Online Matching with High Probability

Milena Mihail, Thorben Tröbst Symposium on Algorithmic Game Theory

 \cdot $G = (S, B, E)$ is a bipartite graph consisting of offline vertices S and online vertices B .

- \cdot $G = (S, B, E)$ is a bipartite graph consisting of offline vertices S and online vertices B .
- Online vertices arrive one by one in adverserial order.
- \cdot $G = (S, B, E)$ is a bipartite graph consisting of offline vertices S and online vertices B .
- Online vertices arrive one by one in adverserial order.
- The algorithm must irrevocably and immediately match revealed online vertices.
- \cdot $G = (S, B, E)$ is a bipartite graph consisting of offline vertices S and online vertices B .
- Online vertices arrive one by one in adverserial order.
- The algorithm must irrevocably and immediately match revealed online vertices.
- The goal is to maximize the competitive ratio, i.e.

 $|M_{\rm online}|$ $\mathrm{OPT}_{\mathrm{offline}}$

Algorithms for Online Matching Problems

• The Greedy algorithm (match whenever possible) is 1/2-competitive.

- The Greedy algorithm (match whenever possible) is 1/2-competitive.
- 1/2-competitive is best possible for deterministic algorithms.

- The Greedy algorithm (match whenever possible) is 1/2-competitive.
- 1/2-competitive is best possible for deterministic algorithms.
- The randomized RANKING algorithm is $(1 1/e)$ -competitive in expectation.

- The Greedy algorithm (match whenever possible) is 1/2-competitive.
- 1/2-competitive is best possible for deterministic algorithms.
- The randomized RANKING algorithm is $(1 1/e)$ -competitive in expectation.
- \cdot (1 1/e)-competitive in expectation is best possible for randomized algorithms.

Question

Can we solve the Online Bipartite Matching Problem with high probability as opposed to just in expectation?

[Randomization and Concentration](#page-26-0) **GUARANTEES**

Many problems have more natural, efficient, or better algorithms using randomization:

- Quicksort
- Miller-Rabin primality test
- Hashing
- Polynomial identity testing
- Perfect matching on parallel machines
- Many online algorithms!

Example: Let C be the total number of comparisons of Quicksort with random pivots.

Example: Let C be the total number of comparisons of Quicksort with random pivots.

• Most people have seen: $\mathbb{E}[C] = \overline{O(n \log n)}$.

Example: Let C be the total number of comparisons of Quicksort with random pivots.

- Most people have seen: $\mathbb{E}[C] = O(n \log n)$.
- Fewer know: $\mathbb{P}[C > c_0 \cdot n \log n] < \frac{1}{n}$ for some c_0 .

Example: Let C be the total number of comparisons of Quicksort with random pivots.

- Most people have seen: $\mathbb{E}[C] = O(n \log n)$.
- Fewer know: $\mathbb{P}[C > c_0 \cdot n \log n] < \frac{1}{n}$ for some c_0 .
- But did you know:

 $\mathbb{P}[\vert C/\mathbb{E}[C] - 1] > \epsilon] < n^{-2\epsilon(\ln \ln n - \ln(1/\epsilon) + O(\ln \ln \ln n))}$

Concentration results are useful:

- Insight about typical behavior in practice.
- Confidence that bad behavior is extremely unlikely.

Concentration results are useful:

- Insight about typical behavior in practice.
- Confidence that bad behavior is extremely unlikely.

However, concentration results are relatively rare because we can simply run the algorithm $O(\log n)$ many times (boosting). Concentration results are useful:

- Insight about typical behavior in practice.
- Confidence that bad behavior is extremely unlikely.

However, concentration results are relatively rare because we can simply run the algorithm $O(log n)$ many times (boosting).

Problem *Online algorithms cannot be boosted!*
[Ranking](#page-36-0)

Ranking by Karp, Vazirani, Vazirani (1990):

- 1. First, pick a random permutation π on the offline vertices.
- 2. On arrival: match to (currently unmatched) offline vertex i that minimizes rank $\pi(j)$.

Ranking by Karp, Vazirani, Vazirani (1990):

- 1. First, pick a random permutation π on the offline vertices.
- 2. On arrival: match to (currently unmatched) offline vertex i that minimizes rank $\pi(i)$.

Theorem (Karp, Vazirani, Vazirani 1990) *Let be the matching generated by Ranking, then*

$$
\mathbb{E}[|M|] \ge \left(1 - \frac{1}{e}\right) \text{OPT}.
$$

Question

Does the competitive ratio of Ranking hold with high probability or just in expectation?

Question

Does the competitive ratio of Ranking hold with high probability or just in expectation?

Theorem

Let be the matching generated by Ranking, then

$$
\mathbb{P}\left[|M| < \left(1 - \frac{1}{e} - \alpha\right) \text{OPT}\right] < e^{-2\alpha^2 \text{OPT}}
$$

[Concentration of Ranking](#page-55-0)

Theorem (McDiarmid 1989) *Let* $x \in [0, 1]^n$ *be uniformly distributed.*

Theorem (McDiarmid 1989)

Let $x \in [0, 1]^n$ *be uniformly distributed.*

Let ∶ [0, 1] → ℝ *have bounded differences, i.e. there is some* $c \in \mathbb{R}_{\geq 0}^n$ such that if $x, x' \in [0,1]$ disagree only on coordinate *i*, then $|f(x) - f(x')| \leq c_i$.

Theorem (McDiarmid 1989)

Let $x \in [0, 1]^n$ *be uniformly distributed.*

Let ∶ [0, 1] → ℝ *have bounded differences, i.e. there is some* $c \in \mathbb{R}_{\geq 0}^n$ such that if $x, x' \in [0,1]$ disagree only on coordinate *i*, then $|f(x) - f(x')| \leq c_i$.

Then:

$$
\mathbb{P}\left[f(x) < \mathbb{E}[f(y)] - t\right] < e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}}.
$$

• Instead of picking a random permutation on the offline vertices, pick one $x_i \in [0,1]$ for each.

- Instead of picking a random permutation on the offline vertices, pick one $x_i \in [0,1]$ for each.
- With probability 1, all x_i are distinct and their order determines the ranks.

- Instead of picking a random permutation on the offline vertices, pick one $x_i \in [0,1]$ for each.
- With probability 1, all x_i are distinct and their order determines the ranks.
- \cdot $f(x)$ is the size of the matching output by RANKING.

Lemma

f satisfies bounded differences with $c_i \equiv 1$.

Theorem

Assuming OPT = *(i.e. instance has a perfect matching):*

$$
\mathbb{P}\left[f(x) < \left(1 - \frac{1}{e} - \alpha\right)n\right] < e^{-2\alpha^2 n}.
$$

Proof. Plug $\mathbb{E}[f(x)] \geq \left(1 - \frac{1}{e}\right)n$ and $c_i \equiv 1$ into McDiarmid. \Box

Lemma

Assume all ranks are fixed and let be some offline vertex.

Lemma

Assume all ranks are fixed and let be some offline vertex. Let M be the output of RANKING and let M_{−i} be the output of *Ranking if is removed from the instance.*

Lemma

Assume all ranks are fixed and let be some offline vertex.

Let M be the output of RANKING and let M_{−i} be the output of *Ranking if is removed from the instance.*

Then $|M_{-i}| \leq |M| \leq |M_{-i} + 1|$ *.*

Lemma

f satisfies the bounded differences property for $c_i \equiv 1$.

Lemma *f* satisfies the bounded differences property for $c_i \equiv 1$.

Proof. Consider $x, x' \in [0, 1]^n$ that differ only on *j*. Then $|f(x) - f(x')| \le 1$ since $x_{-j} = x'_{-j}$ −.

GENERALIZATIONS

• Can be non-bipartite

- Can be non-bipartite
- All vertices arrive and depart online

- Can be non-bipartite
- All vertices arrive and depart online
- Vertices can only be matched if their [arrival, departure] overlap.

- Can be non-bipartite
- All vertices arrive and depart online
- Vertices can only be matched if their [arrival, departure] overlap.

Theorem

For the Fully Online Matching Problem, we have

$$
\mathbb{E}[|M| < (\rho - \alpha) \text{OPT}] < e^{-\alpha^2 \text{OPT}}
$$

where M is produced by FULLY ONLINE RANKING and $\rho \approx 0.521$.

 \cdot Each offline vertex j has a weight $w_j.$

- \cdot Each offline vertex j has a weight $w_j.$
- Goal is to maximize sum of weights of matched vertices.

- \cdot Each offline vertex j has a weight $w_j.$
- Goal is to maximize sum of weights of matched vertices.

Theorem

For each $\alpha > 0$, there exists an algorithm such that

$$
\mathbb{P}\left[w(M) < \left(1 - \frac{1}{e} - \alpha\right) \text{OPT}\right] < e^{-\frac{1}{50}\alpha^4 \frac{\text{OPT}^2}{||w||_2^2}}.
$$

Thank you!