Cardinal-Utility Matching Markets: The Quest for Envy-Freeness, Pareto-Optimality, and Efficient Computability

Thorben Tröbst, Vijay V. Vazirani Economics and Computation (EC) July 9, 2024

CARDINAL-UTILITY MATCHING MARKETS

1

1

We are given:

- \cdot agents A,
- goods *G*,
- utilities $(u_{ij})_{i \in A, j \in G} \ge 0$.

We are given:

- agents A,
- goods *G*,
- utilities $(u_{ij})_{i \in A, j \in G} \ge 0$.

Task

Find perfect matching satisfying desirable properties (fairness, efficiency, etc.).

Question Why cardinal utilities instead of ordinal?

Question Why cardinal utilities instead of ordinal?

Theorem (Immorlica et al. 2017)

Cardinal-utility mechanisms can improve the utility of all agents by a $\theta(\log(n))$ -factor over ordinal mechanisms.

1. Make goods divisible: each 1 unit of probability shares

- 1. Make goods divisible: each 1 unit of probability shares
- 2. Give every agent 1 unit of fake currency

- 1. Make goods divisible: each 1 unit of probability shares
- 2. Give every agent 1 unit of fake currency
- 3. Find market equilibrium in the resulting one-sided, linear matching market

- 1. Make goods divisible: each 1 unit of probability shares
- 2. Give every agent 1 unit of fake currency
- 3. Find market equilibrium in the resulting one-sided, linear matching market
- 4. Run lottery based on Birkhoff-von-Neumann theorem

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation xand prices p such that

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation xand prices p such that

1. x is a fractional perfect matching.

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation xand prices p such that

- 1. x is a fractional perfect matching.
- 2. No agent overspends, i.e. $p \cdot x_i \leq 1$.

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation xand prices p such that

- 1. x is a fractional perfect matching.
- 2. No agent overspends, i.e. $p \cdot x_i \leq 1$.
- 3. Every agent gets optimum bundle, i.e. $u_i \cdot x_i = \max\{u_i \cdot y \mid \sum_{j \in G} y_j = 1, p \cdot y \le 1\}.$

Theorem (Hylland, Zeckhauser 1979)

An HZ equilibrium always exists. If (x,p) is an HZ equilibrium, then x is Pareto-optimal and envy-free.

Theorem (He et al. 2018) The HZ mechanism is incentive-compatible in the large. **Question** But... how do we actually find an HZ equilibrium?

Question But... how do we actually find an HZ equilibrium?

Theorem (Chen, Chen, Peng, Yannakakis 2022) The problem of computing an ϵ -approximate HZ-equilibrium is PPAD-hard when $\epsilon = 1/n^c$ for any constant c > 0.

Also, challenging in practice!

Question

Can we find an envy-free (EF) and Pareto-optimal (PO) allocation in polynomial time?

Question

Can we find an envy-free (EF) and Pareto-optimal (PO) allocation in polynomial time?

Theorem (Tröbst, Vazirani 2024) Finding an EF+PO allocation is PPAD-hard.

Question

Can we find an envy-free (EF) and Pareto-optimal (PO) allocation in polynomial time?

Theorem (Tröbst, Vazirani 2024) Finding an EF+PO allocation is PPAD-hard.

Question Can we at least get an approximate solution?

Question

Can we find an envy-free (EF) and Pareto-optimal (PO) allocation in polynomial time?

Theorem (Tröbst, Vazirani 2024) Finding an EF+PO allocation is PPAD-hard.

Question

Can we at least get an approximate solution?

Theorem (Tröbst, Vazirani 2024)

There is a polynomial time mechanism which is $(2 + \epsilon)$ -EF, $(2 + \epsilon)$ -IC and PO.

PPAD-HARDNESS

There is a polynomial reduction from $\frac{3}{n}$ -approximate HZ to finding EF+PO allocations.

There is a polynomial reduction from $\frac{3}{n}$ -approximate HZ to finding EF+PO allocations.

EF+PO and HZ are quite different:

There is a polynomial reduction from $\frac{3}{n}$ -approximate HZ to finding EF+PO allocations.

EF+PO and HZ are quite different:

1. HZ may have only irrational solutions, but there are always rational EF+PO solutions

There is a polynomial reduction from $\frac{3}{n}$ -approximate HZ to finding EF+PO allocations.

EF+PO and HZ are quite different:

- 1. HZ may have only irrational solutions, but there are always rational EF+PO solutions
- 2. HZ little structure (fixed point), but EF+PO is polyhedral

Strategy:

1. Modify the instance in a clever way

Strategy:

- 1. Modify the instance in a clever way
- 2. Use the second welfare theorem: get prices and budgets from Pareto-optimality.

Strategy:

- 1. Modify the instance in a clever way
- 2. Use the second welfare theorem: get prices and budgets from Pareto-optimality.
- 3. Main idea: use envy-freeness and linearity to show that budgets must be (approximately) equal.

Lemma (Optimal Bundles)

We can find budgets *b* and prices *p*, so that for every agent *i*, *x*_{*i*} is an optimum solution to

$$\max \quad u_i \cdot x_i$$

s.t.
$$\sum_{j \in G} x_{ij} \le 1,$$
$$p \cdot x_i \le b_i,$$
$$x_i \ge 0.$$

 \approx Second Welfare Theorem, get prices by setting up correct primal and dual LPs

Idea 1: Expand the Instance (k = 4)

IDEA 1: EXPAND THE INSTANCE (k = 4)

After modifying the instance:

Lemma

Let $i, i' \in A$ be such that utilities agree up to one good where they differ by at most ϵ . Then $|b_i - b_{i'}| \le 5n^2\epsilon$. After modifying the instance:

Lemma

Let $i, i' \in A$ be such that utilities agree up to one good where they differ by at most ϵ . Then $|b_i - b_{i'}| \leq 5n^2 \epsilon$.

Proof. Suppose $b_i > b_{i'}$. Then *i* gets a better bundle than *i'* due to non-satiation. *i'* agrees that *i*'s bundle is better: envy!

IDEA 3: INTERPOLATION

IDEA 3: INTERPOLATION

How many interpolating agents are there between any two normal agents?

How many interpolating agents are there between any two normal agents?

Answer: Up to $\frac{n}{\epsilon}$.

How many interpolating agents are there between any two normal agents?

Answer: Up to $\frac{n}{\epsilon}$. So $|b_i - b_{i'}| \le 5n^3$.

How many interpolating agents are there between any two normal agents?

Answer: Up to $\frac{n}{\epsilon}$. So $|b_i - b_{i'}| \le 5n^3$.

Completely useless! ③

Lemma

Let $i, i' \in A$ such that i and i' agree on which bundles are optimal bundles. Then $b_i = b_{i'}$.

Lemma

Let $i, i' \in A$ such that i and i' agree on which bundles are optimal bundles. Then $b_i = b_{i'}$.

Caveat:

- In HZ, optimum bundles depend on utilities, prices, and the budget of the agent.
- For the lemma, agents must agree on the optimum bundles at all possible budgets.

Lemma

Let $i, i' \in A$, then $|b_i - b_{i'}| \le 5\epsilon n^4$.

Lemma

Let $i, i' \in A$, then $|b_i - b_{i'}| \le 5\epsilon n^4$.

Proof. Between two agents, at most $2n^2$ changes can happen. Each contributes at most $5\epsilon n^2$.

Theorem

If
$$\epsilon \leq \frac{1}{5n^5}$$
 and $k = \frac{n^3}{\epsilon}$, then (x,p) is a $\frac{3}{n}$ -approximate HZ equilibrium in the original instance.

Theorem

If $\epsilon \leq \frac{1}{5n^5}$ and $k = \frac{n^3}{\epsilon}$, then (x, p) is a $\frac{3}{n}$ -approximate HZ equilibrium in the original instance.

Theorem

The problem of finding an EF+PO allocation in one-sided cardinal-utility matching market is PPAD-hard.

NASH BARGAINING

Hosseini, Vazirani 2021: Let's use Nash bargaining instead:

$$\max_{X} \sum_{i \in A} \log(u_i(x))$$

s.t.
$$\sum_{i \in A} x_{ij} \le 1 \quad \forall j \in G,$$
$$\sum_{j \in A} x_{ij} \le 1 \quad \forall i \in A,$$
$$x \ge 0.$$

Concrete polynomial time algorithms given in Panageas, Tröbst, Vazirani 2022.

1. Pareto-optimality (by definition)

- 1. Pareto-optimality (by definition)
- 2. Polynomial time computability (by convex program)

- 1. Pareto-optimality (by definition)
- 2. Polynomial time computability (by convex program)
- \Rightarrow What else?

Theorem (Tröbst, Vazirani 2024) If x is a Nash bargaining solution, then x is 2-approximately envy free.

If *x* is a Nash bargaining solution, then *x* is 2-approximately envy free.

Theorem (Tröbst, Vazirani 2024)

The Nash-bargaining-based mechanism is 2-approximately incentive compatible.

Nash bargaining is a practical HZ alternative for one-sided cardinal-utility matching markets.

THANK YOU!