − 1 people names (William Cohen, Tom Mitchell)
from the original list ofN people. If two or more groups have
such pages, those groups are merged into one. For instance, the
UMass Professor might be split into two groups by mistake of
the grouping algorithm. But if the two groups both mention, say,
William Cohen, then they will be merged into one group.

We used the above approach to compare the proposed dis-
ambiguation algorithm with the approach proposed in [8].9 The

9We note that this straightforward algorithm could be perhaps improved
further by using more robust criteria for grouping individuals, e.g., by using
similarity joins over clusters.

proposed disambiguation algorithm achieves the F-measureof
92.1%, which is 11.8% improvement over the best result of 80.3%
reported in [8].

Also notice that the task of Group Identification, addressed
in [8], can be procedurally viewed as an optimization overone
specific namesake in each group of namesakes with the same
name (e.g., optimization over only Cohen the CMU Prof, in all
Cohen’s Web pages). The task of Web page clustering, addressed
in this paper, can be viewed as an optimization overall the
namesakes, which is more challenging. Thus, one would expect
that any approach solving only Group Identification would get
better results on the namesake of interest, than those of a general
grouping algorithm, since the former has the advantage overthe
latter.


