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- G = (S5,B,E) is a bipartite graph consisting of offline
vertices S and online vertices B.
- Online vertices arrive one by one in adverserial order.

- The algorithm must irrevocably and immediately match
revealed online vertices.

- The goal is to maximize the competitive ratio, i.e.

|M online |
OPTofﬂine
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ALGORITHMS FOR ONLINE MATCHING PROBLEMS

Classic results for Online Bipartite Matching:
- The GREEDY algorithm (match whenever possible) is
1/2-competitive.

- 1/2-competitive is best possible for deterministic
algorithms.

- The randomized RANKING algorithm is (1 — 1/e)-competitive
in expectation.

- (1 —1/e)-competitive in expectation is best possible for
randomized algorithms.



CENTRAL QUESTION

Question
Can we solve the Online Bipartite Matching Problem with high
probability as opposed to just in expectation?



RANDOMIZATION AND CONCENTRATION
GUARANTEES



THE POWER OF RANDOMIZED ALGORITHMS

Many problems have more natural, efficient, or better
algorithms using randomization:

- Quicksort

- Miller-Rabin primality test

- Hashing

- Polynomial identity testing

- Perfect matching on parallel machines
- Many online algorithms!
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EXPECTATION VS. CONCENTRATION

Usually we analyze in expectation or showing non-zero
probability of success.

Example: Let C be the total number of comparisons of Quicksort
with random pivots.

- Most people have seen: E[C] = O(nlogn).

- Fewer know: P[C > ¢q - nlogn] < % for some cg.

- But did you know:

]P’HC/]E[C] _ 1| > 6] < n—2e(1n1nn—ln(1/€)+O(ln1nlnn))
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USEFULNESS OF CONCENTRATION RESULTS

Concentration results are useful:

- Insight about typical behavior in practice.

- Confidence that bad behavior is extremely unlikely.

However, concentration results are relatively rare because we
can simply run the algorithm O(logn) many times (boosting).

Problem
Online algorithms cannot be boosted!
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RANKING by Karp, Vazirani, Vazirani (1990):

1. First, pick a random permutation 7r on the offline vertices.

2. On arrival: match to (currently unmatched) offline vertex j
that minimizes rank 7t (j).

Theorem (Karp, Vazirani, Vazirani 1990)
Let M be the matching generated by RANKING, then

E[IM]] > (1 - %) OPT.
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CONCENTRATION OF RANKING

Question
Does the competitive ratio of RANKING hold with high
probability or just in expectation?
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Question
Does the competitive ratio of RANKING hold with high
probability or just in expectation?

Theorem
Let M be the matching generated by RANKING, then

1
P [|M| < (1 —o - oc) OPT] < ¢—2a%OPT,

10
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Theorem (McDiarmid 1989)
Let x € [0,1]" be uniformly distributed.

Letf : [0,1]" — R have bounded differences, i.e. there is some
ceRL, such that if x,x" € [0,1] disagree only on coordinate
i, then |f (x) — f(x")| < ¢;.

Then:

2¢2

P[f(x) < E[f(y)] —t] <e ZmeT,

"
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APPLYING MCDIARMID TO RANKING

RANKING can be cast in the McDiarmid framework:

- Instead of picking a random permutation on the offline
vertices, pick one x; € [0,1] for each.

- With probability 1, all x; are distinct and their order
determines the ranks.

- f(x) is the size of the matching output by RANKING.

12



BOUNDED DIFFERENCES FOR RANKING

Lemma

f satisfies bounded differences with ¢; = 1.

Theorem

Assuming OPT = n (i.e. instance has a perfect matching):

P [f(x) < (1 — % — tx) n] < e~20%n,

Proof. Plug E[f(x)] > (1 — #)n and ¢; = 1 into McDiarmid.

13
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PROVING BOUNDED DIFFERENCES PROPERTY

Instead of changing ranks, consider removing a vertex:

Lemma
Assume all ranks are fixed and let j be some offline vertex.

Let M be the output of RANKING and let M_; be the output of
RANKING if j is removed from the instance.

Then IM_j| < IM| < [M_; + 1.

14
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PROVING BOUNDED DIFFERENCES PROPERTY |V

Lemma
f satisfies the bounded differences property for c; = 1.
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PROVING BOUNDED DIFFERENCES PROPERTY |V

Lemma
f satisfies the bounded differences property for c; = 1.

Proof. Consider x,x" € [0,1]" that differ only on j. Then

[f(x) —f(x")] <1since x_j= x’_].. O

17
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FULLY ONLINE MATCHING

In Fully Online Matching:

- Can be non-bipartite

- All vertices arrive and depart online

- Vertices can only be matched if their [arrival, departure]
overlap.

Theorem
For the Fully Online Matching Problem, we have

E[IM| < (p — #)OPT] < ¢~**OPT

where M is produced by FULLY ONLINE RANKING and p = 0.521.
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In Vertex-Weighted Online Bipartite Matching:

- Each offline vertex j has a weight w;.
- Goal is to maximize sum of weights of matched vertices.

Theorem
For each a > 0, there exists an algorithm such that

1 40PT?

507 i3

]P’[w(M) < (1—%—&)OPT] <e
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THANK YOU!
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