
Online Matching with High Probability

Milena Mihail, Thorben Tröbst
Symposium on Algorithmic Game Theory

Online Bipartite Matching

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching II

• 𝐺 = (𝑆, 𝐵, 𝐸) is a bipartite graph consisting of offline
vertices 𝑆 and online vertices 𝐵.

• Online vertices arrive one by one in adverserial order.
• The algorithm must irrevocably and immediately match
revealed online vertices.

• The goal is to maximize the competitive ratio, i.e.

|𝑀online|
OPToffline

.

2

Online Bipartite Matching II

• 𝐺 = (𝑆, 𝐵, 𝐸) is a bipartite graph consisting of offline
vertices 𝑆 and online vertices 𝐵.

• Online vertices arrive one by one in adverserial order.

• The algorithm must irrevocably and immediately match
revealed online vertices.

• The goal is to maximize the competitive ratio, i.e.

|𝑀online|
OPToffline

.

2

Online Bipartite Matching II

• 𝐺 = (𝑆, 𝐵, 𝐸) is a bipartite graph consisting of offline
vertices 𝑆 and online vertices 𝐵.

• Online vertices arrive one by one in adverserial order.
• The algorithm must irrevocably and immediately match
revealed online vertices.

• The goal is to maximize the competitive ratio, i.e.

|𝑀online|
OPToffline

.

2

Online Bipartite Matching II

• 𝐺 = (𝑆, 𝐵, 𝐸) is a bipartite graph consisting of offline
vertices 𝑆 and online vertices 𝐵.

• Online vertices arrive one by one in adverserial order.
• The algorithm must irrevocably and immediately match
revealed online vertices.

• The goal is to maximize the competitive ratio, i.e.

|𝑀online|
OPToffline

.

2

Algorithms for Online Matching Problems

Classic results for Online Bipartite Matching:

• The Greedy algorithm (match whenever possible) is
1/2-competitive.

• 1/2-competitive is best possible for deterministic
algorithms.

• The randomized Ranking algorithm is (1 − 1/𝑒)-competitive
in expectation.

• (1 − 1/𝑒)-competitive in expectation is best possible for
randomized algorithms.

3

Algorithms for Online Matching Problems

Classic results for Online Bipartite Matching:

• The Greedy algorithm (match whenever possible) is
1/2-competitive.

• 1/2-competitive is best possible for deterministic
algorithms.

• The randomized Ranking algorithm is (1 − 1/𝑒)-competitive
in expectation.

• (1 − 1/𝑒)-competitive in expectation is best possible for
randomized algorithms.

3

Algorithms for Online Matching Problems

Classic results for Online Bipartite Matching:

• The Greedy algorithm (match whenever possible) is
1/2-competitive.

• 1/2-competitive is best possible for deterministic
algorithms.

• The randomized Ranking algorithm is (1 − 1/𝑒)-competitive
in expectation.

• (1 − 1/𝑒)-competitive in expectation is best possible for
randomized algorithms.

3

Algorithms for Online Matching Problems

Classic results for Online Bipartite Matching:

• The Greedy algorithm (match whenever possible) is
1/2-competitive.

• 1/2-competitive is best possible for deterministic
algorithms.

• The randomized Ranking algorithm is (1 − 1/𝑒)-competitive
in expectation.

• (1 − 1/𝑒)-competitive in expectation is best possible for
randomized algorithms.

3

Algorithms for Online Matching Problems

Classic results for Online Bipartite Matching:

• The Greedy algorithm (match whenever possible) is
1/2-competitive.

• 1/2-competitive is best possible for deterministic
algorithms.

• The randomized Ranking algorithm is (1 − 1/𝑒)-competitive
in expectation.

• (1 − 1/𝑒)-competitive in expectation is best possible for
randomized algorithms.

3

Central Question

Question
Can we solve the Online Bipartite Matching Problem with high
probability as opposed to just in expectation?

4

Randomization and Concentration
Guarantees

The Power of Randomized Algorithms

Many problems have more natural, efficient, or better
algorithms using randomization:

• Quicksort
• Miller-Rabin primality test
• Hashing
• Polynomial identity testing
• Perfect matching on parallel machines
• Many online algorithms!

5

Expectation vs. Concentration

Usually we analyze in expectation or showing non-zero
probability of success.

Example: Let 𝐶 be the total number of comparisons of Quicksort
with random pivots.

• Most people have seen: 𝔼[𝐶] = 𝑂(𝑛 log𝑛).
• Fewer know: ℙ[𝐶 > 𝑐0 ⋅ 𝑛 log𝑛] < 1

𝑛 for some 𝑐0.
• But did you know:

ℙ[|𝐶/𝔼[𝐶] − 1| > 𝜖] < 𝑛−2𝜖(ln ln𝑛−ln(1/𝜖)+𝑂(ln ln ln𝑛))

6

Expectation vs. Concentration

Usually we analyze in expectation or showing non-zero
probability of success.

Example: Let 𝐶 be the total number of comparisons of Quicksort
with random pivots.

• Most people have seen: 𝔼[𝐶] = 𝑂(𝑛 log𝑛).
• Fewer know: ℙ[𝐶 > 𝑐0 ⋅ 𝑛 log𝑛] < 1

𝑛 for some 𝑐0.
• But did you know:

ℙ[|𝐶/𝔼[𝐶] − 1| > 𝜖] < 𝑛−2𝜖(ln ln𝑛−ln(1/𝜖)+𝑂(ln ln ln𝑛))

6

Expectation vs. Concentration

Usually we analyze in expectation or showing non-zero
probability of success.

Example: Let 𝐶 be the total number of comparisons of Quicksort
with random pivots.

• Most people have seen: 𝔼[𝐶] = 𝑂(𝑛 log𝑛).

• Fewer know: ℙ[𝐶 > 𝑐0 ⋅ 𝑛 log𝑛] < 1
𝑛 for some 𝑐0.

• But did you know:

ℙ[|𝐶/𝔼[𝐶] − 1| > 𝜖] < 𝑛−2𝜖(ln ln𝑛−ln(1/𝜖)+𝑂(ln ln ln𝑛))

6

Expectation vs. Concentration

Usually we analyze in expectation or showing non-zero
probability of success.

Example: Let 𝐶 be the total number of comparisons of Quicksort
with random pivots.

• Most people have seen: 𝔼[𝐶] = 𝑂(𝑛 log𝑛).
• Fewer know: ℙ[𝐶 > 𝑐0 ⋅ 𝑛 log𝑛] < 1

𝑛 for some 𝑐0.

• But did you know:

ℙ[|𝐶/𝔼[𝐶] − 1| > 𝜖] < 𝑛−2𝜖(ln ln𝑛−ln(1/𝜖)+𝑂(ln ln ln𝑛))

6

Expectation vs. Concentration

Usually we analyze in expectation or showing non-zero
probability of success.

Example: Let 𝐶 be the total number of comparisons of Quicksort
with random pivots.

• Most people have seen: 𝔼[𝐶] = 𝑂(𝑛 log𝑛).
• Fewer know: ℙ[𝐶 > 𝑐0 ⋅ 𝑛 log𝑛] < 1

𝑛 for some 𝑐0.
• But did you know:

ℙ[|𝐶/𝔼[𝐶] − 1| > 𝜖] < 𝑛−2𝜖(ln ln𝑛−ln(1/𝜖)+𝑂(ln ln ln𝑛))

6

Usefulness of Concentration Results

Concentration results are useful:

• Insight about typical behavior in practice.
• Confidence that bad behavior is extremely unlikely.

However, concentration results are relatively rare because we
can simply run the algorithm 𝑂(log𝑛) many times (boosting).

Problem
Online algorithms cannot be boosted!

7

Usefulness of Concentration Results

Concentration results are useful:

• Insight about typical behavior in practice.
• Confidence that bad behavior is extremely unlikely.

However, concentration results are relatively rare because we
can simply run the algorithm 𝑂(log𝑛) many times (boosting).

Problem
Online algorithms cannot be boosted!

7

Usefulness of Concentration Results

Concentration results are useful:

• Insight about typical behavior in practice.
• Confidence that bad behavior is extremely unlikely.

However, concentration results are relatively rare because we
can simply run the algorithm 𝑂(log𝑛) many times (boosting).

Problem
Online algorithms cannot be boosted!

7

Ranking

Ranking Algorithm

Ranking by Karp, Vazirani, Vazirani (1990):

1. First, pick a random permutation 𝜋 on the offline vertices.
2. On arrival: match to (currently unmatched) offline vertex 𝑗
that minimizes rank 𝜋(𝑗).

Theorem (Karp, Vazirani, Vazirani 1990)
Let 𝑀 be the matching generated by Ranking, then

𝔼[|𝑀|] ≥ (1 −
1
𝑒)OPT.

8

Ranking Algorithm

Ranking by Karp, Vazirani, Vazirani (1990):

1. First, pick a random permutation 𝜋 on the offline vertices.
2. On arrival: match to (currently unmatched) offline vertex 𝑗
that minimizes rank 𝜋(𝑗).

Theorem (Karp, Vazirani, Vazirani 1990)
Let 𝑀 be the matching generated by Ranking, then

𝔼[|𝑀|] ≥ (1 −
1
𝑒)OPT.

8

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Ranking Example

4

3

2

6

5

1

9

Concentration of Ranking

Question
Does the competitive ratio of Ranking hold with high
probability or just in expectation?

Theorem
Let 𝑀 be the matching generated by Ranking, then

ℙ [|𝑀| < (1 −
1
𝑒 − 𝛼)OPT] < 𝑒−2𝛼2OPT.

10

Concentration of Ranking

Question
Does the competitive ratio of Ranking hold with high
probability or just in expectation?

Theorem
Let 𝑀 be the matching generated by Ranking, then

ℙ [|𝑀| < (1 −
1
𝑒 − 𝛼)OPT] < 𝑒−2𝛼2OPT.

10

Concentration of Ranking

McDiarmid’s Inequality

Theorem (McDiarmid 1989)
Let 𝑥 ∈ [0, 1]𝑛 be uniformly distributed.

Let 𝑓 ∶ [0, 1]𝑛 → ℝ have bounded differences, i.e. there is some
𝑐 ∈ ℝ𝑛

≥0 such that if 𝑥, 𝑥′ ∈ [0, 1] disagree only on coordinate
𝑖, then |𝑓 (𝑥) − 𝑓 (𝑥′)| ≤ 𝑐𝑖.

Then:

ℙ [𝑓 (𝑥) < 𝔼[𝑓 (𝑦)] − 𝑡] < 𝑒
− 2𝑡2

∑𝑛
𝑖=1 𝑐2

𝑖 .

11

McDiarmid’s Inequality

Theorem (McDiarmid 1989)
Let 𝑥 ∈ [0, 1]𝑛 be uniformly distributed.

Let 𝑓 ∶ [0, 1]𝑛 → ℝ have bounded differences, i.e. there is some
𝑐 ∈ ℝ𝑛

≥0 such that if 𝑥, 𝑥′ ∈ [0, 1] disagree only on coordinate
𝑖, then |𝑓 (𝑥) − 𝑓 (𝑥′)| ≤ 𝑐𝑖.

Then:

ℙ [𝑓 (𝑥) < 𝔼[𝑓 (𝑦)] − 𝑡] < 𝑒
− 2𝑡2

∑𝑛
𝑖=1 𝑐2

𝑖 .

11

McDiarmid’s Inequality

Theorem (McDiarmid 1989)
Let 𝑥 ∈ [0, 1]𝑛 be uniformly distributed.

Let 𝑓 ∶ [0, 1]𝑛 → ℝ have bounded differences, i.e. there is some
𝑐 ∈ ℝ𝑛

≥0 such that if 𝑥, 𝑥′ ∈ [0, 1] disagree only on coordinate
𝑖, then |𝑓 (𝑥) − 𝑓 (𝑥′)| ≤ 𝑐𝑖.

Then:

ℙ [𝑓 (𝑥) < 𝔼[𝑓 (𝑦)] − 𝑡] < 𝑒
− 2𝑡2

∑𝑛
𝑖=1 𝑐2

𝑖 .

11

Applying McDiarmid to Ranking

Ranking can be cast in the McDiarmid framework:

• Instead of picking a random permutation on the offline
vertices, pick one 𝑥𝑖 ∈ [0, 1] for each.

• With probability 1, all 𝑥𝑖 are distinct and their order
determines the ranks.

• 𝑓 (𝑥) is the size of the matching output by Ranking.

12

Applying McDiarmid to Ranking

Ranking can be cast in the McDiarmid framework:

• Instead of picking a random permutation on the offline
vertices, pick one 𝑥𝑖 ∈ [0, 1] for each.

• With probability 1, all 𝑥𝑖 are distinct and their order
determines the ranks.

• 𝑓 (𝑥) is the size of the matching output by Ranking.

12

Applying McDiarmid to Ranking

Ranking can be cast in the McDiarmid framework:

• Instead of picking a random permutation on the offline
vertices, pick one 𝑥𝑖 ∈ [0, 1] for each.

• With probability 1, all 𝑥𝑖 are distinct and their order
determines the ranks.

• 𝑓 (𝑥) is the size of the matching output by Ranking.

12

Applying McDiarmid to Ranking

Ranking can be cast in the McDiarmid framework:

• Instead of picking a random permutation on the offline
vertices, pick one 𝑥𝑖 ∈ [0, 1] for each.

• With probability 1, all 𝑥𝑖 are distinct and their order
determines the ranks.

• 𝑓 (𝑥) is the size of the matching output by Ranking.

12

Bounded Differences for Ranking

Lemma
𝑓 satisfies bounded differences with 𝑐𝑖 ≡ 1.

Theorem
Assuming OPT = 𝑛 (i.e. instance has a perfect matching):

ℙ [𝑓 (𝑥) < (1 −
1
𝑒 − 𝛼) 𝑛] < 𝑒−2𝛼2𝑛.

Proof. Plug 𝔼[𝑓 (𝑥)] ≥ (1 − 1
𝑒) 𝑛 and 𝑐𝑖 ≡ 1 into McDiarmid. �

13

Proving Bounded Differences Property

Instead of changing ranks, consider removing a vertex:

Lemma
Assume all ranks are fixed and let 𝑗 be some offline vertex.

Let 𝑀 be the output of Ranking and let 𝑀−𝑗 be the output of
Ranking if 𝑗 is removed from the instance.

Then |𝑀−𝑗| ≤ |𝑀| ≤ |𝑀−𝑗 + 1|.

14

Proving Bounded Differences Property

Instead of changing ranks, consider removing a vertex:

Lemma
Assume all ranks are fixed and let 𝑗 be some offline vertex.

Let 𝑀 be the output of Ranking and let 𝑀−𝑗 be the output of
Ranking if 𝑗 is removed from the instance.

Then |𝑀−𝑗| ≤ |𝑀| ≤ |𝑀−𝑗 + 1|.

14

Proving Bounded Differences Property

Instead of changing ranks, consider removing a vertex:

Lemma
Assume all ranks are fixed and let 𝑗 be some offline vertex.

Let 𝑀 be the output of Ranking and let 𝑀−𝑗 be the output of
Ranking if 𝑗 is removed from the instance.

Then |𝑀−𝑗| ≤ |𝑀| ≤ |𝑀−𝑗 + 1|.

14

Proving Bounded Differences Property

Instead of changing ranks, consider removing a vertex:

Lemma
Assume all ranks are fixed and let 𝑗 be some offline vertex.

Let 𝑀 be the output of Ranking and let 𝑀−𝑗 be the output of
Ranking if 𝑗 is removed from the instance.

Then |𝑀−𝑗| ≤ |𝑀| ≤ |𝑀−𝑗 + 1|.

14

Proving Bounded Differences Property II

4

1

×

15

Proving Bounded Differences Property II

4

1

4

3

2

6

5

1

×

15

Proving Bounded Differences Property II

4

1

4

3

2

6

5

1

×

15

Proving Bounded Differences Property II

4

1

4

3

2

6

5

1

×

15

Proving Bounded Differences Property II

4

1

4

3

2

6

5

1

×

15

Proving Bounded Differences Property II

4

1

4

3

2

6

5

1

×

15

Proving Bounded Differences Property II

4

1

4

3

2

6

5

1

×

15

Proving Bounded Differences Property II

4

1

4

3

2

6

5

1

×

15

Proving Bounded Differences Property II

4

1

4

3

2

6

5

1

×

15

Proving Bounded Differences Property II

4

1

4

3

2

6

5

1

×

15

Proving Bounded Differences Property II

4

1

4

3

2

6

5

1

15

Proving Bounded Differences Property III

4

1

4

3

2

6

5

1

×

16

Proving Bounded Differences Property III

4

1

4

3

2

6

5

1

×

16

Proving Bounded Differences Property III

4

1

4

3

2

6

5

1

×

16

Proving Bounded Differences Property III

4

1

4

3

2

6

5

1

×

16

Proving Bounded Differences Property III

4

1

4

3

2

6

5

1

×

16

Proving Bounded Differences Property III

4

1

4

3

2

6

5

1

×

16

Proving Bounded Differences Property III

4

1

4

3

2

6

5

1

×

16

Proving Bounded Differences Property IV

Lemma
𝑓 satisfies the bounded differences property for 𝑐𝑖 ≡ 1.

Proof. Consider 𝑥, 𝑥′ ∈ [0, 1]𝑛 that differ only on 𝑗. Then
|𝑓 (𝑥) − 𝑓 (𝑥′)| ≤ 1 since 𝑥−𝑗 = 𝑥′

−𝑗. �

17

Proving Bounded Differences Property IV

Lemma
𝑓 satisfies the bounded differences property for 𝑐𝑖 ≡ 1.

Proof. Consider 𝑥, 𝑥′ ∈ [0, 1]𝑛 that differ only on 𝑗. Then
|𝑓 (𝑥) − 𝑓 (𝑥′)| ≤ 1 since 𝑥−𝑗 = 𝑥′

−𝑗. �

17

Generalizations

Fully Online Matching

In Fully Online Matching:

• Can be non-bipartite
• All vertices arrive and depart online
• Vertices can only be matched if their [arrival,departure]
overlap.

Theorem
For the Fully Online Matching Problem, we have

𝔼[|𝑀| < (𝜌 − 𝛼)OPT] < 𝑒−𝛼2OPT

where 𝑀 is produced by Fully Online Ranking and 𝜌 ≈ 0.521.

18

Fully Online Matching

In Fully Online Matching:

• Can be non-bipartite

• All vertices arrive and depart online
• Vertices can only be matched if their [arrival,departure]
overlap.

Theorem
For the Fully Online Matching Problem, we have

𝔼[|𝑀| < (𝜌 − 𝛼)OPT] < 𝑒−𝛼2OPT

where 𝑀 is produced by Fully Online Ranking and 𝜌 ≈ 0.521.

18

Fully Online Matching

In Fully Online Matching:

• Can be non-bipartite
• All vertices arrive and depart online

• Vertices can only be matched if their [arrival,departure]
overlap.

Theorem
For the Fully Online Matching Problem, we have

𝔼[|𝑀| < (𝜌 − 𝛼)OPT] < 𝑒−𝛼2OPT

where 𝑀 is produced by Fully Online Ranking and 𝜌 ≈ 0.521.

18

Fully Online Matching

In Fully Online Matching:

• Can be non-bipartite
• All vertices arrive and depart online
• Vertices can only be matched if their [arrival,departure]
overlap.

Theorem
For the Fully Online Matching Problem, we have

𝔼[|𝑀| < (𝜌 − 𝛼)OPT] < 𝑒−𝛼2OPT

where 𝑀 is produced by Fully Online Ranking and 𝜌 ≈ 0.521.

18

Fully Online Matching

In Fully Online Matching:

• Can be non-bipartite
• All vertices arrive and depart online
• Vertices can only be matched if their [arrival,departure]
overlap.

Theorem
For the Fully Online Matching Problem, we have

𝔼[|𝑀| < (𝜌 − 𝛼)OPT] < 𝑒−𝛼2OPT

where 𝑀 is produced by Fully Online Ranking and 𝜌 ≈ 0.521.

18

Vertex-Weighted Online Bipartite Matching

In Vertex-Weighted Online Bipartite Matching:

• Each offline vertex 𝑗 has a weight 𝑤𝑗.
• Goal is to maximize sum of weights of matched vertices.

Theorem
For each 𝛼 > 0, there exists an algorithm such that

ℙ [𝑤(𝑀) < (1 −
1
𝑒 − 𝛼)OPT] < 𝑒

− 1
50 𝛼4 OPT2

||𝑤||22 .

19

Vertex-Weighted Online Bipartite Matching

In Vertex-Weighted Online Bipartite Matching:

• Each offline vertex 𝑗 has a weight 𝑤𝑗.

• Goal is to maximize sum of weights of matched vertices.

Theorem
For each 𝛼 > 0, there exists an algorithm such that

ℙ [𝑤(𝑀) < (1 −
1
𝑒 − 𝛼)OPT] < 𝑒

− 1
50 𝛼4 OPT2

||𝑤||22 .

19

Vertex-Weighted Online Bipartite Matching

In Vertex-Weighted Online Bipartite Matching:

• Each offline vertex 𝑗 has a weight 𝑤𝑗.
• Goal is to maximize sum of weights of matched vertices.

Theorem
For each 𝛼 > 0, there exists an algorithm such that

ℙ [𝑤(𝑀) < (1 −
1
𝑒 − 𝛼)OPT] < 𝑒

− 1
50 𝛼4 OPT2

||𝑤||22 .

19

Vertex-Weighted Online Bipartite Matching

In Vertex-Weighted Online Bipartite Matching:

• Each offline vertex 𝑗 has a weight 𝑤𝑗.
• Goal is to maximize sum of weights of matched vertices.

Theorem
For each 𝛼 > 0, there exists an algorithm such that

ℙ [𝑤(𝑀) < (1 −
1
𝑒 − 𝛼)OPT] < 𝑒

− 1
50 𝛼4 OPT2

||𝑤||22 .

19

Thank you!

19

	Online Bipartite Matching
	Randomization and Concentration Guarantees
	Ranking
	Concentration of Ranking
	Generalizations

