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ABSTRACT OF THE DISSERTATION
Cardinal-Utility Matching Markets and Online Matching

By

Thorben Alexander Tröbst

Doctor of Philosophy in Computer Science

University of California, Irvine, 2024

Distinguished Professor Vijay V. Vazirani, Chair

In this dissertation, we study several aspects of matching-based market design, i.e. the

problem of designingmechanisms that canmatch agents to goods (or to other agents) while

satisfying certain desirable properties such as fairness or efficiency. Common applications

include matching students to schools, doctors to hospitals, riders to drivers, search queries

to online advertisements, etc.

Part I deals with cardinal-utility matching markets where agents report non-negative

utilities for the goods they are interested in. The Hylland Zeckhauser mechanism satisfies

many of the desirable properties that we are interested in, however it has been shown

to be PPAD-complete. We design alternative, polynomial time mechanisms for several

settings. In particular, this dissertation provides substantial support for Nash-bargaining-

based mechanisms as a computationally tractable alternative to HZ.

Part II deals with online matching where some of the agents or goods arive online and

must be matched immediately and irrevocably. We provide a novel analysis of the classic

Ranking algorithm which shows that it achieves its competitive ratio of 1 − 1/4 with high

probability as opposed to just in expectation. In addition, we introduce the study of online

matching on hypergraphs where we give asymptotically almost tight upper and lower

bounds.
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Part I

Cardinal-Utility Matching Markets
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Chapter 1

Background

A matching market, broadly speaking, refers to any setting in which agents must be

matched to either goods or other agents under certain preferences. The key point here is

that each agent gets at most one good. In most cases, matching markets do not involve

any form of payments but rather the goal is simply to assign resources efficiently and in

a fair way. Classic examples of matching markets include matching students to schools,

doctors to hospitals, kidney donors to patients, etc. In 2012, the Nobel prize in economics

was awarded to Alvin Roth and Lloyd Shapley for their seminal work on matching markets.

For a detailed overview of the area, we refer to [40].

In this part of the dissertation, we will consider the classic setting of a centralized, offline

market. We are given a set � of agents and a set � of goods. For the sake of simplicity, we

will assume that |�| = |�| = = with the goal henceforth being to find perfect matchings

between agents and goods.

Matching markets can be classified according to three dichotomies: cardinal-utility vs

ordinal-preferences, two-sided vs one-sided, and endowments vs no endowments. In a

cardinal-utility matching market, each agent 8 ∈ � has a non-negative vector (D8 9)9∈� of

2



utilities over the goods, whereas in an ordinal-preferences matching market, each agent 8 ∈ �

has some total order �8⊆ �2 over the goods. For reasons explained in Section 1.1, this

dissertation focuses entirely on cardinal utilities.

In the remainder of this chapter, we will present the most significant preliminary informa-

tion for the study of cardinal-utility matching markets (CMMs), focusing on the one-sided

and no-endowments case. We will make an argument as to why CMMs are of particular in-

terest in Section 1.1, followed by background information on market equilibria (Section 1.2),

the celebrated Hylland Zeckhauser mechanism (Section 1.3), and the Nash bargaining

game (Section 1.4).

In Chapter 2, we will introduce the setting with endowments while focusing primarily on

bivalued / dichotomous utilities where we can give polynomial time algorithms. We will

study the natural extension of HZ to such a setting with endowments: the Arrow-Debreu

Hylland-Zeckhauser (ADHZ) model. In this setting, we will give a new counterexample

that shows that ADHZ equilibria do not exist, even in very restricted conditions. On the

other hand, we will introduce the &-approximate ADHZ model and show its existence.

Our main result is a polynomial time algorithm to compute such &-approximate ADHZ

equilibria under dichotomous utilities. Finally, we will briefly return to the standard,

non-endowment model and give a rational convex program for HZ with dichotomous

utilities.

In Chapter 3, we will return to the standard setting without endowments, but instead

broaden our scope to general (i.e. not necessarily bivalued) utilities. It is known that

finding an approximate HZ equilibrium is PPAD-hard [28] and so we will investigate

whether there might be an alternative mechanism which is able to attain at least attain

some of the desirable properties ofHZ in polynomial time, especially envy-freeness (EF) and

Pareto-optimality (PO). We will show that finding any EF+PO allocation is already PPAD

hard but that Nash bargaining gives 2-approximately EF and PO allocations. Moreover,

3



Nash bargaining also turns out to be 2-approximately incentive compatible. Lastly, we will

show that EF+PO allocations generally do not exist in two-sided markets and propose an

alternative notion of fairness which does.

In Chapter 4, we will focus on the computation of Nash bargaining solutions. Given the

results from the previous chapter, Nash bargaining is a promising alternative for HZ under

general utilities. In this chapter, we will give two relatively simple algorithms which are

efficient both in theory and in practice in order to find approximate Nash bargaining

solutions for a variety of matching market models. The algorithms are based on the

multiplicative weights update technique and on conditional gradient descent. We will

even consider non-bipartite models.

1.1 Preliminaries

In a matching market, our goal is to match a set � of agents to a set � of goods with

|�| = |�| = =. As mentioned previously, we assume that agents have some form of

preferences over the goods and want to find matchings with certain “desirable” properties.

A key question is how agents should report their preferences and here there are two distinct

approaches: ordinal preferences and cardinal utilities.

Under ordinal preferences, agents report preference lists over the goods, i.e. each agent 8 ∈ �

has some total order �8⊆ �2. Sometimes, ties between goods are also allowed. This model

is particularly popular in the matching market literature, going back to the seminal work

by Gale and Shapley on the Stable Matching Problem and the classic Deferred Acceptance

algorithm [56]. Many prominent mechanisms have been developed for matching markets

with ordinal preferences such as Random Priority [103], Probabilistic Serial [17], and

Top Trading Cycles [113].
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In this dissertation, we will instead consider cardinal utilities. Here, each agent 8 ∈ � has a

non-negative vector (D8 9)9∈� of rational utilities over the goods. Cardinal utilities allow the

agents to express how much they prefer one good over another. For this reason, mechanisms

that use cardinal utilities have the potential to be much more efficient than those which use

ordinal preferences. Our standard measure of efficiency is that of Pareto-optimality.

Definition 1.1. Let (G8 9)8∈�,9∈� and (H8 9)8∈�,9∈� be fractional perfect matchings (FPMs). We

call H Pareto-better than G, if D8 · H8 ≥ D8 · G8 for all 8 ∈ � and D8 · H8 > D8 · G8 for some 8 ∈ �

where D8 · H8 =
∑
9∈� D8 9H8 9 (and likewise for D8 · G8) is the standard inner product. We call G

Pareto-optimal, if there is no FPM which is Pareto-better than G.

Note that Definition 1.1 is phrased in terms of fractional perfect matchings even though

we are often interested in integral perfect matchings. The reason for this is an observation

which goes back to Hylland and Zeckhauser [75]. Finding integral matchings which are

fair in any meaningful sense of the word is generally impossible as standard notions from

fair division (e.g. EFX, EF1, maximin share etc.) are only relevant when agents can get

multiple goods. For example, if there is a good which all agents agree is more desirable

than the other goods, whoever does not get that good will be envious. We have no way of

compensating them by giving them more of the less desirable goods.

Instead, the idea is to design mechanisms which find desirable lotteries over integral match-

ings thus using the power of randomness to provide fairness. A lottery over integral

matchings is simply a convex combination of integral matchings fromwhich we can sample

in polynomial time. By a well-known result of Birkhoff and von Neumann, this is exactly

equivalent to being a fractional perfect matching (in bipartite graphs).

Theorem 1.1 (Birkhoff [15], von Neumann [124]). Let (G8 9)8∈�,9∈� be a fractional perfect match-

ing. Then there exist H(1), . . . , H(:) integral perfect matchings with : ∈ $(=2) and corresponding

�1, . . . ,�: ≥ 0 with �1 + · · · + �: = 1 such that G =
∑:
8=1 �8H

(8). Moreover, both H and � can be

found in polynomial time.
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For this reason, we will generally only consider fractional perfect matchings in this part of

this dissertation. If an integral matching is desired (as is often the case), then one should

use the algorithm from the Birkhoff-von-Neumann theorem to run a lottery after the fact.

For an example of such a lottery, consider the permit lotteries ran by recreation.gov to

allocate permits to visit various crowded attractions.1 Visitors can list various dates on

which they wish to visit the attraction and a lottery is used to determine who gets a permit

and on which day. This can easily be modelled as a one-sided matching market, though

we do not know which algorithm they use to run the lottery.

Note that properties which hold for the lottery are usually called ex ante properties whereas

properties that hold for the sampled integral matching are called ex post. If not otherwise

mentioned, we will always consider ex-ante properties by default. In this nomenclature,

Definition 1.1 actually refers to ex-ante Pareto-optimality. An integral perfect matching

would be ex-post Pareto-optimal if there was no other integral perfect matching which was

Pareto-better than it. Note that any integral perfect matching which is sampled from an

ex-ante Pareto-optimal lottery is automatically ex-post Pareto-optimal.

Finding amatching, integral or fractional, which is merely Pareto-optimal is not particularly

challenging; any max-weight matching would satisfy this condition. The goal is to combine

this property with other useful properties such as that of envy-freeness defined below.

Definition 1.2. Let (G8 9)8∈�,9∈� be a fractional perfect matching. If 8 , 8′ ∈ � are agents such that

D8 · G8 < D8 · G8′, i.e. agent 8 strictly prefers the bundle of agent 8′ to their own, then we say that 8

envies 8′. If no agent envies any other agent, G is envy-free.

Again, note that we have technically defined ex-ante envy-freeness here. As already men-

tioned, ex-post envy-freeness is typically not a useful notion for matching markets as it

generally does not exist and neither do its common generalizations.
1https://www.recreation.gov/lottery/available
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The last major property that we desire in the context of matching markets is incentive

compatibility. Informally, we do not want agents to be able to lie about their utilities in order

to gain an advantage. Note that this is not a property of matchings, fractional or otherwise,

and rather a property of mechanisms, i.e. the assignment of utilities to matchings. A formal

definition is given below.

Definition 1.3. A mechanism is a function " which maps utility profiles (D8 9)8∈�,9∈� to frac-

tional perfect matchings. We call " dominant-strategy incentive-compatible (DISC) or simply

incentive-compatible, if for all utility profiles D and agents 8 ∈ �, there does not exist any (D̂8 9)9∈�
such that agent 8 prefers "(D−8 , D̂8) to "(D) wrt. utilities D. In other words, no agent can misreport

utilities so that they gain wrt. their original, true utilities. Here we use the notation (D−8 , D̂8) to

refer to the utility profile which agrees with D on all agents except for 8 and agrees with D̂ on agent 8.

Unfortunately, due to a result by Zhou [128], there is nomechanismwhich is Pareto-optimal,

envy-free and incentive-compatible. Indeed, envy-freeness can be relaxed to symmetry

(equal agents must get equal utility) in this impossibility result. Achieving incentive-

compatibility with cardinal utilities turns out to be a rather challenging task; see Abebe et

al. [1] for a weak result in this direction. This brings us back to the question: why focus on

cardinal utilities in the first place?

Theorem 1.2 (Immorlica et al. [76]). There are instances with : types of agents and goods such

that all agents have the same preference order over the goods but the uniform allocation (i.e. every

agent gets an equal fraction of each good) is highly inefficient: a different allocation improves the

utility of every agent by a factor of :2 .

Proof. Let 8 ∈ {1, . . . , :}, then there will be 2: identical agents and 28−1 identical goods

labeled with number 8 in our instance. An agent with label 8 has utility 1 for goods with

labels 1, . . . , 8 and utility 0 for the remaining goods. Assume that all agents break ties in the

same way, if necessary by slightly perturbing all utilities to enforce the same ordering of
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goods for all agents. Note that there are fewer goods than agents as described so far, so add

sufficiently many dummy goods to the instance which all agents have utility 0 for. Again,

perturb the utilities as necessary to make sure all agents agree on their ordinal preferences

to satisfy the condition of the theorem.

Now let us consider how much utility each agent gets under the uniform allocation. Since

there are :2: agents, each agent gets a 1
:2: fraction of every good. So the utility of an agent

with label 8 is

1
:2:

8∑
9=1

28−1 =
1
:2:
(28 − 1).

On the other hand, consider the allocation G in which we equally distribute the 28−1 goods

with label 8 to the 2: agents with label 8 for every 8. Afterwards, we can make sure that

the allocation is a fractional perfect matching by filling up with dummy goods. Under this

allocation, the utility of an agent with label 8 is 28−1

2: . Therefore G improves the utility of

every agent by a factor of at least :2 . �

Note that since the agents in the instances from Theorem 1.2 are ordinally indistinguishable,

the uniform allocation is the really the only reasonable allocation for a fair mechanism to

chose if we only have access to the ordinal preferences. Moreover, the instances involved

do not get too large: for = agents and goods, we can potentially improve each agent by a

�(log =) factor. This is a highly limiting result for the efficiency of ordinal mechanisms in

matching markets and our main motivation for studying cardinal utilities.
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1.2 Market Equilibria

A particularly powerful tool for finding fair and efficient allocations of any kind, matchings

and otherwise, is the theory of market equilibria. In this section we will give a short

overview of markets with money and their equilibria.

The simplest kind of market with money is the linear Fisher market. Here we are given a

set � of agents and a set � of goods as well as non-negative, linear utilities (D8 9)8∈�,9∈�. The

goods are perfectly divisible and for each good there is exactly one unit of it in the market.

Each agent 8 has some budget 18 > 0 which they wish to spend on the goods. However,

there is no matching constraint: agents can get more than one total unit of goods as long as

they can afford it with their budget.

Note that the restriction that we have exactly one unit of each good is without loss of

generality: we can simply rescale the units to make sure this is the case. We also have not

specified what kind of numbers are used for the utilities and budgets. Economists and

mathematicians would allow real numbers. Since the main focus of this dissertation is on

computational matters, we will generally assume that all numbers involved are rational.

Definition 1.4. Given �, �, D, and 1, a Fisher market equilibrium consists of an allocation

(G8 9)8∈�,9∈� and non-negative prices (? 9)9∈� such that

1. No agent overspends, i.e. ? · G8 ≤ 18 for each 8 ∈ �.

2. Each agent 8 gets an optimal bundle, i.e. G8 maximizes D8 · G8 under the constraint that

? · G8 ≤ 18 .

3. The market clears, i.e.
∑
8∈� G8 9 = 1 for all 9 ∈ �.

We remark that there are several common variants of Definition 1.4. A common require-

ment is that each agent spends their entire budget. However, with linear utilities this is
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guaranteed by Definition 1.4, provided that each agent has strictly positive utility for at

least one good. Similarly, the market clearing condition is often stated in the form: if a

good 9 ∈ � has ? 9 > 0, then
∑
8∈� G8 9 = 1. However, under linear utilities it is clear that a

good cannot actually have price 0 as long as there is at least one agent who has positive

utility for it since otherwise said agent would demand an infinite quantity of the good.

Throughout this thesis we will typically make these common assumptions implicitly.

Theorem 1.3. Assuming that each agent has positive utility for at least one good and each good

has positive utility for at least one agent, a Fisher market equilibrium always exists.

The Fisher market model itself goes back to Irving Fisher’s 1891 PhD thesis. However,

Fisher did not prove that a market equilibrium always exists. Arrow and Debreu [5] were

the first to prove the existence of market equilibria, though their model is more general

than that of Fisher as we will see later in this section. The proof is non-constructive and

relies on Kakutani’s fixed-point theorem which is an extension of Brouwer’s fixed-point

theorem that was discovered 50 years after Fisher’s work.

Market equilibria have remarkable properties. First, they exactly characterize the set of

Pareto-optimal allocations as per the fundamental theorems ofwelfare economics. Note that

Pareto-optimality is defined analogously as in Definition 1.1; we just allow all allocations

now, not just fractional perfect matchings.

Theorem 1.4 (First Welfare Theorem). Let (G, ?) be a Fisher market equilibrium. Then G is

Pareto-optimal.

Theorem 1.5 (Second Welfare Theorem). Let G be a Pareto-optimal allocation in a linear Fisher

market. Then there exist non-negative prices (? 9)9∈� and positive budgets (18)8∈� such that (G, ?) is

a Fisher market equilibrium under budgets 1.
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Another simple but remarkable fact is that market equilibria are envy-free, provided that

the budget of each agent is the same.2 Again, the definition of envy-freeness in this setting

is the same as Definition 1.2.

Theorem 1.6 (Varian [118]). Let (G, ?) be a Fisher market equilibrium for uniform budgets, i.e.

all agents have the same budget. Then G is envy-free.

Proof. Consider any two agents 8 , 8′ ∈ �. 8 cannot envy 8′ because 18 = 18′ and so agent 8

could have bought the same bundle as 8′. Since 8 gets an optimal bundle, we therefore know

that D8 · G8 ≥ D8 · G8′. �

We remark that allocating goods via such a market equilibrium process is not an incentive

compatible mechanism; it is possible for agents to manipulate prices by misreporting their

utilities. However, the potential for such manipulations becomes smaller as the market

becomes larger. This was formalized by Roberts and Postlewaite [110], though the details

go beyond the scope of this introduction.

Instead, we will now focus on computational matters. As previously mentioned, the

existence of Fisher market equilibria follows from a non-constructive fixed-point argument.

Can we compute a Fisher market equilibrium? It turns out that the Fisher market equilibria

are captured by the so-called Eisenberg-Gale (EG) convex program shown below.

max
∑
8∈�

18 log(D8 · G8)

s.t.
∑
8∈�

G8 9 ≤ 1 ∀9 ∈ �,

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �

(1.1)

Theorem 1.7 (Eisenberg [46], Gale [54]). Let G be an optimal solution to (1.1). Then there exist

non-negative prices (? 9)9∈� (dual variables) such that (G, ?) is a Fisher market equilibrium.
2With differing budgets, they satisfy a kind of weighted envy-freeness.
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Theorem 1.7 implies that we can simply solve the EG convex program, for example with the

ellipsoid method, in order to get both the allocation (primal) and its prices (dual) making

up a Fisher market equilibrium. Of course we cannot in general hope to find an exact

solution to the convex program, but this method does provide an approximate equilibrium

in polynomial time for some suitable definition of approximate. But we can do even better:

Devanur et al. [36] give a combinatorial algorithm, the DPSV algorithm, which finds an exact

equilibrium in polynomial time. This was later improved by Orlin [106] to find equilibria

in strongly polynomial time.

Note that the existence of this algorithm implies in particular that there is always a rational

equilibrium which is a rather remarkable fact on its own since this implies that the EG

convex program always has at least one rational solution. Convex programs with this

rather rare property are called rational convex programs (RCPs) and have a tendency to

show up in the study of market equilibria [119].

The linear Fisher market is a rather simple market model and many extensions have been

considered in the economics literature. It is common to study non-linear utilities of various

types and generally, many of the results from this section go through as long as the agents

have concave utility functions. Another common extension is the exchangemodel by Arrow

and Debreu [5].

In the Arrow Debreu market model, we are still given agents � and goods � with non-

negative, linear utilities (D8 9)8∈�,9∈�. The difference to the Fisher model is that agents no

longer come to the market with money. Instead, the each agent has an initial endowment of

goods, i.e. there is an initial allocation (48 9)8∈�,9∈� with
∑
8∈� 48 9 = 1 for all goods 9 ∈ �. The

idea is that the market will determine non-negative prices (? 9)9∈� and then each agent will

sell their initial endowment at market prices and buy an optimal bundle with that money.
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Definition 1.5. Given �, �, D, and 4, an Arrow Debreu market equilibrium consists of an

allocation (G8 9)8∈�,9∈� and non-negative prices (? 9)9∈� such that

1. No agent overspends, i.e. ? · G8 ≤ ? · 48 for each 8 ∈ �.

2. Each agent 8 gets an optimal bundle, i.e. G8 maximizes D8 · G8 under the constraint that

? · G8 ≤ ? · 48 .

3. The market clears, i.e.
∑
8∈� G8 9 = 1 for all 9 ∈ �.

The Arrow Debreu market is a generalization of the Fisher market. Given a Fisher market

with budgets (18)8∈�, we can transform this into endowments 48 9 B 18∑
8′∈� 18′

. Since the prices

in the Arrow Debreu market are clearly scale invariant, we can rescale them to make sure

that
∑
9∈� ? 9 =

∑
8∈� 18 in which case these endowments guarantee that every agent 8 gets

exactly 18 units of money for his endowment, thus recovering the Fisher market setting.

As for the linear Fisher market, there are several slight variations of Definition 1.5. We

will typically assume that each agent has positive utility for at least one good and positive

endowment of at least one good as well as that each good has positive utility for at least

one agent. However, even with these assumptions, equilibria do not always exist and a

more technical condition is required.

Definition 1.6. For a given linear Arrow Debreu market, we can define the demand graph which

is a directed graph on the set of agents which contains an edge (8 , 8′) whenever there exists a good

9 ∈ � such that 48′ 9 > 0 and D8 9 > 0, i.e. agent 8 likes at least one good that initially belongs to 8′.

Theorem 1.8 (Gale [55]). Consider the demand graph� of a linear Arrow Debreu market. Assume

that for every agent 8 which is a singleton strongly connected component of �, there is at least one

good 9 ∈ � with D8 9 > 0 and 48 9 > 0. Moreover, assume that each agent has positive utility for at

least one good and positive endowment of at least one good as well as that each good has positive

utility for at least one agent. Then an Arrow Debreu market equilibrium exists.
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We remark that the original existence result by Arrow and Debreu makes a substantially

stronger assumption, namely that each agent has a positive endowment of every good [5].

On the computational side, Jain [79] gave a rational convex program whose solutions are

Arrow Debreu market equilibria, thus allowing us to find an equilibrium in polynomial

time, for example via the ellipsoid method. Duan and Mehlhorn [37] were able to find a

combinatorial algorithm using a similar approach as the DPSV algorithm for the Fisher

market. Garg and Végh [63] further improved this approach to find an equilibrium in

strongly polynomial time.

1.3 The Hylland Zeckhauser Mechanism

Let us now return to matching markets. We are given sets � of agents and � of goods with

|�| = |�| = = as well as non-negative linear utilities (D8 9)8∈�,9∈�. The goal is to find a perfect

matching of agents and goods with desirable properties. This was precisely the problem

studied by Hylland and Zeckhauser in their seminal 1979 work [75].

The first observation that they made (and which we already covered in Section 1.1) is the

fact that we can relax the problem to consider fractional perfect matchings instead. Each

good becomes one unit of perfectly divisible probability shares and each agent must be

allocated exactly one unit of probability shares in total. Once probability shares have been

allocated, we can run a corresponding lottery via Theorem 1.1.

Themain idea is that we can then turn the problem into amarket: we simply give each agent

an equal amount of income and find a competitive equilibrium. The resulting allocation

will be fair and efficient. This alone is not too surprising as Varian [118] had made the

same observation for the tradtional fair division setting without the matching constraint.

However, it is not obvious that a competitive equilibrium even exists in this setting.
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Definition 1.7. Given �, �, D, and 1, an HZ market equilibrium consists of an allocation

(G8 9)8∈�,9∈� and non-negative prices (? 9)9∈� such that

1. G is a fractional perfect matching.

2. No agent overspends, i.e. ? · G8 ≤ 18 for each 8 ∈ �.

3. Each agent 8 gets an optimal bundle, i.e. G8 maximizes D8 · G8 under the constraint that

? · G8 ≤ 18 and
∑
9∈� G8 9 = 1.

4. Each agent 8 gets a cheapest bundle, i.e. G8 minimizes ? · G8 among all bundles with utility

at least D8 · G8 and
∑
9∈� G8 9 = 1.

Almost always, the budgets 1 will be identical in order to guarantee envy-freeness and

unless otherwise stated, one should assume that an HZ equilibrium has equal budgets. In

some settings it can make sense to give preferential treatment to certain agents in which

case non-uniform budgets can be used.

Definition 1.7 is quite similar to the equilibrium notions for the Fisher market and Arrow

Debreu market from Section 1.2. There are two main differences:

1. Instead of the normal market clearing condition, we now additionally require that

each agent gets exactly one unit of goods. In line with this extra constraint, optimal

bundles must only be optimal among those bundles which contain exactly one unit

of goods.

2. Agentsmust not only get optimal bundles, but cheapest optimal bundles. This technical

constraint is required in order to guarantee Pareto-optimality despite the fact that

agents’ utilities can be satiated. Unlike in a Fisher market, agents in an HZ market

may not always spend their entire budget since they are limited to one unit of goods.
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As was the case for the Fisher and Arrow Debreu markets, an HZ equilibrium has many

desirable properties.

Theorem 1.9 (Hylland, Zeckhauser [75]). Let (G, ?) be an HZ equilibrium. Then G is Pareto-

optimal.

Proof. Assume otherwise, i.e. there is some FPM H which is Pareto-better than G. We will

now consider how much each agent would spend under H. Note that since each agent

in an HZ equilibrium gets a cheapest bundle and since D8 · H8 ≥ D8 · G8 (by definition of

Pareto-optimality), we know that ? · H8 ≥ ? · G8 .

But we also know that there is at least one agent 8 such that D8 · H8 > D8 · G8 . For that agent we

must have ? · H8 > ? · G8 since otherwise G8 is not an optimal bundle for 8. We can conclude

that
∑
8∈� ? · H8 >

∑
8∈� ? · G8 .

This is a contradiction since a simple calculation shows that

∑
8∈�

? · G8 =
∑
8∈�

∑
9∈�

? 9G8 9 =
∑
9∈�

? 9

∑
8∈�

G8 9 =
∑
9∈�

? 9

by virtue of G being a fractional perfect matching. Likewise,
∑
8∈� ? · H8 =

∑
9∈� ? 9 since H is

a fractional perfect matching as well. �

Theorem 1.10 (Hylland, Zeckhauser [75]). Let (G, ?) be an HZ equilibrium with equal budgets.

Then G is envy-free.

Proof. The proof is identical to the proof of Theorem 1.6: agents cannot envy another

because they can afford the other agents’ bundles. �

Theorem 1.11 (He et al. [69]). The HZ mechanism is incentive compatible in the large.

As mentioned in Section 1.1, there is no mechanism which is Pareto-optimal, envy-free, and

incentive compatible [128]. The notion of “incentive compatible in the large” essentially
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states that the mechanism becomes incentive compatible as long as there are many copies

of agents and goods in the market to prevent individuals from affecting the prices too

much. The practical relevance of this result is debatable. However, in practice it is also not

obvious how to manipulate the mechanism without knowing the other agents’ utilities

which may be an additional protection against manipulation. Of course, these properties

are only interesting because HZ equilibria are guaranteed to exist which is precisely what

Hylland and Zeckhauser showed.

Theorem 1.12 (Hylland, Zeckhauser [75]). An HZ market equilibrium always exists.

The proof of Theorem 1.12 is similar to other existence proofs for market equilibria and

relies critically on Kakutani’s fixed-point theorem. It therefore provides no way of actually

computing an HZ equilibrium. Unlike the Fisher and Arrow Debreu markets, there is

no rational convex program for HZ market equilibria. This was shown by Vazirani and

Yannakakis [122] who in fact provided an instance with rational utilities in which there is a

unique irrational equilibrium.

The irrationality of HZ equilibria also rules out the possibility that finding an HZ equilib-

rium could be in the complexity class PPAD which contains various other market equilib-

rium computation problems. On the other hand, Vazirani and Yannakakis [122] showed

that finding an HZ equilibrium is in FIXP and that the problem of finding an &-approximate3

HZ equilibrium is indeed in PPAD. Chen et al. [28] recently showed the corresponding

hardness: finding an &-approximate HZ equilibrium is PPAD-hard and therefore likely to

be computationally intractible.

On the positive side, Vazirani and Yannakakis [122] were able to give a polynomial time

algorithm for HZ equilibria under bivalued utilities, i.e. each agent has utilities D8 9 ∈ {08 , 18}

where 08 , 18 are two non-negative rational numbers that may be different for each agent.
3We will cover approximate equilibrium notions in more detail in the following chapters.
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Note that the result of Chen et al. [28] established hardness for four-valued utilities, thus

leaving the three-valued case open for now. It is also possible to find equilibria in polyno-

mial time assuming that the total number of agent or good types is constant. Alaei et al. [3]

provide such an algorithm based on the algebraic cell decomposition technique, though

their running times increase at least on the order of :5:2 where : is the number of types.

Garg et al. [61] improve on this with an algorithm that scales with :: . Neither algorithm is

practical on realistic instances.

1.4 Nash Bargaining

Aside from market equilibria, another strategy for the fair and efficient allocation of re-

sources is based onNash bargaining. The idea, which goes back to Nash [105], is to consider

a more general situation in which = agents are bargaining about some shared outcome.

There is a set of potential outcomes (specified purely in terms of the utilities that the agents

accrue) as well as a disagreement point which represents the utility that agents get if

bargaining fails. A formal definition is given below.

Definition 1.8. An =-person Nash bargaining game consists of a convex, compact setU ⊆ R=≥0

of =-dimensional utility vectors and a disagreement point 2 ∈ U . The game is feasible if there

exists at least one D ∈ U with D8 > 28 for all 8 ∈ [=].

Nash asked the question: which point D★ ∈ U , called a Nash bargaining point, do the =

players reach if they bargain in a rational way with each other? He came up with a series

of axioms that D★ should satisfy:

1. D★ should be Pareto-optimal.
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2. D★ should be symmetric, i.e. for any permutation � : [=] → [=], the point (D★
�(8))8∈[=]

should be a Nash bargaining point for the Nash bargaining problem in which agents

have been permuted by �.

3. D★ should be invariant under affine transformations, i.e. if 5 : R= → R= is some affine

transformation then 5 (D★) is a Nash bargaining point for the Nash bargaining game

( 5 (U), 5 (2)).

4. D★ should be independent of irrelevant alternatives, i.e. if there is some convex,

compactU ′ ⊆ U and D★ ∈ U ′ then D★ is also a Nash bargaining point for (U ′, 2).

These axioms, particularly the fourth one, are somewhat contentious. Still, under certain

assumptions on the bargaining process, one can show that rational agents really do reach

a point satisfying these conditions [14]. It turns out that there is always a unique Nash

bargaining point and it has a simple characterization.

Theorem 1.13 (Nash [105]). There always exists a unique point D★ satisfying axioms 1–4 in any

feasible Nash bargaining game, namely the unique maximizer of
∏

8∈[=](D8 − 28) over all D ∈ U .

The product of agents’ utilities is often called the Nash social welfare and has the very useful

property of being log-concave. This is why Nash bargaining is of particular interest to us:

after taking the log of the objective, the unique Nash bargaining point can be computed

via the following convex program.

max
∑
8∈[=]

log(D8 − 28)

s.t. D ∈ U .
(1.2)

Since (1.2) is a convex program, we can find arbitrarily good approximations to the Nash

bargaining solution in polynomial time, for example using the ellipsoid method [66]. This
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“easy” computability is in stark contrast to the computation of market equilibria which

often turns out to be intractable. In Chapter 4, we will see that (1.2) can be solved efficiently

with very practical algorithms.

Hosseini and Vazirani [70] realized that Nash bargaining might make for a good alternative

mechanism to HZ for matching markets. This approach is based on prior work by Vazirani

for the Arrow Debreu market [119]. For matching markets, the setU is the set of all utility

vectors that arise from fractional matchings and the disagreement point 2 is commonly the

zero vector, though other disagreement points can be chosen as we will discuss in Chapters

2 and 4. This yields the convex program:

max
∑
8∈�

log(D8 · G8)

s.t.
∑
9∈�

G8 9 ≤ 1 ∀8 ∈ �,∑
8∈�

G8 9 ≤ 1 ∀9 ∈ �,

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �.

(1.3)

We remark that the matching constraint ≤ 1 can easily be replaced by a perfect matching

constraint = 1 since we assume that all utilities are non-negative. The astute reader might

notice that (1.3) looks almost the same as (1.1), the Eisenberg Gale convex program for the

Fisher market. Indeed, without the matching constraint, Nash bargaining is equivalent to

Fisher market equilibria with uniform budgets.

In that sense, Nash bargaining can be seen as a very natural alternative to HZ. Whereas

HZ equilibria generalize Fisher equilibria by retaining the same pricing approach in the

most natural way, Nash bargaining instead generalizes the Eisenberg Gale convex program

in the most natural way. A core claim of this dissertation is that Nash bargaining is an
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equally valid generalization and various Nash-bargaining-based mechanisms will feature

prominently in the next three chapters.

21



Chapter 2

Markets with Endowments

2.1 Introduction

In Chapter 1 we introduced the basic setting of this thesis in which goods should be

matched fairly to agents. However, fairness does not always mean that all agents should be

treated equally by the mechanism. In this chapter we will investigate a model in which

the agents come to the market with initial endowments of goods. This chapter is based on

the paper “One-Sided Matching Markets with Endowments: Equilibria and Algorithms”

which was joint work with Jugal Garg and Vijay V. Vazirani [62].

The two fundamental market models are the Fisher market and Arrow-Debreu market as

discussed in Section 1.2. Recall that in a Fisher market, agents come to the market with

money and the goods are assumed to be external. On the other hand, in the Arrow-Debreu

market, the agents themselves bring the goods to the market and effectively exchange the

goods among themselves. The Arrow-Debreu market is a direct generalization of the Fisher

market as discussed in Section 1.2.
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The Hylland Zeckhauser mechanism [75] is the defacto standard mechanism for one-

sided matching markets without any endowments. Fundamentally, HZ can be seen as an

extension of the Fisher market model to matchings and it achieves its remarkable fairness

and efficiency guarantees due to the power of pricing. The goal in this chapter is to

investigate an analogous generalization of the Arrow-Debreu model to matchings.

The Arrow-Debreu setting of one-sided matching markets has several natural applications

beyond the Fisher setting, such as allocating students to rooms in a dorm for the next

academic year, assuming their current room is their initial endowment. Similarly, school

choice, when a student’s initial endowment is a seat in a school which they already have.

For this reason, the issue of obtaining such an extension of theHZmechanism, called ADHZ

in this chapter, was actually already considered by Hylland and Zeckhauser. However, this

culminated in an example which inherently does not admit an equilibrium [75].

A recourse to this was given by Echenique, Miralles, and Zhang [42] via their notion of

an 
-slack Walrasian equilibrium. This is a hybrid between the Fisher and Arrow-Debreu

settings. Agents have initial endowments of goods and, for some fixed 
 ∈ (0, 1], the budget

of each agent, for given prices of goods, is 
 + (1 − 
) · <, where < is the value for their

initial endowment; the agent spends this budget to obtain an optimal bundle of goods. Via

a non-trivial proof using Kakutani’s fixed point theorem, Echenique et al. proved that an


-slack equilibrium always exists.

2.1.1 Our Contributions

As mentioned, Hylland and Zeckhauser already observed that an ADHZ equilibrium need

not always exist. However, even for the regular Arrow-Debreu market, equilibria do not

always exist. For an Arrow-Debreu market under linear utilities, Gale [55] defined a demand

graph: a directed graph on agents with an edge (8 , 9) if agent 8 likes a good that agent 9
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has in her initial endowment. He proved that a sufficiency condition for the existence

of equilibrium is that this graph be strongly connected. Hence the question arises: is

this a sufficiency condition for equilibrium existence in ADHZ as well? We provide a

negative answer to this question: we give an instance of ADHZ whose demand graph is

not only strongly connected but also has dichotomous utilities, and yet it does not admit

an equilibrium.

Given this, we define an approximate equilibrium notion which is closely related to the


-slack equilibria of Echenique et al. [42]. We call this the &-approximate ADHZ model and

this is the main focus of the chapter. We start by showing existence of &-approximate

ADHZ equilibria based on the corresponding existence result for 
-slack equilibria.

We prove that the equilibrium in our &-approximate ADHZ model is Pareto optimal,

approximately envy-free (in a sense that takes into account the endowments of the agents),

and approximately weak core stable. This is analogous to the fairness and efficiency of HZ

equilibria that we observed in Section 1.3.

Next, we turn to computational matters. Since the computation of approximate HZ equi-

libria is PPAD-hard [28], there is little hope in finding &-approximate ADHZ equilibria in

polynomial time. For this reason, we focus on the special case of dichotomous utilities.

Our results easily extend also to more general bivalued utilities which are well-studied

in the literature [18, 122, 12, 60, 39]. Our main result is a combinatorial, polynomial time

algorithm for computing &-approximate ADHZ equilibria. This is covered in Section 2.4.

We also study the rationality of equilibria. By extending an example from Vazirani and

Yannakakis [122], we show that there are instances on which an ADHZ equilibrium exists

but for which all ADHZ equilibria are irrational. However, for dichotomous utilities, we

show that there is always a rational 
-slack equilibrium. Note that there is also always a
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rational &-approximate equilibrium but this is a trivial result due to the slack that the &

affords us.

Finally, we briefly turn to the classic HZ setting without endowments. It was known that

HZ with dichotomous utilities always admits rational equilibria [122]. This raises the

obvious question: is there a rational convex program for HZ? We answer this question in

the positive in Section 2.5.

2.1.2 Related Results

A notable and particularly influential example of a matching market with endowments is

the housing market studied by Shapley and Scarf [113]. Here, agents come to the market to

trade houses. Each agent has an initial endowment of exactly one house, i.e. is an existing

tenant of one house, and has ordinal preferences over all the houses in the market. The goal

is to find an integral reassignment of the houses to the agents. Shapley and Scarf show that

the so-called Top Trading Cycles (TTC) mechanism1 finds a Pareto-optimal and core-stable

allocation. Moreover, it is strategyproof.

An interesting extension of this work is due to Athanassoglou and Sethuraman [7] who

consider the same problem but with fractional endowments and fractional reassignments

(as we do in this paper). Their mechanism is Pareto-optimal, individually rational, and

justified envy-free. Moreover, it is weakly strategyproof. They show that individual

rationality, Pareto-optimality, and strategyproofness are incompatible. This negative result

was later strengthened by Aziz [10] who showed that the condition of strategyproofness

can be relaxed to weak strategyproofness.
1Shapley and Scarf attribute the TTC algorithm to Gale.
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The core difference between these works and ours is that they rely on ordinal preferences

rather than cardinal utilities. As discussed in Section 1.1, mechanisms that have access to

cardinal utilities are generally able to achieve much higher degrees of efficiency. However,

the cardinal benchmark of Pareto-optimality is much harder to achieve which is why we

look towards pricing-based mechanisms like the Hylland Zeckhauser mechanism.

Vazirani and Yannakakis [122] undertook a comprehensive study of the computational

complexity of the HZ scheme. They gave a combinatorial polynomial time algorithm for

dichotomous utilities and an examplewhich has only irrational equilibria; as a consequence,

this problem is not in PPAD. They showed that the problem of computing an exact HZ

equilibrium is in the class FIXP and the problem of computing an approximate equilibrium

is in PPAD. Chen et al. [28] showed that computing an approximate HZ equilibrium is

in fact PPAD-hard. In order to deal with the computational intractability of HZ, a Nash-

bargaining-based mechanism was proposed by Hosseini and Vazirani [70]. We will cover

this in more detail in the next chapter.

The study of the dichotomous case of matching markets was initiated by Bogomolnaia and

Moulin [18]. They studied a two-sided matching market and they called it an “important

special case of the bilateral matching problem.” Using the Gallai-Edmonds decomposition

of a bipartite graph, they gave a mechanism that is Pareto optimal and group strategyproof.

They also gave a number of applications of their setting, some of which are natural appli-

cations of one-sided markets as well such as housemates distributing rooms in a house.

As in the HZ scheme, their mechanism also outputs a doubly-stochastic matrix whose

entries represent probability shares of allocations. However, they give another interesting

interpretation of this matrix. They say, “time sharing is the simplest way to deal fairly with

indivisibilities of matching markets: think of a set of workers sharing their time among a

set of employers.” Roth, Sönmez and Ünver [111] extended these results to general graph
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matching under dichotomous utilities; this setting is applicable to the kidney exchange

marketplace.

Several researchers have proposed Hylland-Zeckhauser-like mechanisms for a number of

other applications, for instance [22, 69, 88, 97]. The basic scheme has also been generalized

in several different directions, including two-sided matching markets, adding quantitative

constraints, and to some settings in which agents have initial endowments of goods, see

[42, 41], though these generalizations often come with severe limitations such as requiring

personalized prices. As a result they often do not enjoy the same level of fairness as the

traditional HZ mechanism.

2.2 The Hylland-Zeckhauser Mechanism

We will now briefly recall some important facts about Fisher and HZ equilibria; see also

Sections 1.2 and 1.3. Both equilibria apply to a setting inwhichwe have a set� of agents and

a a set � of goods. Each agent 8 comes to the market with a budget 18 and has non-negative,

rational utilities (D8 9)9∈� for all the goods in the market. Our goal is to fractionally assign

the goods to the agents according to their budgets by determining equilibrium prices.

In the Fisher setting, agents are allowed to get any amount of goods. A formal definition of

a Fisher equilibrium is given below.

Definition 2.1. A Fisher equilibrium is a pair (G, ?) consisting of an allocation (G8 9)8∈�,9∈�
and prices (? 9)9∈� with the following properties.

1. Each agent 8 spends at most their budget, i.e. ? · G8 ≤ 18 .
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2. Each agent 8 gets an optimal bundle, i.e. a utility maximizing bundle at prices ?. Formally:

D8 · G8 = max
{
D8 · H | H ∈ R�≥0, ? · H ≤ 18

}
.

3. The market clears, i.e. each good with positive price is fully allocated to the agents.

The set of equilibria of a linear Fisher market is non-empty and corresponds to the set of

optimal solutions of the Eisenberg-Gale convex program [47], which is a rational convex

program (RCP) and in fact it motivated the definition of this concept [119]. Moreover, Fisher

equilibria satisfy various nice properties, including equal-type envy-freeness and Pareto

optimality.

Definition 2.2. An allocation is envy-free if for any two agents 8 , 8′ ∈ �, agent 8 weakly prefers

their allocation to that of 8′, i.e. D8 · G8 ≥ D8 · G8′. It is equal-type envy-free if the above holds for

any two agents with identical budgets.

The difference between the Fisher setting and the HZ setting is that in the latter, each agent

must get exactly one unit of goods. Hence, we also require that |�| = |�| so that a perfect

matching can exist. An HZ equilibrium is formally defined below.

Definition 2.3. A Hylland-Zeckhauser (HZ) equilibrium is a pair (G, ?) consisting of an

allocation (G8 9)8∈�,9∈� and prices (? 9)9∈� with the following properties.

1. G is a fractional perfect matching, i.e.
∑
9∈� G8 9 = 1 for all 8 and

∑
8∈� G8 9 = 1 for all 9.

2. Each agent 8 spends at most their budget, i.e. ? · G8 ≤ 18 (usually 18 = 1).
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3. Each agent 8 gets an optimal bundle, which is defined to be a cheapest utility maximizing

bundle:

D8 · G8 = max
D8 · H

������ H ∈ R�≥0,
∑
9∈�

H 9 = 1, ? · H ≤ 18
 ,

? · G8 = min
? · H

������ H ∈ R�≥0,
∑
9∈�

H 9 = 1, D8 · H ≥ D8 · G8
 .

Like Fisher equilibria, HZ equilibria are Pareto optimal and envy-free (assuming unit

budgets). The allocation G found by the HZ mechanism is a fractional perfect matching or

a doubly-stochastic matrix. In order to get an integral perfect matching from G, a lottery

can be carried out using the Birkhoff-von-Neumann theorem [15, 124].

2.3 The &-Approximate ADHZ Model

In Section 1.2, we also defined the ArrowDebreu (AD)market equilibrium. In this so-called

exchange setting, we still have agents � and goods �. The difference is that agents have

non-negative, rational endowment vectors (48 9)9∈� rather than budgets. Here, 48 9 tells us

how much of good 9 agent 8 brings to the market. We typically assume that each good

is fully owned by the agents, i.e.
∑
8∈� 48 9 = 1 for all 9 ∈ �. A formal definition for the

corresponding equilibrium concept is given below.

Definition 2.4. An Arrow-Debreu (AD) equilibrium for a given AD market is a pair (G, ?)

consisting of an allocation (G8 9)8∈�,9∈� and prices (? 9)9∈� with the following properties.

1. Each agent spends at most the budget earned from the endowment, i.e. ? · G8 ≤ 18 B ? · 48 .
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2. Each agent 8 gets an optimal bundle:

D8 · G8 = max
{
D8 · H | H ∈ R�≥0, ? · H ≤ 18

}
.

3. The market clears, i.e. each good with positive price is fully allocated to the agents.

The AD model generalizes the Fisher model in the sense that any Fisher market can be

easily transformed into an AD market by giving each agent a fixed proportion of every

good. Clearly, AD equilibria satisfy the condition of individual rationality, defined below,

since every agent could always buy back their endowment.

Definition 2.5. An allocation in an AD market is individually rational if for every agent 8 we

have D8 · G8 ≥ D8 · 48 , i.e. no agent loses utility by participating in the market.

Individual rationality is a desirable property since otherwise we would be required to

incentivize agents to participate in the market in the first place. However, individual

rationality fundamentally clashes with envy-freeness. Consider a market consisting of two

agents each owning a distinct good. Assume that both agents prefer the good of agent

2 over the good of agent 1, then in any allocation either agent 1 envies agent 2 or agent

2’s individual rationality is violated. For this reason we primarily consider a version of

equal-type envy-freeness in exchange markets, which demands envy-freeness only for

agents with the same initial endowment.

In contrast to Fisher markets, Arrow-Debreu equilibria do not always exist. However, there

is a simple necessary and sufficient condition for their existence based on strong connectivity

of demand graph, due to Gale [55]. See Theorem 1.8. An RCP for this problem was given by

Devanur, Garg and Végh [33].

We now turn to the extension of the HZ mechanism to exchange markets. In the ADHZ

market, we have a set � of agents and a set � of goods with |�| = |�| = =. Each agent 8 comes
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with an endowment 48 9 ≥ 0 of each good 9 and utilities D8 9 ≥ 0. We require that the goods are

fully owned by the agents and hence the endowment vector 4 must be a fractional perfect

matching.

Definition 2.6. An ADHZ equilibrium for a given ADHZ market is a pair (G, ?) consisting of

an allocation (G8 9)8∈�,9∈� and prices (? 9)9∈� with the following properties.

1. G is a fractional perfect matching, i.e.
∑
9∈� G8 9 = 1 for all 8 and

∑
8∈� G8 9 = 1 for all 9.

2. Each agent spends at most the budget earned from the endowment, i.e. ? · G ≤ 18 B ? · 48 .

3. Each agent 8 gets an optimal bundle, which is defined to be a cheapest utility maximizing

bundle:

D8 · G8 = max
D8 · H

������ H ∈ R�≥0,
∑
9∈�

H 9 = 1, ? · H ≤ 18
 ,

? · G8 = min
? · H

������ H ∈ R�≥0,
∑
9∈�

H 9 = 1, D8 · H ≥ D8 · G8
 .

This equilibrium notion naturally satisfies the desirable properties that we are looking for.

Theorem 2.1. ADHZ equilibria are Pareto optimal, individually rational, and equal-type envy-free.

Proof. Pareto optimality follows from the fact that any ADHZ equilibrium is an HZ equi-

librium with certain budgets 1. Since any HZ equilibrium is Pareto optimal, we get the

same for ADHZ.

Note that the budget of any agent is always enough to buy back their initial endowment.

Since they get an optimal bundle, they must get something which they value at least as

high as their initial endowment. Thus individual rationality is guaranteed.

31



If two agents, say 1 and 2, have the same endowment, then their budget will be the same

and so agent 1 will never value the 2’s bundle higher than their own. Thus ADHZ equilibria

are equal-type envy-free. �

In addition, ADHZ equilibria also satisfy the following notion of core-stability.

Definition 2.7. An allocation G in an ADHZ market is weakly core-stable if for any subsets

�′ ⊆ � and �′ ⊆ �, there does not exist an allocation G′ ∈ R�′×�′≥0 such that

• G′ allocates at most one unit of goods to every agent in �′,

• every good 9 ∈ �′ is allocated at most to the extent of the endowments of the agents in �′, i.e.∑
8∈�′ G

′
8 9
≤ ∑

8∈�′ 48 9 , and

• every agent in �′ receives strictly better utility in G′ than in G.

Theorem 2.2. ADHZ equilibria are weakly core-stable.

Proof. Let (G, ?) be some ADHZ equilibrium. For the sake of a contradiction, assume that

there are�′ ⊆ �, �′ ⊆ � and G′ ∈ R�′×�′≥0 as excluded by the definition of weak core-stability.

Now consider the total money spent along allocation G′, i.e. the quantity
∑
8∈�′

∑
9∈�′ ? 9G

′
8 9
.

On the one hand we know that only the endowment of the agents in �′ is allocated by G′.

Thus

∑
8∈�′

∑
9∈�′

? 9G
′
8 9 ≤

∑
8∈�′

∑
9∈�′

? 948 9 . (2.1)

On the other hand, every agent 8 receives strictly better utility from G′ than from G. But

since agents buy optimal bundles in (G, ?), this implies that the bundles in G′must be worth
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more than their budget, i.e.

∑
9∈�′

? 9G
′
8 9 >

∑
9∈�

? 948 9 ≥
∑
9∈�′

? 948 9 .

Summing this inequality over all 8 ∈ �′ yields a contradiction to (2.1). �

Like in the case of HZ, equilibrium prices in ADHZ are invariant under the operation of

scaling the difference of prices from 1, as shown in the following lemma.

Lemma 2.1. Let ? be an equilibrium price vector. For any A > 0, let ?′ be such that ?′
9
−1 = A(? 9−1)

for all 9 ∈ �. Then ?′ is also an equilibrium price vector.

Proof. Let G be an equilibrium allocation at prices ?. We want to show that (G, ?′) is also an

equilibrium. The core observation is that if H ∈ R�≥0 satisfies
∑
9∈� H 9 = 1, then

?′ · H =

∑
9∈�
(1 + A(? 9 − 1))H 9

= 1 + A? · H − A

So if we have another H′ ∈ R�≥0 with
∑
9∈� H

′
9
= 1, we can see that ? · H ≤ ? · H′ if and only

if ?′ · H ≤ ?′ · H′. This implies in particular, that the set of feasible bundles for any agent 8

(i.e. those that add up to 1 and do not exceed the budget of ? · 48 or ?′ · 48 respectively) is

the same. Moreover, if a bundle is cheapest wrt. to ? it is also cheapest wrt. to ?′. Hence, G

consists of optimal bundles for each agent under prices ?′ and (G, ?′) is therefore an ADHZ

equilibrium. �

Unlike HZ, which always admits an equilibrium, ADHZ has instances which do not admit

an equilibrium, as observed by Hylland and Zeckhauser [75]. Below we give a counterex-

ample in which the demand graph is strongly connected and utilities are dichotomous.
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Figure 2.1: The demand graph of an ADHZ market with dichotomous utilities and no
equilibrium. Each node represents an agent as well as the good possessed by this agent in
their initial endowment. An arrow from 8 to 9 represents D8 9 = 1; the rest of the edges have
utility 0.

Proposition 2.1. The ADHZ market with dichotomous utilities in Figure 2.1 does not admit an

equilibrium.

Proof. Assume there is an equilibrium (G, ?) in this market. Further, using Lemma 2.1, we

can assume that the minimum price is zero. This implies that no agent will buy a zero

utility good at a positive price.

Each agent buys a total of one unit of goods and B is the only agent having positive utility

for goods 0 and 1. Therefore, at least one of these goods is not fully sold to B and must be

sold to an agent deriving zero utility from it. Therefore, this good must have zero price.

Without loss of generality, assume ?0 = 0. Since 0 has no budget and 2 and 3 are desired

only by 0, ?2 = ?3 = 0, otherwise 2 and 3 cannot be sold. For the same reason, ?4 = 0. Now

observe that both agents 2 and 3 have a utility 1 edge to a good of price zero, namely 4.

Therefore, the optimal bundle of both 2 and 3 is 4. But then 4 would have to be matched

twice which is a contradiction. �
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Even if ADHZ equilibria do exist, computing them is at least as hard as computing HZ

equilibria. This follows from the following reduction.

Proposition 2.2. Consider an HZ market with unit budgets. Define an ADHZ market by giving

every agent as endowment an equal amount of every good. Then every HZ equilibrium in which the

prices sum up to = is an ADHZ equilibrium and every ADHZ equilibrium yields an HZ equilibrium

by rescaling all prices by =/∑9∈� ? 9 .

Vazirani and Yannakakis [122] gave an instance of HZ with four agents and four goods

which has one equilibrium in which all agents fully spend their budgets, and allocations

and prices are irrational. Since this example satisfies the conditions of Proposition 2.2, we

get that the modification of the example of [122], as stated in the Proposition, is an instance

for ADHZ having only irrational equilibria.

2.3.1 Existence and Properties of &-Approximate ADHZ Equilibria

SinceADHZequilibria do not always exist, we study the following approximate equilibrium

notion instead.

Definition 2.8. An &-approximate ADHZ equilibrium is an HZ equilibrium (G, ?) for a budget

vector 1 with

(1 − &)? · 48 ≤ 18 ≤ & + ? · 48

for all 8 ∈ �. We also require that if two agents have the same endowment, then their budget should

also be the same.

The additive error term in the upper bound is necessary since otherwise the counterexample

from Proposition 2.1 still works. On the other hand, the multiplicative lower bound is
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useful to get approximate individual rationality. However, one can always find approximate

equilibria in which the sum of prices is bounded by = using Lemma 2.1, so we also get

? · 48 − &′ ≤ 18 ≤ ? · 48 + &′

where &′ B =&. This implies that we can equivalently define the above notion with additive

error terms on both upper and lower bounds.

In our notion of approximate equilibrium, we do not relax the fractional perfect matching

constraints or the optimal bundle condition. We only allow the budgets of agents to be

slightly different from the money they would normally obtain in an ADHZ market. Hence

the step of randomly rounding the equilibrium allocation to an integral perfect matching

is the same as in the HZ scheme.

Theorem 2.3. Any &-approximate ADHZ equilibrium is Pareto optimal, &-approximately individ-

ually rational, and equal-type envy-free.

Proof. Pareto optimality follows just as for the non-approximate ADHZ setting from the

fact that an &-approximate ADHZ equilibrium is first and foremost an HZ equilibrium. For

approximate individual rationality note that every agent gets a budget of at least (1 − &)

times the cost of their endowment. Hence their utility can decrease by at most a factor of

(1 − &). Equal-type envy-freeness follows immediately from the condition that agents with

the same endowment have the same budget. �

One can also define a suitably &-approximate notion of weak core-stability, where instead of

demanding that every agent strictly improves in the seceding coalition, we instead require

that every agent improves by a factor of more than 1
1−& .

Theorem 2.4. Any &-approximate ADHZ equilibrium is &- approximately weak-core stable.
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Proof. Let (G, ?) be an &-approximate ADHZ equilibrium for some budget vector 1. Then

in order for some other allocation G′ to improve agent 8’s utility by a factor of more than
1

1−& , 8 must spend more than 18
1−& . But note that 18

1−& ≥ ? · 48 . From here the proof is identical

to that of Theorem 2.2. �

While approximate equilibrium notions are more amenable to computation, they generally

do not lend themselves well to existence proofs. However, our notion of &-approximate

ADHZ equilibrium is a slight relaxation of the notion of an 
-slack equilibrium introduced

in [42].

Definition 2.9. An 
-slack ADHZ equilibrium for 
 ∈ (0, 1] is an HZ equilibrium (G, ?) for a

budget vector 1 in which 18 = 
 + (1 − 
)∑9∈� ? 948 9 for all 8 ∈ �.

Theorem 2.5 (Theorem 2 in [42]). In any ADHZ market, 
-slack equilibria always exist if 
 > 0.

Note that any 
-slack equilibrium is automatically also an 
-approximate equilibrium.

Thus we get:

Theorem 2.6. In any ADHZ market, &-approximate equilibria always exist if & > 0.

2.4 Algorithm for &-approximate ADHZ under Dichotomous

Utilities

Before we can tackle the ADHZ setting, let us first give an algorithm that can compute HZ

equilibria with non-uniform budgets. This is an extension of the algorithm presented in

[122] and may be of independent interest. In the following, fix some HZ market consisting

of = agents and goods with D8 9 ∈ {0, 1} for all 8 ∈ � and 9 ∈ �. If D8 9 = 1, we will say that 8

likes 9 (and dislikes otherwise). We assume that every agent likes at least one good.

37



We remark that any HZ equilibrium (G, ?) for the utilities D is also an equilibrium for the

utilities

D̃8 9 B


08 if D8 9 = 1

18 if D8 9 = 0

where 0 ≤ 08 < 18 are arbitrary for every agent. This is because

D̃8 · G8 = 08 + (18 − 08)D8 · G8

since G is a fractional perfect matching. Hence, utility function D̃ is an affine transformation

of utility function D on the space of feasible bundles. This allows us to restrict ourselves to

dichotomous utilities instead of the more general bi-valued utilities.

Before we give the actual algorithm, we will first need a characterization of when a price

vector can be extended to an HZ equilibrium in terms of certain flow networks.

B C

1 8

�
�

�

8

Figure 2.2: Shown is the flow network which corresponds to finding an equilibrium
allocation in price class �. Filled circles represent agents in �(�) with 18 < �, empty circles
are agents in �(�)with 18 ≥ �, and diamond vertices are goods in �(�). The contiguous
edges represent all utility 1 edges and have infinity capacity (utility 0 edges are not part of
the network). Dashed edges to empty circle vertices 8 have capacity 18 whereas the other
dashed edges have capacity �.

38



Lemma 2.2. Let (? 9)9∈� be non-negative prices. For any � ≥ 0, let �(�) be the goods which are sold

at price � and let �(�) be those agents for which the cheapest price of any liked good is �. Assume

that

• there is a matching in the utility 1 edges on �(0) ∪ �(0) which covers all agents in �(0) and

• if � > 0 is equal to the price of some good, then the flow network shown in Figure 2.2 has a

maximum flow of size �|�(�)|.

Then we can find a fractional perfect matching G which makes (G, ?) an HZ equilibrium in polynomial

time.

Proof. Allocate every agent in �(0) to some good in �(0) according to the matching which

exists by assumption. Let � > 0, be the price of some good. Thenwe compute themaximum

flow 5 (�) in the flow network from Figure 2.2 and allocate G8 9 = 5
(�)
8 , 9
/� for all 8 ∈ �(�) and

9 ∈ �(�). Lastly, extend G to a fractional perfect matching by matching the remaining

capacity of the agents to the remaining capacity of goods in �(0).

Clearly, no agent exceeds their budget. To see that this yields an HZ equilibrium, note that

every agent only spends money on cheapest liked goods and if they do not get allocated

entirely to liked goods, then they additionally spend all of their budget. This ensures that

every agent gets an optimal bundle. �

Theorem 2.7. For any rational budget vector 1, we can compute an HZ equilibrium in polynomial

time.

Proof. We start in the same way is the algorithm by Vazirani and Yannakakis [122]: by

computing a minimum vertex cover in the graph of utility 1 edges, we can partition

� = �1 ∪ �2 and �1 ∪ �2 such that
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• every agent in �2 can be matched to a distinct liked good in �2,

• every agent in �1 only has liked goods in �1, and

• for every ( ⊆ �2 we have |#−(()| ≥ |(| where #−(() are the agents that have a liked

good in (.

Set ? 9 = 0 for all 9 ∈ �2 and ? 9 = min8∈�1 18 for all 9 ∈ �1. Now we run a DPSV-like [36]

algorithm on �1 ∪ �1 to raise prices until certain sets of goods become tight.

For each 8 ∈ �, let �8 be its effective budget at current prices ?, that is the minimum of its

actual budget 18 and the price of its cheapest liked good. The algorithm will now raise

all prices ? at the same rate until there is a set ( ⊆ �1 which goes tight in the sense that∑
8∈Γ(() �8 =

∑
9∈( ? 9 where Γ is the collection of agents which have a cheapest liked good in

(. At this point, we freeze the prices of the goods in (. If all prices have been frozen we are

done. Otherwise, we continue raising all unfrozen prices of goods in �1.

It is easy to see that if the prices keep rising, eventually each agents’ effective budget will

be their real budget and so a set must become tight at some point. We will not go into

detail here but it is possible to find the next set which will go tight in polynomial time

(for example using a parametric max flow algorithm) similar as in DPSV. Finally, since we

never unfreeze prices, there will be at most = iterations of the algorithm and hence it runs

in polynomial time overall.

We observe that as in the proof of the DPSV algorithm, for any ( ⊆ �1, we have that∑
8∈Γ(() �8 ≥

∑
9∈� ? 9 and

∑
8∈�1 �8 =

∑
9∈�1 ? 9 . It is then easy to show that this implies that

for any price � above 0, the corresponding flow network from Figure 2.2 supports a flow of

value �|�(�)| by the max-flow min-cut theorem. Thus we can apply Lemma 2.2 to get an

equilibrium allocation. �
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Lemma 2.3. Let 1 and 1′ be two budget vectors with 0 ≤ 1 ≤ 1′. Assume we are given an HZ

equilibrium (G, ?) for the budgets 1. Then we can compute in polynomial time a new HZ equilibrium

(G′, ?′) with ? ≤ ?′ for the budgets 1′.

Proof. We will simply run the same algorithm as in the proof of Theorem 2.7, except that

this time we start with the prices ?. More precisely, we increase the lowest non-zero price

until a set goes tight or it becomes equal to the next higher price, then repeat this process

until we once again get
∑
8∈Γ(() �8 ≥

∑
9∈� ? 9 and

∑
8∈Γ(�1) �8 =

∑
9∈�1 ? 9 where �1 is now

defined as the set of goods with positive prices in (G, ?). As in the proof of Theorem 2.7,

this will freeze all prices in polynomial time at which point we can use a max-flow min-cut

argument to construct the new equilibrium allocation G′ in polynomial time. �

Let us now return to the approximate ADHZ setting. Instead of budgets, fix now some

fractional perfect matching of endowments (48 9)8∈�,9∈�.

Theorem 2.8. An &-approximate ADHZ equilibrium for rational & ∈ (0, 1), can be computed in

time polynomial in 1
& and =, i.e. by a fully polynomial time approximation scheme.

Proof. We will iteratively apply Lemma 2.3. Start by setting 1(1)
8
B &

2 for all 8 ∈ � and

computing an HZ equilibrium (G(1), ?(1)) according to Theorem 2.7. Beginning with : B 1,

we run the following algorithm.

1. Let 1(:+1)
8

B &
2 + (1 − &

2 )
∑
9∈� ?

(:)
9
48 9 for all 8 ∈ �.

2. Compute a newHZequilibrium (G(:+1), ?(:+1)) for budgets 1(:+1) according to Lemma2.3

using the old equilibrium (G(:), ?(:)) as the starting point. Note that since ?(:) ≥ ?(:−1)

we always have 1(:+1) ≥ 1(:) and so this is well-defined.

3. Set : B : + 1 and go back to step 1.
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Note that

∑
8∈�

1
(:+1)
8

=
&
2= +

(
1 − &

2

) ∑
9∈�

?
(:)
9
≤ &

2= +
(
1 − &

2

) ∑
8∈�

1
(:)
8

and thus

∑
9∈�

?
(:)
9
≤

∑
8∈�

1
(:)
8
≤ =

as otherwise we would get
∑
8∈� 1

(:+1)
8

<
∑
8∈� 1

(:)
8

.

Let  be the first iteration such that ?( ) ≤ 1−&/2
1−& ?

( −1). Note that

 ≤ = log 1−&/2
1−&

(
=

&

)
= $

(
=

&
log

(
=

&

))
since all non-zero prices are initialized to at least & but are bounded by =. Then (G( ), ?( ))

is an &-approximate ADHZ equilibrium with budget vector 1( ) because for all 8 ∈ � we

have

1
( )
8

=
&
2 +

(
1 − &

2

)
?( −1) · 48

∈
[
(1 − &)?( ) · 48 , & + ?( ) · 48

]
.

Lastly, we note that since the number of iterations is bounded by $(=& log(=& )) and each

iteration runs in polynomial time, the total runtime is polynomial in 1
& and = as claimed. �
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2.5 An RCP for the HZ Scheme under Dichotomous Utilities

We will now consider the setting without initial endowments, i.e. the classic HZ setting.

Our goal in this section is to give a rational convex program (RCP) for the classic HZ

equilibrium. As usual, we will assume without loss of generality that each agent likes

at least one good and that each good is liked by at least one agent. Consider now the

following convex program.

max
∑
8∈�

log(D8 · G8) (2.2a)

s.t.
∑
8∈�

G8 9 ≤ 1 ∀9 ∈ �, (2.2b)∑
9∈�

G8 9 ≤ 1 ∀8 ∈ �, (2.2c)

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ � (2.2d)

Note the similarity to the standard Eisenberg Gale RCP for the Fisher market which we

introduced in Section 1.2; the only difference is the additional matching constraint. The EG

program is an RCP for the Fisher market with arbitrary utilities. For HZ, we have to make

the weaker claim that (2.2) is an RCP for dichotomous utilities.

Theorem 2.9. Under dichotomous utilities, any HZ equilibrium allocation is an optimal solution to

(2.2), and every optimal solution of (2.2) can be trivially extended to an HZ equilibrium allocation.

Proof. The proof relies on the KKT conditions of (2.2). Let ? 9 be the dual variables corre-

sponding to constraint (2.2b) and let 
8 be the dual variables corresponding to (2.2c). Note

that ? and 
 are non-negative. Then the KKT conditions for an optimal solution of (2.2)

are as follows.
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1. If 
8 > 0, then
∑
9∈� G8 9 = 1.

2. If ? 9 > 0, then
∑
8∈� G8 9 = 1.

3. D8 9 ≤ D8 · G8(? 9 + 
8) for all 8 ∈ �, 9 ∈ �.

4. If G8 9 > 0, then D8 9 = D8 · G8(? 9 + 
8).

Let us show the forward direction; given an HZ equilibrium (G, ?), we wish to show that G

is an optimal solution to (2.2). Note that G is a fractional perfect matching between agents

and goods and hence satisfies the constraints of the CP. We can assume wlog. that at least

one good has price zero.

Let 
8 be the unspent budget of agent 8, i.e. 
8 B 1− G8 · ?. We want to show that G together

with (
, ?) satisfies the KKT conditions of (2.2). Clearly, conditions 1 and 2 are satisfied

trivially. Consider now some agent 8. We distinguish two cases.

Case 1: there is some 9 ∈ � with D8 9 = 1 and ? 9 ≤ 1. In this case, D8 · G8 = 1 and agent 8 is

exclusively allocated goods 9 with D8 9 = 1 and which have minimum price among those

goods (since 8’s bundle must be cheapest). Now let 9 ∈ � be arbitrary. Clearly if D8 9 = 0,

then condition 3 holds trivially and so does 4 (since G8 9 = 0). So assume D8 9 = 1. But then

we have ? 9 + 
8 ≥ 1 with equality when 9 is a cheapest utility 1 good. This follows because

8 is exclusively allocated cheapest goods. Finally, this implies that conditions 3 and 4 hold.

Case 2: all 9 ∈ � with D8 9 = 1 have ? 9 > 1. In this case, D8 · G8 = 1
?min

< 1 and 
8 = 0 where

?min is the minimum price of utility 1 goods. Let 9 ∈ � be arbitrary. Once again, if D8 9 = 0,

conditions 3 and 4 hold trivially. Otherwise, conditions 3 and 4 hold simply because 8

can only get allocated to cheapest utility 1 goods in order to satisfy the cheapest bundle

condition.
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Finally, let us show the reverse direction. Assume that G is an optimal solution to (2.2) and

(
, ?) are the corresponding dual variables that satisfy the KKT conditions. We call ? the

prices on the goods and observe that D8 · G8 > 0 for all agents 8.

Let 8 , 9 be arbitrarywith G8 9 > 0. Thenwe can first observe that if D8 9 = 0, we have ? 9 = 
8 = 0

by KKT condition 4 and the fact that D8 · G8 > 0. And if D8 9 = 1, then conditions 3 and 4

imply together that 9 is a minimum price utility 1 good for agent 8. Hence, each agent is

spending their budget optimally.

Next, fix some agent 8, multiply the equality in condition 4 by G8 9 , and sum over all 9. This

yields

D8 · G8 = D8 · G8
∑
9∈�
(? 9 + 
8)G8 9

and hence

1 = G8 · ? + 
8
∑
9∈�

G8 9 .

If 
8 > 0, then we know that
∑
9∈� G8 9 = 1 and hence 
8 = 1 − G8 · ?. On the other hand, if


8 = 0, then we also get 
8 = 1 − G8 · ?. So we know that 
8 measures the remaining budget

of agent 8.

Finally, let ( denote the set of agents who get less than one unit of goods, i.e. ( := {8 ∈

� | ∑9∈� G8 9 < 1}, and let ) denote the set of partially allocated goods, i.e. ) := { 9 ∈ � |∑
8∈� G8 9 < 1}. By condition 2, ? 9 = 0 for each 9 ∈ ). Observe that there cannot be any utility

1 edge between ( and ) as otherwise we could increase the objective of (2.2).

Since the number of agents equals the number of goods, the total deficiency of agents in

solution G equals the total amount of unallocated goods. Therefore, we can arbitrarily

allocate unallocated goods in ) to deficient agents in ( so as to obtain a fractional perfect
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matching, say G′. Clearly, (G′, ?) is still an optimal solution to (2.2) and is an HZ equilibrium

since each agent still has a cheapest optimal bundle. �

The proof of Theorem 2.9 shows that for the dichotomous case, the dual of (2.2) yields

equilibrium prices. In contrast, for arbitrary utilities, there is no known mathematical

construct, no matter how inefficient its computation, that yields equilibrium prices. In

a sense, this should not be surprising, since there is a polynomial time algorithm for

computing an equilibrium for the dichotomous case [122].

In addition, since the objective function in (2.2) is strictly concave in the utilities D8 · G8 , the

utility derived by each agent 8 must be the same in all solutions of (2.2). Hence, we get

the following corollary which can be seen as a variant of the well-known Rural Hospital

Theorem; see [67] for the latter.

Corollary 2.1. Each agent gets the same utility under all HZ equilibria with dichotomous utilities.

Finally, let us prove that (2.2) is indeed an RCP by establishing the existence of rational

optimal solutions.

Theorem 2.10. There always exists an optimal solution to (2.2) which can be expressed via rational

numbers with denominators at most =.

Proof. Let G be some optimal solution of (2.2) and let (
, ?) be the corresponding dual

variables. Recall from the proof of Theorem 2.9 that each G8 will be an optimal bundle for

agent 8 with prices ? and that 
8 = 1 − G8 · ?. Moreover, we can assume wlog. that G is a

fractional perfect matching and hence an HZ equilibrium.

Let �′ ⊆ � denote the set of goods with prices strictly greater than 1 and let �′ ⊆ � denote

the set of agents who are allocated some positive amount of goods from �′. Since agents are
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getting cheapest optimal bundles, each agent in �′ only has utility 1 edges to �′. Moreover,

for each 8 ∈ �′, we know that 
8 = 0, i.e. agent 8 must spend all their money.

Consider now the connected components of the bipartite graph (�′, �′, �) where � B

{(8 , 9) ∈ �′ × �′ | G8 9 > 0}. Because each agent is only allocated to cheapest utility 1 goods,

we know that in each connected component �, all goods must have the same price, say

?� > 1. But observe that ?� =
|�(�)|
|�(�)| where we use �(�) to denote the agents in � and �(�)

to denote the goods in �. This is clearly a rational quantity. Moreover, we can reallocate

the goods in �(�) to the agents in �(�) such that every agent gets exactly 1
?�

of each good

so as to make the allocation rational as well.

Now consider the remainder of the agents and goods. Now let �′′ be those goods 9 with

0 < ? 9 ≤ 1. Let �′′ be the agents which get some positive amount from a good in �′′.

Each agent in �′′ will get allocated entirely to goods in �′′. Hence |�′′| = |�′′| and we can

reallocate agents in �′′ to goods in �′′ via an arbitrary perfect matching.

Finally, consider the remaining goods �′′′ which have price zero. These goods are partially

allocated to agents in �′ who have zero utility for them but need them to fill up to one unit

of goods. Some goods in �′′′ might also be allocated to lucky agents �′′′ which have utility

1 for a zero price good. We can reallocate the agents in �′′′ integrally to utility 1 goods in

�′′′ and distribute the remaining goods in �′′′ rationally to the agents in �′ that need them.

Overall, we end up with a rational allocation in which all denominators are bounded by =

and which is still an optimal solution (2.2). �
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2.6 Rationality of 
-Slack Equilibria under Dichotomous

Utilities

If one wishes to compute exact equilibria (if they exist) instead of approximate ones, clearly

a necessary condition is that equilibria are always rational. As noted in Section 2.3.1, with

general utilities, both HZ and ADHZ may have only irrational equilibria. On the other

hand, with {0, 1}-utilities, there are always rational HZ equilibria. In this section we extend

this result to 
-slack equilibria in the ADHZ setting.

Fix some ADHZ market with {0, 1}-utilities, rational endowment vectors 4, and some

rational 
 > 0. Our rationality proof will work in two steps: First we show that as a

consequence of Theorem 2.7, there always exists a special 
-slack equilibrium in which

prices are minimal in some sense. Then we will show that the price vector of such a special

equilibrium is the unique solution to a system of linear equations with rational coefficients,

proving rationality of the prices (and hence there also exists a rational allocation).

Definition 2.10. An HZ equilibrium (G, ?) is called special if

1. there is a good 9 ∈ � with ? 9 = 0, and

2. for every price � > 0 in ?, there is an agent 8 whose cheapest liked goods have price � and

whose budget is at most �, i.e., � = min{? 9 | D8 9 = 1, 9 ∈ �} and 18 ≤ �.

Lemma 2.4. The algorithm described in Theorem 2.7 always computes a special equilibrium.

Proof. We will show that at any point in the algorithm, that if there is some good of price

� > 0, then there is some 8 ∈ �1 such that 8’s cheapest desirable goods have price � and

�8 = 18 . Note that this property holds at the beginning of the algorithm since the prices are

set to the minimum budget of an agent in �1. Furthermore, as prices increase, the number

of agents 8 ∈ �1 with �8 = 18 can only increase.
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So the only way in which this property could be lost is at the points where prices are

frozen and the remaining prices are increased, thus decreasing the number of cheapest

desirable goods for some agents. Let ( ⊆ �1 be the set of goods which have been frozen at

some point in the algorithm and assume that we have raised prices so that the price � of

items in �1 \ ( is strictly larger than the prices in (. Furthermore, assume for the sake of a

contradiction that for all 8 ∈ Γ(�1 \ (), we have that �8 = � < 18 . But then

∑
8∈Γ(�1\()

�8 = � · |Γ(�1 \ ()| ≥ � · |�1 \ (| =
∑
9∈�1\(

? 9 .

This means that �1 \ ( would have already been frozen in the algorithm contradicting the

fact that � is strictly greater than the prices in (. �

Lemma 2.5. The prices of the HZ equilibrium as computed in Theorem 2.7 depend continuously on

the budgets assuming the initial vertex cover is chosen consistently.

Proof. Let 1 and 1′ be two distinct positive budget vectors with ‖1 − 1′‖∞ ≤ & for some

& > 0. Consider running the algorithm on 1 and 1′ at the same time, note that initially

prices differ by at most & everywhere. Whenever a set ( is frozen for the budgets 1, all

prices in that set must also be frozen for 1′ soon afterwards since there is at most =& more

budget available (otherwise ( would go overtight).

Let ? and ?′ be the prices computed for budgets 1 and 1′ respectively. Then we have just

observed that ?′ ≤ ? + =& and symmetrically ? ≤ ?′ + =&. Thus ? depends continuously

on 1. �

Theorem 2.11. There exists a special 
-slack equilibrium.

Proof. Let % B {? ∈ R�≥0 |
∑
9∈� ? 9 ≤ =} be the set of feasible price vectors. Given some

? ∈ %, define 5 (?) to be the prices output by the algorithm from Theorem 2.7 when applied
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to the budgets

18 B 
 + (1 − 
)
∑
9∈�

? 948 9

for all 8 ∈ �.

Clearly, 5 maps % into % and by Lemma 2.5, 5 is continuous. So by Brouwer’s fixed point

theorem, it has a fixed point ?∗ ∈ %. But by definition of 5 , this fixed point yields an 
-slack

equilibrium and by Lemma 2.4, this equilibrium is special. �

Lemma 2.6. Special 
-slack equilibria have rational prices.

Proof. Let (G, ?) be a special 
-slack equilibrium. Let 0 = �1 ≤ · · · ≤ �: be the distinct

prices in ?. For each �; > 0, we let �<(�;) ⊆ �(�;) be those agents whose budget is at most

�; and we let �B(�;) ⊆ �(�;) be the remaining agents whose budget is more than �; .

Since (G, ?) is an 
-slack equilibrium, we then have that

∑
8∈�<(�;)

©­«
 + (1 − 
)
:∑
;′=2

�;′
∑

9∈�(�;′)
48 9

ª®¬ + �;|�B(�;)| = �;|�(�;)|. (2.3)

where �<(�;) ≠ ∅ since (G, ?) is a special equilibrium. Together with �1 = 0, this gives us a

system of linear equations with rational coefficients that (�1, . . . , �:) is a solution to.

Finally, let us show that this system has unique solutions. To see this let there be some other

solution vector (�′1, . . . , �′:). Assume without loss of generality that there is some ; with

�; > �′
;
as otherwise we can swap � and �′. Let ;∗ be the index maximizing �;

�′
;
and consider

constraint (2.3) for this ;∗. But now assuming that �′ satisfies this constraint, �; cannot

satisfy it since, compared to �′, the right-hand side increases by a factor of �;
�′
;
whereas the

left-hand side increases by strictly less due to the presence of
∑
8∈�<(�;∗ ) 
 > 0. �

Theorem 2.12. There exists a rational 
-slack equilibrium.
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Proof. By Theorem 2.11, there always exists a special 
-slack equilibrium and by Lemma 2.6,

this equilibrium must have rational prices. To get a rational allocation, one can obtain

an allocation via a flow network in each price class as shown in Lemma 2.2. Since max-

flows in networks with rational weights can always be chosen to be rational, the theorem

follows. �

2.7 Discussion

In this chapter, we defined an &-approximate ADHZmodel for one-sidedmatchingmarkets

with endowments. We showed that &-approximate ADHZ equilibrium always exists for

every & > 0. We strengthened the non-existence of ADHZ equilibrium for the case when

the demand graph is not strongly connected and agents have dichotomous utilities. We

derived a novel combinatorial polynomial-time algorithm for computing an &-ADHZ

equilibrium under dichotomous utilities. Finally, we presented a rational convex program

(RCP) for the HZ model under dichotomous utilities, which also implies that the problem

is polynomial-time solvable.

Since finding an HZ equilibrium is PPAD-complete [122, 28], there is little hope that we

can efficiently find &-approximate ADHZ for general utilities except perhaps for constant &.

However, this would generalize a similar problem to find &-approximate HZ equilibria for

constant & which also remains open.

One interesting problem is to directly compute an exact 
-slack equilibrium with dichoto-

mous utilities. By Section 2.6, we know that there is a rational 
-slack equilibrium in this

case and it stands to reason that it might be computable in polynomial time.

Finally, it is also interesting to consider what happens when 
→ 0. By compactness, there

exists some limit point of 
-slack equilibria as 
 tends to 0 and this limit point has some
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interesting properties. See Section 3.3 in the next chapter for an argument along these lines.

Can we compute it?
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Chapter 3

The Quest for Envy-Freeness and

Pareto-Optimality

3.1 Introduction

We will now turn back to the more classic setting of a cardinal-utility matching market

without endowments in which every agent is treated equally. Our goal in this chapter

will be to analyze the two most important desirable properties: fairness (as measured by

envy-freeness) and efficiency (as measured by Pareto-optimality). In particular, when can

we find solutions that meet both criteria? This chapter is based on the paper “Cardinal-

Utility Matching Markets: The Quest for Envy-Freeness, Pareto-Optimality, and Efficient

Computability” which was joint work with Vijay V. Vazirani [116].

As mentioned in the background chapter, the general objective in a matching market is to

find allocations with desirable properties in polynomial time. When it comes to cardinal

utilities, the most notable mechanism is that of Hylland and Zeckhauser [75], which is

based on a pricing approach. It results in allocations which are (ex-ante) envy-free (EF), i.e.
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each agent prefers their own lottery to that of any other agent, and (ex-ante) Pareto-optimal

(PO), i.e. it is impossible to improve one agent’s expected utility without diminishing the

expected utility of some other agent. Later, He et al. [69] showed that the HZ mechanism

is also incentive compatible in the large. Note that there is no mechanism which is EF,

PO, and also incentive compatible in the traditional sense, i.e. without the “in the large”

restriction [128].

However, a core issue with the approach is that computing an HZ equilibrium is hard

in theory and in practice. Vazirani and Yanakakis [122] recently showed that there are

instances in which every HZ equilibrium is irrational. They also showed that the problem

of finding an approximate HZ equilibrium is in the complexity class PPAD and conjectured

that it is PPAD-complete. This conjecture was confirmed by Chen et al. [28] who proved

the corresponding hardness result.

This motivates the search for alternative mechanisms which can achieve some or all of the

desirable properties of HZ while also being implementable in polynomial time. In this

chapter, we pose the key question: is it possible to compute an envy-free and Pareto-optimal

lottery in a one-sided cardinal-utility matching market in polynomial time using some

different mechanism?

Beyond one-sided matching markets and HZ, there are also two-sided matching markets in

which we are matching agents to other agents. Prominent examples are the kidney donor

market or the problem of assigning students to schools if the schools have preferences

over the students, e.g. via aptitude scores. Except for a few highly restricted special cases

[18, 111], it was not known whether envy-free and Pareto-optimal lotteries even exist in

this setting.
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3.1.1 Our Contributions

One-Sided Matching Markets

Our most significant contribution is that we resolve the question about the complexity of

finding EF+PO allocations by showing that the problem is PPAD-hard. Together with a

recent result by Caragiannis et al. [24] this shows that the problem is PPAD-complete.

Theorem (Section 3.2.2). The problem of finding an EF+PO allocation in a one-sided cardinal-

utility matching market is PPAD-hard.

Our proof works through a polynomial reduction of approximate HZ to the problem

of finding EF+PO allocations; it is inspired by the fact that HZ allocations and EF+PO

allocations coincide in certain continuum markets involving infinitely many agents and

goods [6]. The key idea is to take an HZ instance and add both agents and goods so as to

approximate such a continuummarket without perturbing the HZ equilibria in the instance

too much. However, the fact that this yields a working reduction is nonetheless surprising

and requires additional ideas since it was already known that EF+PO allocations need not

be approximately HZ, even in markets that converge to a continuum market in the limit

[102].

On thewaywewill also give a simple polyhedral proof that there are always rational EF+PO

allocations. This of course follows from the PPAD membership proof by Caragiannis et al.

[24] but our argument does not rely on the substantial amount of machinery inherent to

proving PPAD membership.

Lastly, we show that the Nash-bargaining-based mechanisms for matching markets intro-

duced by Hosseini and Vazirani [70] satisfy an approximate notion of envy-freeness and

incentive compatibility.
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Theorem (Section 3.2.3). The Nash bargaining solution for one-sided cardinal utility matching

markets is 2-approximately envy-free and 2-approximately incentive compatible.

Together with the algorithms given by Panageas et al. [108], this results in a mechanism

that is (2+ &)-envy-free, (2+ &)-incentive compatible and Pareto optimal in polynomial time.

We remark that HZ is (1 + &)-incentive compatible, however this requires the assumption

of a “large market” in which every agent has many copies [69]. Hence, this establishes

the Nash-bargaining-based mechanism as a more practical, alternative mechanism for

one-sided cardinal-utility matching markets.

Two-Sided Matching Markets

For two-sided markets, the only cases in which it was previously known that EF+PO

allocations exist is when the utilities are in {0, 1} and symmetric, i.e. each pair of agents

either finds their match mutually agreeable or mutually disagreeable. In Section 3.3.2, we

provide counterexamples that show that both of these conditions are necessary: if agents

have {0, 1, 2} utilities or if they have asymmetric {0, 1} utilities, then EF+PO allocations

may not exist.

Given this non-existence result, we give a notion of justified envy-freeness (JEF) which is

related to—but to the best of our knowledge different from—notions of fractional stability

from the stable matching literature. We show existence of rational JEF + weakly PO

allocations via a limiting argument, an equilibrium notion introduced by Manjunath [95],

and similar polyhedral techniques as we used for one-sided markets.

Theorem (Section 3.3.3). In any two-sided cardinal-utility matching market, a rational JEF +

weakly PO allocation always exists.
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The Nash-bargaining-based approach from [70] and the efficient algorithms from [108] also

extend to two-sided markets. However, in Section 3.3.4, we give a counterexample to show

that, in a Nash bargaining solution, agents can have �(=)-factor justified envy towards

other agents.

3.1.2 Related Work

Ourwork builds on the existing literature surrounding the Hylland Zeckhauser mechanism

[75] and the complexity of computing HZ equilibria. Alaei et al. [3] give an algorithm to

compute HZ equilibria which is based on the algebraic cell decomposition technique [13].

However, this algorithm needs to enumerate at least =5=2 cells. Garg et al. [61] improve

on this with an algorithm that requires solving on the order of == many linear programs.

Both algorithms are highly impractical, even for small instances.

Vazirani and Yannakakis [122] give a polynomial time algorithm that computes HZ equilib-

ria for {0, 1} utilities. They also show FIXP membership for the problem of computing HZ

equilibria and PPADmembership for the problem of computing approximate HZ equilibria.

Chen et al. [28] show the corresponding PPAD-hardness result, though it remains open

whether finding an exact equilibrium is FIXP-hard.

The notion of envy-freeness comes from fair division where it was originally introduced in

the context of dividing a single resource amongst the agents [52, 118], a problem that is now

referred to as the cake cutting problem. It also features prominently in the literature on

fair division of indivisible goods. Since it is generally impossible to achieve envy-freeness

with indivisible goods, relaxations such as envy-freeness up to one good (EF1) [22] or

envy-freeness up to any good (EFX) [25] are studied instead.
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Cole and Tao [31] recently showed that envy-free and Pareto-optimal lotteries exist in a large

class of (one-sided) fair division problems that in particular includes our setting. Building

on this and recent results by Filos-Ratsikas et al. [50], Caragiannis et al. [24] managed to

show PPAD membership for this class of problems, though they leave open the question of

showing PPAD-hardness which we resolve here. They also show that maximizing social

welfare over the set of envy-free lotteries is NP-hard, though their construction relies on a

more general problem than the matching markets discussed in this thesis.

Markets with a continuum of agents were introduced by Aumann [8]. Zhou [129] showed

that in such continuum markets and under locally non-satiating utilities, envy-free and

Pareto-optimal allocations coincide with allocations that come from competitive equilibria

with equal incomes. In matching markets, the local non-satiation condition is not satisfied,

but Ashlagi and Shi [6] show a similar equivalence for HZ. On the other hand, Miralles and

Pycia [102] show that this holds only in the limit: for “large“ markets, EF+PO allocations

may not be supported by competitive equilibria from approximately equal incomes.

In order to deal with the intractability of HZ, Hosseini and Vazirani [70] recently proposed

an alternative, Nash-bargaining-based mechanism for matching markets. Their approach

works for one-sided and two-sided settings with both linear and non-linear utilities. Im-

portantly, they show that their Nash bargaining solutions can be computed very efficiently

in practice even on instances with thousands of agents. The idea of operating markets via

Nash bargaining instead of pricing goes back to Vazirani [119] who used this approach for

the linear ArrowDebreu market. We will introduce the Nash-bargaining-based mechanism

in more detail in Section 3.2.3.

Panageas et al. [108] give algorithms for Nash bargaining in matching markets based on

multiplicative weights update and conditional gradient descent which are efficient in

practice and provide provable running times bounded by poly(=, 1/&). Aziz and Brown

[11] show a reduction from HZ to Nash bargaining in the setting with {0, 1} utilities. They
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also note that Nash bargaining is not envy-free in general, though, as we will show, it is so

in an approximate sense. We cover these results in Chapter 4.

For two-sidedmarkets, there have been several attempts at extending the equilibriumnotion

of Hylland and Zeckhauser. Manjunath [95] as well as Echenique et al. [42] introduce HZ-

like equilibrium notions. In both cases, personalized prices are required, i.e. each agent on

one side sees a potentially different set of prices for all other agents on the other side. In

Manjunath’s equilibrium we will see that we can still get a kind of justified envy-freeness.

Restricted to symmetric {0, 1} utilities, HZ-like equilibria do exist as shown by Bogomolnaia

and Moulin [18] for bipartite markets and Roth et al. [111] for non-bipartite markets. A

polynomial time algorithm to compute such equilibria and therefore EF+PO allocations

was later given by Li et al. [92].

Beyond this, two-sided markets have been mostly studied under ordinal preferences where

stable matching, as introduced by Gale and Shapley [56], is the dominant solution concept.

A notable exception is the work by Caragiannis et al. [23] who study the problem of finding

a fractional stable matching under cardinal utilities that (approximately) maximizes social

welfare.

3.2 One-Sided Matching Markets

In a one-sided matching market we are given a set � of agents and a set � of goods. We

assume that |�| = |�| = = since our goal is to assign exactly one good to each agent (a

perfect matching) in a way that satisfies certain desirable properties. As usual in this thesis,

we will assume cardinal utilities, i.e. each agent 8 ∈ � has non-negative utilities (D8 9)9∈�
for every good. The most notable result in the study of cardinal matching markets is the

celebrated Hylland-Zeckhauser mechanism [75] which we introduced in Section 1.3.
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Recall that the key insight of the HZ mechanism consists in giving agents equal amounts

of fake currency and finding a so-called HZ equilibrium. We restate the definition of an

HZ equilibrium below, assuming all budgets are 1.

Definition 3.1. Given �, �, D, an HZmarket equilibrium consists of an allocation (G8 9)8∈�,9∈�
and non-negative prices (? 9)9∈� such that

1. G is a fractional perfect matching.

2. No agent overspends, i.e. ? · G8 ≤ 1 for each 8 ∈ �.

3. Each agent 8 gets an optimal bundle, i.e. G8 maximizes D8 · G8 under the constraint that

? · G8 ≤ 1 and
∑
9∈� G8 9 = 1.

4. Each agent 8 gets a cheapest bundle, i.e. G8 minimizes ? · G8 among all bundles with utility

at least D8 · G8 and
∑
9∈� G8 9 = 1.

As mentioned in Section 1.3, HZ equilibria always exist and are both Pareto-optimal and

envy-free.

Theorem 3.1 (Hylland, Zeckhauser [75]). An HZ equilibrium always exists. Moreover, if (G, ?)

is an HZ equilibrium, then G is envy-free and Pareto-optimal.

3.2.1 Rationality

Unfortunately, there are instances on which the unique Hylland-Zeckhauser equilibrium

requires an irrational allocation and prices [122]. In contrast, we will show in this section

that there are always EF+PO allocations which are rational. This of course follows from

the PPAD membership proof given by Caragiannis et al. [24]. However, our argument

is simpler and introduces some basic facts that will be useful in later sections. The core
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observation is that fractional perfect matchings which are envy-free and Pareto-optimal

can be characterized polyhedrally.

Let us start by considering the polytope %PM of all fractional perfect matchings in the given

market.

%PM B


(G8 9)8∈�,9∈�

���������
∑
9∈� G8 9 = 1 ∀8 ∈ �,∑
8∈� G8 9 = 1 ∀9 ∈ �,

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �.


It is well-known that Pareto-optimality can be characterized in terms of maximizing along

a vector with strictly positive entries [126]. Since agents’ utilities are linear and the feasible

region is a polytope, one can obtain the corresponding vector in polynomial time using

linear programming.

Lemma 3.1. G★ ∈ %PM is Pareto-optimal if and only if there exist positive (
8)8∈� such that G★

maximizes )(G) B ∑
8∈� 
8D8 · G8 over all G ∈ %PM. Moreover, if G★ is rational, 
 can be computed

in polynomial time.

Proof. Clearly if G★ maximizes )(G), then it is a Pareto-optimal allocation since any Pareto-

better allocation G would satisfy )(G) > )(G★) since 
 is strictly positive.
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For the other direction, note that by Pareto-optimality, G★ is a maximizer of the linear

program:

max
∑
8∈�

D8 · G8

s.t. D8 · G8 ≥ D8 · G★8 ∀8 ∈ �,∑
9∈�

G8 9 = 1 ∀8 ∈ �,∑
8∈�

G8 9 = 1 ∀9 ∈ �,

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �.

Consider a solution (0, @, ?) to the dual program:

min
∑
8∈�

08D8 · G★8 +
∑
8∈�

@8 +
∑
9∈�

? 9 (3.1a)

s.t. 08D8 9 + @8 + ? 9 ≥ D8 9 ∀8 ∈ �, 9 ∈ �, (3.1b)

08 ≤ 0 ∀8 ∈ �. (3.1c)

Then by strong duality

∑
8∈�

D8 · G★8 =

∑
8∈�

08D8 · G★8 +
∑
8∈�

@8 +
∑
9∈�

? 9 . (3.2)
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Define 
8 B 1 − 08 . Then clearly 
8 > 0 for all 8 since 08 ≤ 0. Now we want to show that G★

is a maximizer of

max
∑
8∈�


8D8 · G8

s.t.
∑
8∈�

G8 9 = 1 ∀8 ∈ �,∑
9∈�

G8 9 = 1 ∀9 ∈ �,

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �.

But this follows immediately from the fact that (@, ?) is an optimal dual solution to this LP:

(3.1b) implies feasibility and (3.2) implies optimality. �

Lemma 3.1 characterizes the Pareto-optimal allocations. Moreover, the envy-free allocations

themselves form the polytope %EF shown below.

%EF B


(G8 9)8∈�,9∈�

������������

∑
9∈� G8 9 = 1 ∀8 ∈ �,∑
8∈� G8 9 = 1 ∀9 ∈ �,

D8 · G8 − D8 · G8′ ≥ 0 ∀8 , 8′ ∈ �,

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �.


Theorem 3.2. There is always an EF+PO allocation which is a vertex of %EF and is thus rational.

Proof. We know that at least one EF+PO allocation G★ exists since the HZ equilibrium

allocation is both envy-free and Pareto-optimal. By Lemma 3.1, G★ maximizes )(G) B∑
8∈� 
8D8 · G8 over %PM for some strictly positive 
 vector.

Now consider the linear program max{)(G) | G ∈ %EF}. %EF is a polytope so let G be a

vertex solution to this LP. Clearly G is envy-free since G ∈ %EF. But since G★ is also in
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%EF and %EF ⊆ %PM, we know that )(G) = )(G★). Therefore, by the other direction of

Lemma 3.1, G is Pareto-optimal. �

3.2.2 PPAD-Hardness of Computing EF+PO

We now turn to our main result:

Theorem 3.3. The problem of finding an EF+PO allocation in a one-sided matching market with

linear utilities is PPAD-hard.

Our proof will reduce the problem of finding an approximate HZ equilibrium to that of

finding an EF+PO allocation. The former was shown to be PPAD hard recently.

Theorem 3.4 (Chen, Chen, Peng, Yannakakis 2022 [28]). For any 2 > 0, the problem of finding

an &-approximate HZ equilibrium is PPAD-hard for & ≤ 1/=2 .

There are various reasonable notions of &-approximate HZ equilibria which are polynomi-

ally equivalent. We will use the following definition. 1

Definition 3.2. An assignment (G8 9)8∈�,9∈� together with non-negative prices (? 9)9∈� are an

&-approximate HZ equilibrium if and only if

• each agent 8 satisfies
∑
9∈� G8 9 ∈ [1 − &, 1],

• each good 9 satisfies
∑
8∈� G8 9 ∈ [1 − &, 1],

• each agent 8 spends at most 1, i.e. ? · G8 ≤ 1,

• each agent 8 gets a bundle which is at most & worse than an optimal bundle, i.e.

D8 · G8 ≥ max
D8 · H

������ ∑
9∈�

H 9 = 1, ? · H ≤ 1
 − &.

1See [122] for a proof that this notion is indeed equivalent to the one that Chen et al. use.
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Note that Chen et al. assume that all utilities lie in [0, 1] and we will do the same for now.

Additionally, we remark that there is no requirement that the bundle of an agent be (ap-

proximately) cheapest. This condition is necessary to guarantee some form of approximate

Pareto-optimality. However, it is not needed for the hardness proof and removing it only

makes the theorem stronger.

Overview of the Reduction

The general strategy of the reduction consists of the following five steps.

Step 1: We will modify the instance to make sure that all EF+PO allocations are

approximate HZ equilibria while making sure that HZ equilibria are not

perturbed too much.

Step 2: Starting with an EF+PO allocation G in the modified instance, we will find

prices ? and budgets 1 that make G into a competitive equilibrium using a

version of the Second Welfare Theorem.

Step 3: We will use the envy-freeness of G to prove that agents with almost-equal

utilities have almost-equal budgets in a quantifiable sense.

Step 4: Then, we will exploit the structure of our modified instance and the linearity

of the agents’ utilities to prove that all budgets are almost equal which makes

(G, ?) an approximate HZ-equilibrium.

Step 5: Finally, we will transform (G, ?) to an approximate HZ equilibrium (Ĝ , ?̂) in

the original instance, finishing the reduction.

Steps 1, 2, and 5 can be carried out in polynomial time as is required in order to get a

polynomial reduction from approximate HZ to EF+PO. Steps 3 and 4 are the crux of the
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correctness proof. If two agents have equal utilities and are non-satiated, i.e. they are not

getting 1 unit of their maximum utility goods, it is not hard to see that their budgets

must be equal. Otherwise, the agent with the smaller budget would necessarily envy the

budget with the larger budget. Of course, these conditions are very strong and not typically

satisfied between two arbitrary agents in an arbitrary instance which is why a modified

instance and additional ideas are needed.

Step 1: Construction of the Modified Instance

Our modified instance is going to ensure that between any two agents 8 and 8′, there is a

sequence of agents 8 = 8(0), . . . , 8(;) = 8′ such that the utilities of 8(C) and 8(C+1) are almost the

same for all C. If we can show that 8(C) and 8(C+1) must have almost the same budget for all C,

then perhaps we can show that 8 and 8′ must have almost the same budget. Moreover, we

will ensure that no agent can be satiated. In order to carry out this construction without

perturbing approximate HZ equilibria too much, we will need to create many copies of

identical agents and identical goods.

Definition 3.3. If two agents have identical utilities for all goods, we say that they are of the same

type. Likewise, two goods are of the same type if all agents have identical utilities for them.

Fix a positive integer : ∈ N+ and some & > 0 such that : is divisible by = and : ≥ =3

& . Then

we will create a new instance �′ = (�′, �′, D′) as follows.

1. For each good in �, we add : identical copies of said good to �′. Likewise, for each

agent in �, we add : identical copies of said agent to �′. These copies will allow us

to add small amounts of new agents and goods without perturbing the HZ equilibria

in the instance.
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2. Add :/= identical goods for which every agent has utility 2. Note that this is double

of what they can get from goods in �. For this reason, we call these awesome goods

and their limited quantity is going to prevent satiation.

3. For each pair {8 , 8′} of distinct agents in �, we create a sequence of interpolating agents.

Order the types of goods in some arbitrary way {C1, . . . , C=}. Now add up to 1
& agents

by starting with with the utilities of agent 8 and slowly increasing / decreasing the

utility for type C1 goods in steps of & until we reach the utility that 8′ has for C1 goods.

Repeat this process for C2, . . . , C= . The final result of this procedure will be at most =&
additional agents which slowly interpolate between the utilities of 8 and 8′, one type

of good at a time. See Figure 3.1.

4. Finally, add dummy agents to �′ until |�′| = |�′|. These agents have identical utilities

for all goods. Note that we added fewer interpolating agents than awesome goods

since : ≥ =3

& .

8

8′

9

9′

D8 9

D8 9′

D8′ 9

D8′ 9′

&

&

Figure 3.1: For each pair of agents 8 and 8′ (large red dots) we add interpolating agents (small
black dots) to transition between the utility vector D8 and D8′ in small steps. This is done
coordinate-wise and this figure depicts an example with only two goods 9 and 9′.

Lemma 3.2. Let =′ = |�′| = |�′| be the number of agents and goods in the modified instance. Then

=′ ≤ 2:=.
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Proof. We add := goods through identical copies of the agents in � and :/= ≤ := awesome

goods. �

Step 2: Finding Prices and Budgets

In the following assume that we are given a rational EF+PO allocation G on �′ which is

encoded with a polynomial number of bits. Our goal will be to construct an approximate

HZ solution on �. We now carry out Step 2 by finding budgets and prices that make G

a competitive equilibrium on �′. Recall that by Lemma 3.1, there exist positive 
8 for all

8 ∈ �′ such that G solves

max
∑
8∈�′


8D8 · G8

s.t.
∑
8∈�′

G8 9 = 1 ∀8 ∈ �′,∑
9∈�′

G8 9 = 1 ∀9 ∈ �′,

G8 9 ≥ 0 ∀8 ∈ �′, 9 ∈ �′.

Moreover, we can find such 
8 in polynomial time since we obtained them using an LP in

the proof of Lemma 3.1. Consider now an optimal solution (?, @) to the dual.

min
∑
8∈�′

@8 +
∑
9∈�′

? 9

s.t. @8 + ? 9 ≥ 
8D8 9 ∀8 ∈ �′, 9 ∈ �′

and define 18 B 
8D8 · G8 − @8 to be budget of agent 8. Note that we may assume that ?, @ ≥ 0

since all utilities are non-negative. As shown in Lemma 3.3, G really is a competitive

equilibrium with prices ? and budgets 1.
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Lemma 3.3. For every agent 8, we have that 18 ≥ 0 and G8 is an optimal solution to

max D8 · G8

s.t.
∑
9∈�′

G8 9 ≤ 1,

? · G8 ≤ 18 ,

G8 ≥ 0.

Proof. First, observe that

∑
9∈�′

? 9G8 9 =
∑
9∈�′
(
8D8 9 − @8)G8 9 = 
8D8 · G8 − @8 = 18

using complimentary slackness and the fact that
∑
9∈�′ G8 9 = 1. So G8 is at least feasible and

clearly 18 ≥ 0 since prices are non-negative.

Now take any feasible solution (H 9)9∈�′ of the LP. Then

∑
9∈�′

D8 9H 9 ≤
∑
9∈�′

? 9 + @8

8

H 9 ≤
18 + @8

8

= D8 · G8

by dual feasibility and the definition of 18 . �

Step 3: Almost Equality of Budgets via Envy-Freeness

Our goal will now be to use envy-freeness in order to show that agents’ budgets are

approximately equal. First, we need to prove several simple lemmas which ultimately

allow us to prove, in a quantifiable way, that no agent is satiated.

Lemma 3.4. If 9 and 9′ are goods of the same type, then ? 9 = ? 9′.
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Proof. Note that every good is fully matched. But if the prices were different, then any

agent matched to the more expensive good would be violating Lemma 3.3; they would

switch to the cheaper good of the same type. �

Lemma 3.5. For any non-dummy agent 8, D8 · G8 ≤ 1.6. In particular 8 is not satiated.

Proof. If this were not the case, 8 would need to get at least 0.6 units of an awesome good.

But then any other non-dummy agent must get at least 0.1 units of an awesome good by

envy-freeness. Since there are many more non-dummy agents than awesome goods, this is

a contradiction. �

Lemma 3.6. There exists at least one non-dummy agent 8 with 18 > 0.

Proof. There must be at least one non-dummy agent 8 who buys a positive fraction of an

awesome good. This is because if any dummy agent received any amount of an awesome

good, this would violate Pareto-optimality since they could swap goods with a non-dummy

agent. But since 8 is not satiated by Lemma 3.5, the price of said awesome good must be

positive and so must the agent’s budget. �

In particular, we can rescale all 
, ?, @, and 1 so that the maximum budget of any non-

dummy agent is exactly 1. In the remainder of this section, we assume that this is the

case.

Lemma 3.7. If 8 and 8′ are agents of the same type, then 18 = 18′.

Proof. Note that by Lemma 3.5, no agent receives their maximum possible utility. So if

18 ≠ 18′, assume wlog. that 18 < 18′. Then since 8′ is optimally spending 18′ and both agents

agree on the utilities of all goods, both agents agree that 8′ is getting a higher utility bundle

than 8. Thus 8 would be envious. �
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Now that we have established several basic facts about the budgets and bundles of the

agents, we will turn to our main objective: show that the budgets are almost equal. As

mentioned in our high level plan, we will first show that two agents whose utility vectors

are almost equal, must have almost equal budgets. This is done in Lemmas 3.8 and 3.9

below.

Lemma 3.8. For any non-dummy agent 8 we have 
8 ≤ 5=2.

Proof. Consider an awesome good 9★. By dual feasibility, we know that ? 9★ + @8 ≥ 
8D8 9★ =

2
8 . But on the other hand, note that

@8 = 
8D8 · G8 − 18 ≤ 
8D8 · G8 ≤ 1.6
8

using Lemma 3.3 and Lemma 3.5. Combining these inequalities we get ? 9★ ≥ 0.4
8 .

Lastly, we note that the :/= awesome goods can only be sold to the non-dummy agents of

which there are at most 2:= and each of which has a budget of at most 1 after rescaling. So

the price of the awesome goods must be at most 2=2 which finishes the proof. �

Lemma 3.9. Let 8 , 8′ be two non-dummy agents whose utilities are identical except for the goods of

one type where they differ by at most &. Then |18 − 18′| ≤ 5=2&.

Proof. Note that since the D8 and D8′ disagree only by epsilon, we have

D8 · G8′ ≥ D8′ · G8′ − & ≥ D8′ · G8 − & ≥ D8 · G8 − 2&

using envy-freeness. In fact, depending on whether D8 or D8′ has the higher utility, we can

only lose an & in the first or the last inequality. So we actually get D8 · G8′ ≥ D8 · G8 − &.
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Now we can compute

18′ =
∑
9∈�

G8′ 9? 9

=

∑
9∈�

G8′ 9(
8D8 9 − @8)

= 
8D8 · G′8 − @8

≥ 
8D8 · G′ − &
8 − @8

= 18 − &
8

and via symmetry and Lemma 3.8 we conclude |18 − 18′| ≤ & max{
8 , 
8′} ≤ 5=2&. �

Lemma 3.9 is enough to show that the difference in budgets between “close” agents tends

to zero for an inverse-polynomial &. However, between any two distinct agents 8 , 8′ ∈ �,

it takes us up to =2

& agents to interpolate between them and therefore we cannot give any

non-trivial bound on the difference in budget between arbitrary agents. It seems as if we

have not won anything!

Step 4: Bounding the Budget Changes for Interpolating Agents

The key argument that makes our construction work is as follows: we are going to show

that along any chain of interpolating agents, the budgets cannot change more than $(=2)

many times due to the linearity of the utilities. Before we prove this in full generality,

it is insightful to consider a simpler situation in which agents do not have the matching

constraint. Without the matching constraint, the optimal thing to do for any agent is to

spend their entire budget on whichever goods have the maximum “bang per buck”, i.e.

those goods 9 that maximize D8 9
? 9
.
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It is not hard to see that when two agents agree on which goods are maximum bang per

buck, then their budgets must be equal. Otherwise, the agent with the larger budget would

be able to buy more of those goods and thus would be envied by the agent with the smaller

budget. When we modify the utility of one good, the set of maximum bang per buck goods

can only change twice. See Figure 3.2.

D/?

91 92 93 94

Figure 3.2: Shown is an agent who is interested in goods 91 to 94 which are plotted by their
bang per buck. If we change only the utility of good 91 (red) and leave the rest the same,
there are only three possible sets of maximum bang per buck goods: { 94}, { 91, 94}, and
{ 91}. So along any chain of interpolating agents where we change only the utility for 91
(monotonically), there will be at most two times that the set of maximum bang per buck
goods, and with it the budget of the agent, can change.

Unfortunately, once we add in the matching constraint which is crucial to our setting,

this simple characterization no longer works. The core issue is that with the matching

constraint, the optimal bundles of an agent depend not just on the utilities and prices of

the goods but also on the budget of the agent. Since our goal is to show that agents have

identical budgets, this easily leads to circular reasoning. The way around this is to instead

assume that agents have the same optimal bundles for all potential budgets.
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Definition 3.4. For any agent 8, define a function �8(C) which maps any C ≥ 0 to the set of all

goods 9 ∈ � such that H 9 can be positive in an optimal solution to

max D8 · H

s.t.
∑
9∈�′

H ≤ 1,

? · H ≤ C ,

H ≥ 0.

(3.3)

�8(C) are simply the goods which can participate in an optimal bundle for agent 8 at budget C.

Lemma 3.10. Let 8 , 8′ be two agents with �8 = �8′, then 18 = 18′.

Proof. Assume otherwise and let 18 < 18′ wlog. We will show that 8 must envy 8′.

Consider LP (3.3) with C = 18′ which maximizes the utility of agent 8 but under the higher

budget of agent 8′. We claim that H = G8′ is an optimal solution of this LP. To see this,

consider the dual as well:

min � + �18

s.t. � + ? 9� ≥ D8 9 ,

�, � ≥ 0.

(3.4)

Now, for any 9, we know that if G8′ 9 > 0, then 9 ∈ �8′ by definition. But since �8′ = �8 ,

this implies that there is some optimal primal solution with H 9 > 0. By complementary

slackness, this implies that �+? 9� = D8 9 . Therefore, G8′ is a feasible solution to the LP which,

together with � and �, satisfies the complementary slackness conditions and is therefore

optimal.
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Finally, since no agent is satiated (Lemma 3.5), increasing the budget always increases the

optimal value of the LP, implying that D8 · G8 < D8 · G8′. This contradicts envy-freeness. �

Lemma 3.11. Let 81, . . . , 8< be a set of agents such that all agents agree on all utilities except for

possibly one type of good. Then |{�81 , . . . , �8<}| ≤ 2= + 1.

Proof. We will give a geometric proof of this fact. First, we will need to understand the

behavior of any particular �8(C). We are interested in the goods which can be used in an

optimal solution H to (3.3). By complementary slackness these are the goods for which the

corresponding dual constraint is tight in the dual (3.4).

?

D

C

ℋ

Figure 3.3: Depicted isℋ and its relationship to optimal bundles. Each point represents
a good or collection of goods with identical price and utility. Gray points are dominated
and will never be part of an optimal bundle. Points onℋ can be part of an optimal bundle
depending on the budget C. A typical case is shown in which �8(C) consists of the three red
goods that lie on the edge ofℋ which corresponds to the tight dual constraints at budget C.

Now let us interpret this dual geometrically in R2. The expression � + �C represents a

line in C with non-negative slope. The condition that � + ? 9� ≥ D8 9 means that this line

lies above the point (? 9 , D8 9). In other words, the dual objective function for a fixed C is

optimized by a line which is as low as possible at C and yet lies above all the points (? 9 , D8 9).
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This characterizes precisely the upper boundary of the convex hull of the point set

{(0, 0)} ∪ {(? 9 , D8 9) | 9 ∈ �′} ∪ {(∞,max
9∈�′

D8 9)}

which we will denote byℋ .

And together with what we already know from complementary slackness, this gives a nice

geometric characterization of �8 . For a given C, consider the point (C , E) ∈ ℋ . If (C , E) is a

vertex of the convex hull, i.e. corresponds to (? 9 , D8 9) for some good 9 ∈ �′, then only this

good—or more precisely only goods with identical price and utility—can participate in

an optimal bundle. On the other hand, if (C , E) is not a vertex, then it lies on some line !

that bounds the convex hull (determined by at least two linearly independent tight dual

constraints). �8(C) will then consist of all those goods j such that (? 9 , D8 9) lies on !. See

Figure 3.3.

Let us now return to the agents 81, . . . , 8< and consider what happens toℋ when we shift a

single point along the H-axis. By the characterization of �, the only thing we need to know

to uniquely determine � is which goods lie onℋ and out of these which goods are vertices

ofℋ . Call this data the structure ofℋ .

Let 9 be the type of good for which the agents have differing utilities. When we remove

9, we can construct a convex hullℋ ′ on the rest of the goods (corresponding to optimal

bundles without type 9). Finally, observe that the structure of ℋ only depends on the

relationship (below, intersecting, above) which (? 9 , D8 9) has with the at most = lines that

boundℋ ′. Since there are only 2= + 1 possible ways in which a point can relate to = lines,

this proves the claim. See Figure 3.4. �

Lemma 3.12. Let 8 , 8′ be two non-dummy agents. Then |18 − 18′| ≤ 5&=4.
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?

D

ℋ ′
ℋ

Figure 3.4: Shown are several convex hulls ℋ (red) as the red good’s utility is changed.
Note that the structure ofℋ only changes when we cross one of the bounding lines ofℋ ′,
the convex hull without the red good.

Proof. Consider the chain of interpolating agents between 8 and 8′. There can be at most =

types of goods on which 8 and 8′ have different utilities. So we can divide these agents into

at most = groups inside of which the agents differ only on one good. By Lemma 3.11, inside

each group there are at most 2= + 1 different � functions. By Lemma 3.10, the budgets

of agents who have identical � functions must be identical. And so there are at most 2=

opportunities for � to change inside each group, totaling to 2=2 changes overall. Each of

these changes in � corresponds to two agents that differ in their utilities by at most & on

one good, thus Lemma 3.9 applies and we get |18 − 18′| ≤ 2=2 · 5&=2. �

Step 5: Contracting to the Original Instance

To finish the proof, let us construct our approximate HZ equilibrium (Ĝ , ?̂) on the original

instance by contracting the allocation along the copies of goods and agents. For any

8 ∈ �, 9 ∈ � let Ĝ8 9 be the average over all G8′ 9′ where 8′ are the : identical copies of 8 and 9′
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are the : identical copies of 9 in �′. The parts of G going to the dummy agents, interpolating

agents, and awesome goods are simply dropped.

Theorem 3.5. If & ≤ 1
5=5 , then (Ĝ , ?̂) is a 3

= -approximate HZ equilibrium in �.

Proof. First, observe that as there are : copies of each agent 8 and only :/= awesome goods,

we have that
∑
9∈� Ĝ8 9 = [1 − 1

= , 1]. Likewise, the total number of interpolating and dummy

agents is :/= and there are : copies of each good 9 so
∑
8∈� Ĝ8 9 = [1 − 1

= , 1]. This establishes

that Ĝ is an approximately perfect fractional matching.

Moreover, it is clear that no agent overspends as no non-dummy agent spends more than 1

in �′ and we have only removed allocations during the contraction.

Finally, we need to show that no agent is far from their optimal bundle. For that, let H be

an optimal solution to

max D8 · H

s.t.
∑
9∈�

H = 1,

? · H ≤ 1,

H. ≥ 0

By Lemma 3.12, we know that 18 ≥ 1 − 1
= . And so D8 · G8 ≥ (1 − 1/=)D8 · H since we could

otherwise scale down H and violate Lemma 3.3. Note that it is important here that G8 was

optimal even among bundles that get at most one unit of good.

Lastly, we know that D8 · Ĝ8 ≥ D8 · G8 − 2
= since the only thing that was lost when contracting

were up to 1
= awesome goods as mentioned above. Thus

D8 · Ĝ8 ≥ (1 − 1/=)D8 · H −
2
=
≥ D8 · H −

3
=
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finishing the proof. �

Proof of Theorem 3.3. If we choose & = 1
5=5 and : = 5=8, then the constructed instance has at

most 10=9 agents by Lemma 3.2. Given a rational EF+PO allocation with polynomial encod-

ing length, we can construct (Ĝ , ?̂) as above in polynomial time and get a 3
= -approximate

HZ equilibrium. By Theorem 3.4, the latter problem is PPAD-hard. �

Lastly, we remark that Theorem 3.3 can be slightly strengthed to show hardness of com-

puting approximately envy-free and Pareto-optimal solutions with inverse polynomial &.

Lemmas 3.9 and 3.10 require minor modifications for the proof to go through.

3.2.3 2-EF and 2-IC via Nash Bargaining

Now that we have seen that finding EF+PO allocations is PPAD-hard, this raises the

question: what is the best that we can actually do in polynomial time? It turns out that

Nash bargaining comes to the rescue here. Nash [124] studied the problem of two or more

agents bargaining over a common outcome, for example how they should split up certain

goods amongst themselves. He showed that there is a unique point that satisfies certain

axioms and moreover that this point is characterized as maximizing the product of the

agents’ utilities, i.e. the Nash social welfare. See Section 1.4 for more details.
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In our case, this means that the Nash bargaining solution is given by the solution to

max
∏
8∈�

D8 · G8

s.t.
∑
9∈�

G8 9 = 1 ∀8 ∈ �,∑
8∈�

G8 9 = 1 ∀9 ∈ �,

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �.

(3.5)

Since the objective function is log-concave, general purpose convex programming tech-

niques can be used to find approximate solutions to this programwhich is a stark difference

to HZ. For this reason, Hosseini and Vazirani [70] proposed Nash bargaining as an alternate

solution concept for cardinal-utility matching markets of various kinds. We strengthen the

case for Nash bargaining as an HZ alternative by showing that Nash bargaining points are

approximately envy-free and approximately incentive compatible.

Definition 3.5. An allocation (G8 9)8∈�,9∈� is 
-approximately envy-free or just 
-EF if for

every 8 , 8′ ∈ � we have D8 · G8 ≥ 1

D8 · G8′. In other words, no agent envies another agent by more

than a factor of 
.

Theorem 3.6. Let G be an optimal solution to (3.5). Then G is 2-EF.

Proof. Assume otherwise, i.e. that there are agents 8 , 8′ ∈ � such that D8 · G8′ = 
D8 · G8 and


 > 2. Then we consider what happens when we swap some &-fraction of the bundle that 8

gets with an &-fraction of the bundle that 8′ gets. This maintains feasibility.

By doing so, the product of the agents’ utilities changes by a factor of

(D8 · G8(1 − &) + 
D8 · G8&)(D8′ · G8′(1 − &) + D8′ · G8&)
(D8 · G8)(D8′ · G8′)

.
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We now evaluate the derivative of this expression wrt. to & at & = 0 and get

(
 − 1)(D8 · G8)(D8′ · G8′) + (D8 · G8)(D8′ · G8 − D8′ · G8′)
(D8 · G8)(D8′ · G8′)

≥ 
 − 2.

But since 
 > 2, this implies the derivative is positive, i.e. for small enough & the product

of the agents’ utilities is increasing. This contradicts the fact that G is an optimal solution

to (3.5). �

We remark that this bound is tight since Aziz and Brown [11] give an instance in which an

agent envies another agent by a factor of 2. See Figure 3.5.

8′

8

9′

9

Figure 3.5: Shown is an example instance which demonstrates that 2-EF is tight for Nash
bargaining. Dashed edges have utility 1, solid edges have utility 2, and missing edges have
utility 0. Clearly both agents prefer 9 to 9′. A simple calculation shows that in the Nash
bargaining solution, 8 will get all of 9 and thus 8′ will envy 8 by a factor of 2.

Definition 3.6. Consider some mechanism " which maps utility profiles (D8)8∈� to allocations

(G8)8∈�. Then " is called 
-incentive compatible or just 
-IC if, whenever utilities D and D̂

differ only on agent 8, said agent does not improve by more than a factor of 
 wrt. to utilities D,

i.e. D8 ·"(D)8 ≥ 1

D8 ·"(D̂)8 . This means that no agent stands to gain more than a factor of 
 by

misreporting their utilities.

Theorem 3.7. Any mechanism which maps D to some maximizer of (3.5) is 2-IC.

Proof. The proof of this result is quite similar to the proof of Theorem 3.6. Consider the

original utility profile D and a modified utility profile D̂ which differs only on one agent,

say agent ; ∈ �. Let G be a maximizer of (3.5) under utilities D and H a maximizer of (3.5)

under utilities D̂. Assume that D; · H; = 
D; · G; . Our goal is to show that 
 ≤ 2.
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For small &, we now consider the new allocations (1 − &)G + &H. This allocation cannot

increase the product of the utilities D̂ compared to G by the maximality of G. Thus the

derivative wrt. to & of

∏
8∈�
(D8 · G8(1 − &) + D8 · H8&)

must be non-positive at & = 0. Performing this computation yields

∑
8∈�

D8 · H8 − D8 · G8
D8 · G8

∏
8′∈�

D8 · G8 ≤ 0

and therefore

∑
8∈�\{;}

(
D8 · H8
D8 · G8

− 1
)
≤ 1 − D;H;

D;G;
= 1 − 
.

The same argument applies to the allocation &G + (1 − &)H and the utilities D̂ by symmetry,

giving the inequality

∑
8∈�\{;}

(
D̂8 · G8
D̂8 · H8

− 1
)
≤ 1 − D̂;G;

D̂;H;
≤ 1.

Finally note that for all 8 ∈ � \ {;} we have that D8 = D̂8 so after summing up the two

inequalities we get:

∑
8∈�\{ 9}

(
D8 · H8
D8 · G8

+ D8 · G8
D8 · H8

− 2
)
≤ 2 − 
.

By the AM-GM inequality, we know that 01 + 1
0 ≥ 2 for all 0, 1 > 0 and so this implies that

2 − 
 ≥ 0 which is precisely what we wanted to show. �

82



This bound is also tight as shown by the following family of instances. See Figure 3.6 for

an example.

8 9

Figure 3.6: Shown is an example instance from the proof of Theorem 3.8 with = = 4.
Dashed edges have utility 1, solid edges utility 2, and missing edges have utility 0. Agent 8
will be fully allocated to good 9 by Nash bargaining even though they would prefer the
“desirable” goods. However, agent 8 can misrepresent their utilities to look like the other
agents therefore get a significant fraction of the desirable goods.

Theorem 3.8. Any mechanism which maps D to some maximizer of (3.5) is not (2 − &)-IC for any

& > 0.

Proof. Consider the following instance with = agents and = goods. Let there be = − 1

desirable goods and one undesirable good. Agent 1 (the agent who will be incentivized to

lie) has utility 2 for the desirable goods and utility 1 for the undesirable good whereas all

other agents have utility 1 for the desirable goods and utility 0 for the undesirable good.

See Figure 3.6 for = = 4.

Let G be the amount that agent 1 is matched to the desirable goods. By symmetry2, all other

agents must be matched =−1−G
=−1 = 1 − G

=−1 to the desirable goods. The product of agents’

utilities is therefore

(2G + (1 − G))
(
1 − G

= − 1

)=−1

2One can easily see that in optimal solutions to (3.5), agents with equal utility vectors must have the same
overall utility. Otherwise the product of their utilities can be improved.
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and one may check that this is uniquely maximized at G = 0. In other words, agent 1 gets

nothing from the desirable goods and their utility is 1.

Now agent 1 misreports their utilities as having utility 1 for the desirable good and utility 0

for the undesirable good, i.e. they report the same utilities as all the other agents. But then,

by symmetry, this means that agent 1 now gets an equal amount of the desirable goods as

all the other agents, i.e. they get =−1
= desirable goods. Thus their actual utility is 2=−1

= + 1
= .

Finally, as = →∞, this implies that any mechanism based on Nash-bargaining cannot be

better than 2-IC. �

Panageas et al. [108] give simple, practical algorithms for computing (1 + &)-approximate3

Nash bargaining points in $(poly(=, 1/&)) time and so we get the following corollary.

Corollary 3.1. There is a (2 + &)-EF, PO, (2 + &)-IC mechanism for one-sided cardinal-utility

matching markets which runs in $(poly(=, 1/&)) time.

Finally, note that both [70] and [108] also deal with more general settings in which the

agents’ utilities are not necessarily linear but given bymore general piecewise-linear concave

functions. The above proofs can be adapted to work for non-linear concave utility functions

as well, though this is beyond the scope of this chapter.

3.3 Two-Sided Matching Markets

A second interesting class of matching markets is that of two-sided markets in which

instead of matching goods to agents we match agents to other agents. These markets can

be distinguished based on two criteria: whether the underlying graph is bipartite or not

and whether the agents’ utilities are symmetric or asymmetric.
3Approximate in the sense that all utilities are within (1 + &) of the Nash bargaining point.
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In a bipartite matching market, we have two sets �, � of agents with |�| = |�| = = and our

goal is to match each agent in � to an agent in �. Every 8 ∈ � has non-negative utilities

D8 9 over 9 ∈ � and, likewise, every 9 ∈ � has non-negative utilities F 98 over 8 ∈ �. A classic

example of this is school choice: students have preferences over schools and schools have

preferences over students, e.g. based on test scores. By a slight abuse of notation we use

F 9 · G 9 to mean
∑
8∈� F 98G8 9 .

There are also non-bipartite matching markets in which we are simply given a set of 2=

agents and each agent may have utilities over all other agents. In this case one has to

be careful with allowing fractional allocations since fractional perfect matchings cannot

always be decomposed into integral perfect matchings. Still, these markets are a direct

generalization of the bipartite case and so our negative results apply to them as well. In

the remainder of this section, we will only consider bipartite two-sided matching markets.

For more details on non-bipartite markets, see Chapter 4.

The definitions of Pareto-optimality and envy-freeness extend naturally to this setting.

Definition 3.7. An allocation in a two-sided matching market is Pareto-optimal if there is no

way to increase the utility of any agent (on either side) without decreasing the utility of another

agent (on either side).

Definition 3.8. An allocation in a two-sided matching market is envy-free if no agent prefers

another agent’s bundle (on their own side) to their own.

Lastly, we will say that a two-sided market has symmetric utilities if D8 9 = F 98 for all

8 ∈ �, 9 ∈ �. This is mostly of interest when dealing with {0, 1} utilities, in which case

a pair of agents is either considered acceptable or not by both parties. See [43] for an

interesting viewpoint on symmetric utilities.

Bogomolnaia and Moulin [18] showed that in the case of a symmetric, bipartite two-sided

matching market with {0, 1} utilities, rational EF+PO allocations exist. Computability is
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not directly addressed in their paper, though the algorithm by Vazirani and Yannakakis

[122] can be adapted for this setting. This result was extended to the non-bipartite case

by Roth et al. [111] who proved existence and Li et al. [92] who gave a polynomial time

algorithm.

3.3.1 Rationality

As was the case for one-sided markets, we can show that if an EF+PO allocation exists,

there must be a rational EF+PO allocation. The proofs are essentially identical to those in

Section 3.2.1 so we will not restate them here.

Lemma 3.13. G★ ∈ %PM is Pareto-optimal if and only if there exist positive (
8)8∈� and (� 9)9∈�
such that G★ maximizes )(G) B ∑

8∈� 
8D8 · G8 +
∑
9∈� � 9F 9 · G 9 over all G ∈ %PM. Moreover, if G★

is rational, 
 and � can be computed in polynomial time.

The set of all envy-free allocations is given by the polytope %2EF:

%2EF B


(G8 9)8∈�,9∈�

����������������

∑
9∈� G8 9 = 1 ∀8 ∈ �,∑
8∈� G8 9 = 1 ∀9 ∈ �,

D8 · G8 − D8 · G8′ ≥ 0 ∀8 , 8′ ∈ �,

F 9 · G 9 − F 9 · G 9′ ≥ 0 ∀9 , 9′ ∈ �,

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �.


Theorem 3.9. If an instance of a two-sided bipartite matching market admits an EF+PO allocation,

then there is one which is a vertex of %2EF and is thus rational.

We will also need the following characterization in Section 3.3.3. Note that an allocation is

weakly Pareto-optimal if there is no other allocation that improves on the utility of every

agent.
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Lemma 3.14. G★ ∈ %PM is weakly Pareto-optimal if and only if there exist non-negative (
8)8∈� and

(� 9)9∈� such that
∑
8∈� 
8 +

∑
9∈� � 9 > 0 and G★ maximizes )(G) B ∑

8∈� 
8D8 · G8 +
∑
9∈� � 9F 9 · G 9

over all G ∈ %PM.

Proof. The proof is quite similar to the proof of Lemma 3.1. Clearly if G★ maximizes )(G),

then it is a weakly Pareto-optimal allocation since any strictly Pareto-better allocation G

would satisfy )(G) > )(G★) since at least one 
8 or � 9 is positive.

For the other direction, note that by weak Pareto-optimality, (G★, 0) is a maximizer of the

linear program:

max C

s.t. D8 · G8 − C ≥ D8 · G★8 ∀8 ∈ �,

F 9 · G 9 − C ≥ F 9 · G★9 ∀9 ∈ �,∑
9∈�

G8 9 = 1 ∀8 ∈ �,∑
8∈�

G8 9 = 1 ∀9 ∈ �,

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �,

C ≥ 0.
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Consider an optimal solution (
, �, ?, @) to the dual program:

min
∑
8∈�

@8 +
∑
9∈�

? 9 −
∑
8∈�


8D8 · G8 −
∑
9 �

� 9F 9 · G 9

s.t. @8 + ? 9 − 
8D8 9 − � 9F 98 ≥ 0 ∀8 ∈ �, 9 ∈ �,∑
8∈�


8 +
∑
9∈�

� 9 ≥ 1,


8 ≥ 0 ∀8 ∈ �,

�8 ≥ 0 ∀9 ∈ �

Then we may see that G★ is an optimal solution to

max
∑
8∈�


8D8 · G8 +
∑
9∈�

� 9F 9 · G 9

s.t.
∑
8∈�

G8 9 = 1 ∀8 ∈ �,∑
9∈�

G8 9 = 1 ∀9 ∈ �,

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �.

since (?, @) gives an optimal dual solution. �

3.3.2 Non-Existence of EF+PO Solutions

Given that we know that rational EF+PO allocations exist in variousmatchingmarkets, even

two-sided non-bipartite markets with {0, 1}-utilities, an interesting question is whether

such allocations exist for any larger classes of instances. We will answer this question in

the negative by giving rather limiting counterexamples below.
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Per Theorem 3.9, if an EF+PO allocation exists, then it must be a vertex of the polytope

%2EF. Such allocations can often be found heuristically: repeatedly pick random vectors


 ∈ (0, 1]� and � ∈ (0, 1]� and maximize
∑
8∈� 
8D8 · G8 +

∑
9∈� � 9F 9 · G 9 over %2EF using an

LP solver. This produces a candidate solution G which is Pareto-optimal among the envy-free

allocations. We can then check whether G is Pareto-optimal among all solutions by solving

the LP

max
∑
8∈�

D8 · H8 +
∑
9∈�

F 9 · H 9

s.t.
∑
9∈�

H8 9 = 1 ∀8 ∈ �,∑
8∈�

H8 9 = 1 ∀9 ∈ �,

D8 · H8 ≥ D8 · G8 ∀8 ∈ �,

F 9 · H 9 ≥ F 9 · G 9 ∀9 ∈ �,

H8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �.

In most instances, this finds an EF+PO allocation relatively quickly. By enumerating small

instaces we found the examples below which have the fewest positive entries in their utility

matrices.

We remark that given the polyhedral nature of the problem, it is possible to design an exact

algorithm which can determine in finite time whether an instance has an EF+PO allocation

and return it: simply enumerate all vertices of %2EF and test each one for Pareto-optimality

using the LP approach mentioned above. However, this is quite slow in practice due to the

exponential number of vertices that %2EF generally has.

Theorem 3.10. For two-sided matching markets under asymmetric utilities, an EF+PO allocation

does not always exist, even for the case of {0, 1}-utilities.
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Proof. Consider the instance shown in Figure 3.7a and the Pareto-optimal fractional perfect

matching H depicted in that figure. Let G be some allocation in this instance and assume

that G is envy-free. We will show that H is strictly Pareto-better than G.

First let us show that G24 = 1
3 . Note that we must clearly have G24 ≥ 1

3 as otherwise G25 > 1
3

or G26 > 1
3 and in those cases agent 4 would envy agent 5 or 6 respectively. On the other

hand, assume that G24 = 1
3 + &. Then D2 · G2 ≤ 2

3 − &. But then agent 2 envies either agent 1

or agent 3 since among these three, one must get at least 2
3 of agents 5 and 6. Thus G24 = 1

3

as claimed.

Next we claim that G14 = 1
3 . Again, we clearly have G14 ≥ 1

3 as otherwise agent 1 would

envy agent 2 or agent 3. But in the other direciton, if G14 = 1
3 + &, then G15 + G16 = 2

3 − &.

By the previous claim, we know that G25 + G26 = 2
3 and so G35 + G36 = 2

3 + & which would

imply that agent 2 envies agent 3. Thus G14 = 1
3 .

Finally, since G24 = 1
3 and G14 = 1

3 , we can see that H is Pareto-better than G (regardless

of how G assigns the other edges). In particular, D1 · H1 = 2
3 whereas D1 · G1 = 1

3 and

D8 · H8 ≥ D8 · G8 for all other 8. �

1

2

3

4

5

6

2/3

1/3

1/3
1/3

(a) Each arrow represents a utility 1-edge
from one side and utility 0 from the other.

1

2

3

4

5

6

2/3

1/3

1/3
1/3

(b)Dashed edges have utility 1, whereas solid
edges have utility 2.

Figure 3.7: Shown are counterexamples for {0, 1} asymetric (a) and {0, 1, 2} symmetric
utilities. In both cases the edge labels show a Pareto-optimal solution H and edges which
are not drawn have utility 0 (assume that H is extended to a fractional perfect matching by
filling up with utility 0 edges).
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Theorem 3.11. For two-sided matching markets under symmetric utilities, an EF+PO allocation

does not always exist, even in the case of {0, 1, 2}-utilities.

Proof. Consider the instance shown in Figure 3.7b togetherwith the depicted Pareto-optimal

allocation H. Let G be some envy-free allocation. We aim to show that H is Pareto-better

than G.

First, we can once again see that G24 = 1
3 . Note that if G24 < 1

3 , then agent 4 will envy agent

5 or agent 6. Vice versa, if G24 > 1
3 , then agent 5 or 6 will envy agent 4.

Next, note that G14 = 1
3 . Again, we must have G14 ≥ 1

3 since otherwise agent 1 would enyv

agent 2 or agent 3. In the other direction, we cannot have G14 > 1
3 since then agent 2 would

envy agent 1 by the previous observation that G24 = 1
3 .

Finally, we must have that G25 = G26 = 1
3 since otherwise agent 5 would envy agent 6 or

vice versa. This determines G on all the edges with positive utility. But now observe that H

is Pareto-better than G since D1 · H1 > D1 · G1 and D8 · H1 ≥ D8 · G8 for all other 8. �

3.3.3 Justified Envy-Freeness

As we have seen in the previous section, in two-sided markets we generally cannot get

EF+PO allocations unless we are using symmetric {0, 1} utilities. Intuitively, the issue is

that agents have different entitlements. Consider a market in which an agent 8 ∈ � is liked

by everyone in � whereas 8′ ∈ � is hated by everyone in �. It will be difficult to avoid a

situation in which 8 envies 8′ without sacrificing efficiency.

A way to get around this is to simply formalize this notion of entitlement. In the following,

fix some bipartite two-sided matching market with |�| = |�| = = and utilities D, F.
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Definition 3.9. In an allocation G, agent 8 ∈ � has strongly justified envy towards 8′ ∈ � if

F 98 ≥ F 98′ for all 9 ∈ � and D8 · G8 < D8 · G8′. Strongly justified envy is defined symmetrically for

agents in �. An allocation in which there is no strongly justified envy is said to be weakly justified

envy-free (weakly JEF).

Weakly justified envy-freeness is a reasonable notion in many settings. For example, in

school choice, a student who scores higher on all relevant tests should not envy a student

who scores lower. However, it is somewhat unsatisfying that 8 is only justified in their envy

of 8′ when all agents prefer 8 to 8′, even agents that 8 does not care about. For this reason,

we also define a slightly stronger notion of justified envy-freeness.

Definition 3.10. In an allocation G, agent 8 ∈ � has justified envy towards 8′ ∈ � if

D8 · G8 <
∑
9∈�

F 98≥F 98′

D8 9G8′ 9

and likewise for agents in �. An allocation in which there is no justified envy is justified envy-free

(JEF).

Clearly, strongly justified envy implies justified envy and therefore JEF implies weakly JEF.

We remark that in the case of an integral matching, being JEF is equivalent to being a stable

matching. We will show the following.

Theorem 3.12. There always exists a rational allocation which is JEF and weakly PO.

The proof uses a limit argument based on an equilibrium notion introduced by Manjunath

[95]. This equilibrium is conceptually similar to an HZ equilibrium with three crucial

differences:
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• While each agent is endowed with some amount of fake currency, the value of this

currency is not normalized. Instead there is a price ?< that determines the “price of

money”.

• Prices are double-indexed, i.e. an agent in �may have different prices for every agent

in �.

• Prices can be negative. They effectively represent transfers between the two sides of

agents.

We do not need the full generality of the equilibrium notion of Manjunath and will give a

slightly simplified definition assuming linear utilities. Each agent 8 ∈ � (and likewise for

agents in �) has some initial endowment $8 > 0 of “money” and they will receive not just

an allocation (G8 9)9∈� but also some money <8 ≥ 0. We assume that their utility is given by

D8 · G8 + <8 . Likewise for the agents in �.

Definition 3.11. Adouble-indexedprice (DIP) equilibrium consists of an assignment (G8 9)8∈�,9∈�,

money assignments (<:):∈�∪�, individualized prices (?8 9)8∈�,9∈� and (@ 98)9∈�,8∈�, and the price of

money ?< satisfying:

1. G is a fractional matching (but not necessarily perfect).

2. The money is redistributed exactly, i.e.
∑
8∈�∪� $8 =

∑
8∈�∪� <8 .
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3. Each agent 8 ∈ � (and likewise for agents in �) receives an optimal bundle in the sense that

(G8 , <8) maximizes

max D8 · G8 + <8

s.t.
∑
9∈�

G8 9 ≤ 1,

?8 · G8 + ?<<8 ≤ ?<$8 ,

G8 9 ≥ 0 ∀9 ∈ �.

4. ?8 9 = −@ 98 for all 8 ∈ �, 9 ∈ �.

Theorem 3.13 (Manjunath [95]). As long as every agent has a positive endowment of money (i.e.

$8 > 0), a DIP equilibrium always exists.

Theorem 3.14 (Manjunath [95]). The allocation in a DIP equilibrium is Pareto-optimal.

We require the allocation to be a fractional perfect matching. It is possible to modify the

proof of Theorem 3.13 directly but in order to be self-contained, we will give a short proof

which uses the existence of DIP equilibria as a black box.

Lemma 3.15. As long as every agent has a positive endowment of money (i.e. $8 > 0), a DIP

equilibrium in which G is a fractional perfect matching always exists.

Proof. For each : ∈ N+, consider a modified instance in which every zero utility is replaced

by 1
: . Each of these instances has some DIP equilibrium and clearly in each of these

equilibria, the allocation must be a fractional perfect matching since otherwise this would

immediately violate Pareto-optimality.

Since the prices are scale invariant, we can rescale them so that the maximum price is

bounded by 1. Then both allocations, money assignments, and prices are bounded so by
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compactness one can find a convergent subsequence of these DIP equilibria. The limiting

point is a DIP equilibrium in the original instance with an allocation which is a fractional

perfect matching. �

Finally, we can use the existence ofDIP equilibria to show that JEF andweakly POallocations

exist through another limiting argument.

Lemma 3.16. If $8 =
&

2= for all 8 ∈ � ∪ �, and (G, <, ?, @, ?<) is a DIP equilibrium for these

budgets, then for all 8 , 8′ ∈ � (and likewise for agents in �) we have

D8 · G8 ≥
∑
9∈�

F 98≥F 98′

D8 9G8′ 9 − &.

Proof. Let 8 , 8′ ∈ �. Consider 9 ∈ � with G8′ 9 > 0 and F 98 ≥ F 98′. Then we can see that

?8 9 ≤ ?8′ 9 . If this were not the case, then since @ 98 = −?8 9 and @ 98′ = −?8′ 9 , we would have

@ 98 < @ 98′ and thus 9 could redistribute some of their bundle from 8′ to 8 decreasing their

total expenditure without decreasing their utility. This is a contradiction to the fact that 9

gets an optimal bundle since they could then increase < 9 to get a strictly better bundle.

This means that

∑
9∈�

F 98≥F 98′

?8 9G8′ 9 ≤
∑
9∈�

F 98≥F 98′

?8′ 9G8′ 9 ≤ ?<($8′ − <8′) ≤ ?<$8′ = ?<$8

where we used that all agents have equal endowments of money in the last equality. But

since 8 maximizes their utility among all bundles which cost at most ?<$8 , this implies that

D8 · G8 + <8 ≥
∑
9∈�

F 98≥F 98′

D8 9G8′ 9 .
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Finally note that <8 ≤
∑
:∈�∪� <: =

∑
:∈�∪� $: = & and this finishes the proof. By symme-

try the same holds for all pairs of agents in �. �

Proof of Theorem 3.12. First, let us show that a JEF and weakly PO allocation exists. By

Lemma 3.16, we can pick a sequence G(:) of Pareto-optimal allocations such that

D8 · G(:)8 ≥
∑
9∈�

F 98≥F 98′

D8 9G
(:)
8′ 9 − &: (3.6)

for all 8 , 8′ ∈ � (likewise for agents in �) and &: → 0. Since the set of all fractional perfect

matchings is compact, we can find a convergent subsequence. Without loss of generality,

assume that G(:) converges to some G★. Clearly G★ is itself a fractional perfect matching.

The limit point of a sequence of Pareto-optimal allocations is a weakly Pareto-optimal

allocation. Furthermore, it is easy to see that G★ is justified envy-free by taking the limit

over (3.6).

Finally, we can use a similar argument as in the proof of Theorem 3.2 to show that a rational

JEF + weakly PO allocation exists as well. Simply pick 
, � according to Lemma 3.14 and

then find a vertex solution which maximizes
∑
8∈� 
8D8 · G8 +

∑
9∈� � 9F 9 · G 9 over the polytope

of all justified envy-free allocations. �

3.3.4 Justified Envy for Nash Bargaining

As shown in Section 3.2.3, Nash bargaining yields an approximately envy-free and Pareto-

optimal allocation in the case of one-sided matching markets. One might reasonably

conjecture that it achieves approximately justified envy-freeness in the two-sided setting.

We give a counterexample below based on a similar example in [108] that shows this not to

be the case.
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Theorem 3.15. There are instances on = vertices such that in the Nash bargaining solution G,

there are agents 8 , 8′ ∈ � such that all agents in � prefer 8 to 8′ and yet D8 · G8 = 1
=D8 · G8′.

Proof. Our instance has three special agents: 8 , 8′ ∈ � and 9 ∈ �. All agents in � \ { 9} have

utility 1 for 8 but 0 for everyone else in �, including 8′. Agent 9 has utility 0 for all agents

in �. Agents 8 and 8′ both have utility 1 for agent 9 and utility 0 for all other agents. The

agents in � \ {8 , 8′} are dummy agents and have identical utility for all agents in �. See

Figure 3.8.

Consider a Nash bargaining solution G. The agents in � \ { 9}must all be allocated an equal

amount of agent 8, since otherwise we could increase the product of the agents’ utilities

by making them equal. Let H be this amount. Then we must have G8 9 = 1 − (= − 1)H and

G8′ 9 = (= − 1)H. Therefore H must maximize

(1 − (= − 1)H) · (= − 1)H · H=−1

which implies that H = =
=2−1 . Then we can compute that D8 · G8 = 1

=+1 but D8 · G8′ = =
=+1 . �

8

8′ 9

Figure 3.8: Shown is an instance (= = 8) with justified envy for Nash bargaining. Agents 8
and 8′ compete for 9 but all agents in � \ { 9} want 8 so 8 gets only a small fraction of 9. The
gray agents are dummy agents and have identical utilities for all agents in �.
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3.4 Discussion

We have resolved the question of whether we can obtain polynomial time mechanisms

which give EF+PO lotteries in cardinal-utility matching markets: we cannot unless FP =

PPAD. However, this leaves several interesting open questions:

• Is there a polynomial time algorithm to find 
-approximately JEF+PO lotteries in

two-sided markets, for any constant 
?

• Is Nash bargaining the best we can do for one-sided markets or is there a way to

compute an 
-envy-free and Pareto-optimal lottery for 
 < 2 in polynomial time?

• Is there a way to compute an envy-free lottery in polynomial time which satisfies

some relaxed notion of Pareto-optimality?
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Chapter 4

Efficient Algorithms for Nash Bargaining

4.1 Introduction

In the previous chapter we have made a strong case that Nash bargaining is an attractive

alternative to HZ since it achieves desirable game-theoretic properties (2-approximate

envy-freeness, 2-approximate incentive-compatibility, and Pareto-optimality) while also

being computationally tractable. In this chapter we will expand on the last part; we will

show that Nash bargaining does not just have polynomial time algorithms in theory by

appealing to convex programming theory, but we will actually present simple, practical

algorithms with proven running time guarantees. This chapter is based on the paper

“Time-Efficient Algorithms for Nash-Bargaining-Based Matching Market Models” which

was joint work with Ioannis Panageas and Vijay V. Vazirani [108].

The study of Nash bargaining as an alternative mechanism for cardinal-utility matching

markets was initiated by Hosseini and Vazirani [70] based on earlier work by Vazirani

[119]. They identified two key shortcomings of the classic pricing-based mechanism due to

Hylland and Zeckhauser [75]:
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1. There is no known algorithm for HZ which is polynomial time or at least efficient in

practice. Note that it was later shown that finding an approximate HZ equilibrium is

PPAD-hard [28] and, as we discussed in Chapter 3, even finding any EF+PO allocation

is already PPAD.

2. The HZ mechanism is difficult to extend to more complex matching market models.

We showed in Chapter 2, that there is a reasonable extension to endowments. How-

ever, beyond that, the extensions that have been proposed (e.g. by He et al. [69]) tend

to require substantial concessions such as individualized prices.

For this reason, Hosseini and Vazirani proposed a different approach, namely Nash bar-

gaining. See Section 1.4 for an overview of Nash bargaining and its application to matching

markets. They point out that Nash bargaining is efficient in theory due to being described

via a convex program (in constrast, there is no mathematical program that models HZ). For

example, this allows for a polynomial time algorithm via the ellipsoid method [66, 123].

Moreover, Nash bargaining is far more flexibile to different settings such as two-sided

markets or markets with additional constraints.

Finally, Hosseini and Vazirani perform various computational experiments in which they

show that convex programming solvers can be used to solve large matching markets

efficiently in practice. They show that markets with up to 10,000 agents and goods are still

readily solvable on a laptop. However, they did not attempt to give a worst-case running

time bound of their implementation.

While the computability of Nash bargaining-based mechanisms via convex programming

is also a significant advantage over HZ, we will further expand on this advantage in this

chapter. Our goal will be to show that the simple structure of both the constraints and

the objective function allow us to provide simpler algorithms with provable running time

guarantees.
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4.1.1 Our Contributions

Modeling

In this chapter we will consider three types of cardinal-utility matching markets:

• In one-sided markets, we are matching agents to goods. The agents have utilities for

the goods but the goods do not have any preferences for agents.

• In two-sided markets, we are matching agents of one type to agents of another type.

Agents have utilities for agents of the other type. See also Section 3.3.

• In non-bipartite markets, we are matching agents to other agents just as in the two-

sided markets but we no longer require two distinct types of agents. An example of

such a market would be a ride-sharing or roommate market.

One-sided and two-sided Nash-bargaining models were introduced by Hosseini and Vazi-

rani [70]. Non-bipartite markets however are novel to this work. We will also allow

endowments in our models; see also Chapter 2. All models are introduced in Section 7.2.

Note that in the full version of the paper that this chapter is based on [108], we also con-

sider models with separable piecewise-linear concave (SPLC) utilities. This discussion and the

related results have been omitted from this chapter for the sake of brevity.

We show that all models satisfy a kind of approximate equal-share fairness, though with

varying approximation factors. This fact is useful to prove convergence of conditional

gradient descent algorithms. Indeed, Hosseini and Vazirani made use of this observation

to further speed up their practical algorithms.
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Multiplicative Weights Update (MWU)

In Section 4.3, we will introduce our first practical algorithm for Nash-bargaining-based

matching market models. The algorithm is based on a multiplicative weights approach

and finds an &-approximate Nash bargaining solution in $(=
3 log =
&2 ) time. It yields both

allocations and the corresponding dual variables.

The main idea underlying our approach is to reduce the problem of finding an optimal

Nash bargaining solution to the problem of finding any feasible solution to a related convex

program. A similar idea was used by Fleischer et al. [51] to find equilibria in non-matching

markets. However, in our case, the approach is made more complicated by the additional

constraints present in our setting.

The MWU algorithm can only deal with one-sided markets though it does allow for

endowments and even SPLC utilities. Its analysis depends on a clever use of the KKT

conditions of the Nash bargaining convex program together with a rescaling trick. Besides

these ideas, the proof follows a relatively standard potential function argument that is

common in the analysis of MWU algorithms.

Conditional Gradient Descent (CGD)

In Section 4.4, we will introduce another practical algorithm for Nash-bargaining-based

matching markets which is based on conditional gradient descent. It finds &-approximate

solutions in $(=3�2

& ) time where � measures the maximum gap between the smallest and

largest utilities for any agent. This algorithm is faster than the MWU algorithm for small &,

provided that � is bounded. Moreover, the CGD algorithm is able to deal with two-sided

and non-bipartite markets as well.
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In order to apply a gradient descent type algorithm toNash-bargaining inmatchingmarkets,

we had to overcome two main challenges:

• The objective function of Nash-bargaining is logarithmic and hence neither Lipschitz

nor smooth. In order to guarantee convergence, wemodify the objective functionwith

an approach similar ot that used by Gao et al. [58] to find Fisher market equilibria.

The idea is to extend the objective function by its quadratic extension below a certain

point. This approach relies crucially on an equal-share fairness property that Fisher

market equilibria have. While Nash-bargaining in a matching market, does not satisfy

this property, we show that an approximate version of it holds which is enough to

carry out the proof.

• Projecting into the feasible regions of our models which are given by matching or

flow polytopes, is computationally challenging. For this reason, we use a conditional

gradient approach instead which relies on combinatorial matching and flow algo-

rithms that are very efficient in practice. In the case of SPLC utilities, we also had

to add an additional “shifting step” to decrease the dependence on the rather large

diameter of the feasible region. This last result is covered in the full version of the

paper and has been omitted here for the sake of brevity [108].

4.1.2 Related Results

As stated in the introduction, the first paper to suggest the use of a Nash-bargaining-

based mechanism for solving a market model which had traditionally been addressed via

pricing was due to Vazirani [119]. It builds on the success of the Eisenberg Gale convex

program for the linear Fisher market, which shows the equivalence of Nash bargaining

and pricing for that market. For the Arrow Debreu market, the natural extension of the EG

program does not capture Arrow Debreu equilibria but rather a version of Nash bargaining
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applied to an exchange market; see Chapter 1 for details on these concepts. Vazirani hence

proposed aNash-bargaining-based approach to exchangemarkets and gave a combinatorial

polynomial time algorithm for Nash-bargaining in this setting.

The more recent work by Hosseini and Vazirani [70] builds on this idea and extends it to

matching markets where pricing and Nash bargaining are distinct concepts just as they

are for exchange markets. Together with the PPAD-completeness of HZ [122, 28] and the

results that we covered in Chapter 3, this makes for a compelling case that Nash bargaining

is a practical alternative to HZ in matching markets.

Our models apply to more general settings than just the classic one-sided cardinal-utility

matching markets without endowments. Related works on more general matching markets

largely focus on extensions of HZ [22, 69, 88, 97]. A notable example is the work by

Echenique et al. [42] which defined the notion of an 
-slack equilibrium to deal with

exchange settings. We build on this in Chapter 2 and define &-approximateADHZ equilibria

which we are able to compute for dichotomous utilities.

Aside from the aforementioned work by Vazirani [119], our results are closely related to the

computation of Fisher market equilibria. Several algorithms have been developed for that

purpose. Notable examples are the DPSV algorithm [36], which is combinatorial, and an

algorithm due to Ye et al. [125] which is based on the interior point method and converges

in time $(poly(=) log(1/&)).

The multiplicative weights update method (MWU) is a ubiquitous meta-algorithm with

numerous applications in different fields [4]. For example, it has been used in max-flow

problems [29], discrepancy minimization [91], learning graphical models [84], and even in

evolution [27, 100]. It is particularly useful in algorithmic game theory due to its regret-

minimizing properties [53, 26], i.e. the time average behavior of MWU leads to (approxi-

mate) coarse correlated equilibria (CCE).
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Fleischer et al. [51] showed how to apply MWU to the computation of Fisher market

equilibria. They give a simple and decentralized algorithm based on the multiplicative

weights update method, though its running time is $(poly(=)/&2). Due to the general

nature of the technique, their algorithm extends to much more general classes of utilities

including some that do not satisfy weak gross substitutability. For our models, a non-

trivial extension of the algorithm is required in order to deal with initial endowments and

matching constraints.

Gradient descent (GD) is arguably one of the most well-known and effective techniques in

optimization. The main reason behind this fact lies in its simplicity and nice properties

while only requiring limited information about the objective to the optimized. For convex

objectives, one can show that as long as the function is Lipschitz, $(1/&2) steps suffice to

get an &-approximate solution. Moreover, if the function has a Lipschitz gradient, then

$(1/&) steps suffice. Finally if the function is strongly-convex, one can get an &-approximate

optimal solution in $(log(1/&)) iterations, see [20] for more information. Most recently,

gradient descent and its stochastic counterpart have been extensively studied and used

for optimizing non-convex objectives with the guarantee of almost-always convergence

towards local optima [64, 89, 80]. These results shed light on why GDworks well in practice.

Gradient descent has also found numerous applications for computing market equilibria,

most notably the recent work of Gao et al. [58], see references therein. They studied first-

order methods for the Fisher market by considering gradient descent type algorithms

for the various convex programming formulations. They show that one may exploit the

fairness of the Fisher market in order to bound the market equilibrium away from the

boundary of the feasible region. Using this, they develop a projected gradient descent

algorithm that converges in $(poly(=) log(1/&)) time and requires only simplex projections.

However, the efficiency of this approach depends quite critically on the simple structure

of the convex programs for Fisher markets. A more general algorithm of this form would
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depend on geometric properties of the feasible region and use expensive projections. For

these reasons, our work uses a projection-free approach instead.

4.2 Models

In this section we will define and briefly discuss all the Nash-bargaining-based matching

market models which we will cover in this paper. They can be distinguished along two

axes:

1. Who can be matched with whom? We distinguish one-sided, two-sided, and non-

bipartite markets.

2. Do agents bring endowments or are all agents equal?

For each model we will only consider the classic, linear-utility variant. The full version of

the paper that this chapter is based on [108] also covers non-linear utilities. The one-sided

and two-sided models are due to Hosseini and Vazirani [70]. However, the non-bipartite

model is new to this work.

4.2.1 One-Sided Matching Markets

For one-sided matching markets, we have largely covered the setup in Section 1.1. The

setting is the same as in the HZ mechanism. In particular, we are given a set � of = agents

and a set � of = goods. Each agent 8 has a non-negative, rational utilitiy vector (D8 9)9∈� to

express their preferences over the goods. We are looking for a fractional perfect matching

satisfying desirable properties. In the case that an integral perfect matching is desired,
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one can randomly round the fractional perfect matching using the Birkhoff-von-Neumann

procedure which was also covered in Section 1.1.

The Nash-bargaining-based model for such a one-sided market with linear utilities is given

by the following convex program which is closely related to the Eisenberg-Gale convex

program. See also Sections 1.2 and 1.4 for more background. This is also the version of

Nash bargaining that is considered in Chapter 3; it satisfies 2-approximate envy-freeness

and 2-approximate incentive-compatibility.

max
∑
8∈�

log(D8 · G8) (4.1a)

s.t.
∑
8∈�

G8 9 ≤ 1 ∀9 ∈ �, (4.1b)∑
9∈�

G8 9 ≤ 1 ∀8 ∈ �, (4.1c)

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �. (4.1d)

Note that this version of the convex program uses ≤ 1 instead of = 1 constraints. Since the

utilities are non-negative, both versions are equivalent. We use this version here because it

makes the KKT conditions more convenient.

Next, we consider amarket with endowments. Here, every agent 8 has an initial endowment

vector (48 9)9∈� which describes howmuch of good 9 is initially owned by agent 8. We assume

that 4 is rational and a fractional perfect matching. The goal of the mechanism is now to

improve every agents’ utility over their initial endowment.

Recall from Section 1.4, that Nash bargaining actually has a natural way of dealing with

such a setting in the form of disagreement utilities. Let us define 28 = D8 · 48 as the utility that

agent 8 has for their initial endowment, then the vector 2 forms the vector of disagreement

utilities, also known as the disagreement point. We consider an instance of such a market
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feasible if there is at least one fractional perfect matching which strictly improves the utility

of each agent over their disagreement utility. In that case, the Nash bargaining model for

such a market is given by the following convex program.

max
∑
8∈�

log(D8 · G8 − 28) (4.2a)

s.t.
∑
8∈�

G8 9 ≤ 1 ∀9 ∈ �, (4.2b)∑
9∈�

G8 9 ≤ 1 ∀8 ∈ �, (4.2c)

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �. (4.2d)

Note that this mechanism will always produce allocations which every agent prefers to

their initial endowment. Hence the mechanism is individually rational and no agent is

disincentivized to participate.

With non-negative dual variables ? 9 and @8 , corresponding to constraints (4.2b) and (4.2c)

respectively, the KKT conditions for optimal solutions of (4.2) are given below. By setting

28 = 0 for all 8 ∈ �, we get KKT conditions for program (4.1) as well.

(1) ∀9 ∈ � : ? 9 > 0 =⇒ ∑
8∈� G8 9 = 1.

(2) ∀8 ∈ � : @8 > 0 =⇒ ∑
9∈� G8 9 = 1.

(3) ∀8 ∈ �, ∀9 ∈ � : ? 9 + @8 ≥
D8 9

D8 ·G8−28 .

(4) ∀8 ∈ �, ∀9 ∈ � : G8 9 > 0 =⇒ ? 9 + @8 =
D8 9

D8 ·G8−28 .

For 28 = 0, this allows us to prove the following approximate equal-share fairness property

which guarantees that every agent achieves at least 1/2 of the utility that they would get

under the equal share matching that assigns 1
= to all edges. Note that this also follows from
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2-approximate envy-freeness (see Chapter 3). However, this result predates the work from

that chapter.

Lemma 4.1. Let G be an optimal solution to (4.1). Then we have D8 · G8 ≥ 1
2=

∑
9∈� D8 9 for all agents

8 ∈ �.

Proof. By the KKT conditions we know that D8 9
D8 ·G8 ≤ ? 9+ @8 with equality if G8 9 > 0. Moreover,

if ? 9 > 0 then
∑
8∈� G8 9 = 1 and likewise for @8 . Thus

∑
9∈�

? 9 +
∑
8∈�

@8 =
∑
8∈�

∑
9∈�

G8 9(? 9 + @8) ≤ =.

In addition, note that @8 ≤ 1 since otherwise we cannot possibly have
∑
9∈� G8 9 = 1 and∑

9∈� G8 9(? 9 + @8) = 1. Finally, we conclude

D8 · G8 = max
{

D8 9

? 9 + @8

���� 9 ∈ �}
≥

∑
9∈�

D8 9

? 9 + @8
·

? 9 + @8∑
9′∈� ? 9′ + @8

≥
∑
9∈� D8 9

=@8 +
∑
9∈� ? 9

≥ 1
2=

∑
9∈�

D8 9 . �

The usefulness of this result is that it bounds the optimal solution away from the boundary

of the feasible region. Unfortunately, in the case of endowments, the equal share matching

may no longer be feasible and so this notion loses some meaning. We will however give an

analogous but weaker bound in Section 4.4, specifically in Lemma 4.9.
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4.2.2 Two-Sided Matching Markets

Next, we consider two-sided matching markets. This is the setting that we also covered in

Section 3.3 of the previous chapter. Here, we are given equal-sized sets � of agents and � of

jobs. Agents have utilities (D8 9)8∈�,9∈� and jobs have utilities (F 98)9∈� ,8∈�. Both are assumed

to be rational and non-negative. As in the one-sided setting, we are looking for a fractional

perfect matching as integral ones can be found via the Birkhoff-von-Neumann theorem.

Extending the HZ mechanism to such a two-sided setting is rather challenging. See Sec-

tion 3.3 and particularly the work by Manjunath [95] which makes an attempt at such a

generalization. In constrast, Nash bargaining extends very naturally to a two-sided market.

We simply consider the utilities of the jobs equally as important as the utilities of the agents.

In that case, the natural Nash-bargaining-based model is given by the following convex

program.

max
∑
8∈�

log(D8 · G8) +
∑
9∈�

log(F 9 · G 9) (4.3a)

s.t.
∑
8∈�

G8 9 ≤ 1 ∀9 ∈ � , (4.3b)∑
9∈�

G8 9 ≤ 1 ∀8 ∈ �, (4.3c)

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �. (4.3d)

Note that by a slight abuse of notation, we write F 9 · G 9 B
∑
8∈� F 98G8 9 here and in the

following. In addition, observe that this model reduces to the standard one-sided model if

the jobs are indifferent towards the agents.

A key advantage of Nash bargaining is its flexibility. We can easily extend the two-sided

model to also include endowments. As before, assume that there is some initial fractional
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perfect matching (48 9)8∈�,9∈� which represents the status quo in the market. Each agent 8 ∈ �

has a disagreement utility of 28 B D8 · 48 and likewise each job 9 ∈ � has a disagreement

utility 3 9 B F 9 · 4 9 . The corresponding convex program is given below.

max
∑
8∈�

log(D8 · G8 − 28) +
∑
9∈�

log(F 9 · G 9 − 3 9) (4.4a)

s.t.
∑
8∈�

G8 9 ≤ 1 ∀9 ∈ � , (4.4b)∑
9∈�

G8 9 ≤ 1 ∀8 ∈ �, (4.4c)

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ �. (4.4d)

The KKT conditions for program (4.4) with non-negative dual variables ? and @ corre-

sponding to constraints (4.4b) and (4.4c) respectively are:

(1) ∀9 ∈ � : ? 9 > 0 =⇒ ∑
8∈� G8 9 = 1.

(2) ∀8 ∈ � : @8 > 0 =⇒ ∑
9∈� G8 9 = 1.

(3) ∀8 ∈ �, ∀9 ∈ � : ? 9 + @8 ≥
D8 9

D8 ·G8−28 +
F8 9

F 9 ·G 9−39 .

(4) ∀8 ∈ �, ∀9 ∈ � : G8 9 > 0 =⇒ ? 9 + @8 =
D8 9

D8 ·G8−28 +
F8 9

F 9 ·G 9−3 9 .

Nash bargaining does not achieve as strong fairness properties in two-sided markets as it

does in one-sided markets (see Section 3.3), and the 2-approximate equal-share fairness

does not extend to this setting, even without endowments. However, we once again show

a weaker analogue in Section 4.4.
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4.2.3 Non-Bipartite Matching Markets

Finally, we will introduce one more setting which was not already investigated by Hosseini

and Vazirani [70]: non-bipartite markets. In this setting we simply have a set � of = agents

and non-negative, rational utilities (D8 9)8∈�,9∈�\{8}; each agent has a utility for every other

agent. A feasible solution is now any convex combination of integral matchings in the

complete graph over �. This can be represented via a vector (G8 9){8 , 9}⊆� over all undirected

edges in the complete graph on �.

Recall that convex combinations of integral matchings, i.e. points in the matching polytope,

are not simply vectors G that satisfy
∑
9∈�\{8} G8 9 ≤ 1 at every 8 ∈ �. Instead, such a vector

must also satisfy
∑
{8 , 9}⊆� G8 9 ≤ |�|−1

2 for every set � ⊆ � of odd cardinality. This is a classic

result due to Edmonds [45]. For ease of notation let us denote the collection of all such odd

subsets � of � by O. This motivates the convex program:

max
∑
8∈�

log(D8 · G8) (4.5a)

s.t.
∑

9∈�\{8}
G8 9 ≤ 1 ∀8 ∈ �, (4.5b)∑

{8 , 9}⊆�
G8 9 ≤

|�| − 1
2 ∀� ∈ O , (4.5c)

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ � \ {8}. (4.5d)

We remark that as in the bipartite case, it is possible to take such a vector and—in a

combinatorial, polynomial time manner—decompose it into a convex combination of most

=2 integral matchings. This was shown by Padberg and Wolsey [107]; for a modern proof

see [120]. Hence, this allows a similar rounding strategy to the standard bipartite setting if

one desires integral allocations.
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Lastly, we can once again consider endowments, even for this non-bipartite setting. The

extension is routine and results in the following convex program.

max
∑
8∈�

log(D8 · G8 − 28) (4.6a)

s.t.
∑

9∈�\{8}
G8 9 ≤ 1 ∀8 ∈ �, (4.6b)∑

{8 , 9}⊆�
G8 9 ≤

|�| − 1
2 ∀� ∈ O , (4.6c)

G8 9 ≥ 0 ∀8 ∈ �, 9 ∈ � \ {8}. (4.6d)

The KKT conditions for the CP (4.6) are given below. The dual variables are (?8)8∈�, corre-

sponding to constraint (4.6b), and (I�)�∈O , corresponding to constraint (4.6c).

(1) ∀8 ∈ � : ?8 > 0 =⇒ ∑
9∈�\{8} G8 9 = 1.

(2) ∀� ∈ O : I� > 0 =⇒ ∑
{8 , 9}⊆� G8 9 =

|�|−1
2 .

(3) ∀{8 , 9} ⊆ � : ?8 + ? 9 +
∑
�∈O:{8 , 9}⊆� I� ≥

D8 9
D8 ·G8−28 +

D98
D9 ·G 9−2 9 .

(4) ∀{8 , 9} ⊆ � : G8 9 > 0 =⇒ ?8 + ? 9 +
∑
�∈O:{8 , 9}⊆� I� =

D8 9
D8 ·G8−28 +

D98
D9 ·G 9−2 9 .

Once again, we will show a weakened version of equal-share fairness for this setting in

Section 4.4 where it will be used to guarantee the convergence of a conditional gradient

descent algorithm.

4.3 Multiplicative Weights Update

Wewill now turn to the first of our two algorithms for Nash bargaining inmatchingmarkets.

It is based on the classic MWU technique. The algorithm works for the one-sided market
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with endowments; for a setting with non-linear utilities see the full version of the paper

that this chapter is based on [108]. Our goal is hence to prove the following theorem.

Theorem 4.1. The MWU algorithm (Algorithm 4.1) computes an &-approximate Nash bargaining

solution for a one-sided market with endowments, i.e. CP (4.2), in $
(
= log =
&2

)
iterations. Each

iteration can be implemented in $(=2) time.

In the following, fix some one-sided market with agents �, goods �, |�| = |�| = = and

non-negative, rational utilities (D8 9)8∈�,9∈�. Assume that the instance is feasible, i.e. that

there is at least one allocation which is better for everyone compared to the disagreement

point. There are various possible definitions of an &-approximate Nash bargaining solution.

In this section, we will use the following one.

Definition 4.1. Let (G8 9)8∈�,9∈� be some positive assignment matrix. We call G an &-approximate

Nash bargaining solution if

∑
8∈�

log(D8 · G8 − 28) ≥
∑
8∈�

log(D8 · G★8 − 28)

where G★ is an optimal solution to (4.2) and G is approximately feasible in the sense that
∑
8∈� G8 9 ≤

1 + & for all 8 ∈ � and likewise
∑
9∈� G8 9 ≤ 1 + & for all 9 ∈ �.

Note that we would typically want an actually feasible solution. In that case one can simply

scale down the solution by 1 + & after the fact.

The general proof strategy consists of two steps:

1. The multiplicative weights technique generally applies to feasibility rather than opti-

mization problems. Using the KKT conditions of (4.2), we will establish a feasibility

program whose feasible solutions are optimal solutions to (4.2).
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2. Thenwewill show that our algorithm can solve the feasibility program approximately

in polynomial time and that this indeed gives an approximate Nash bargaining point.

4.3.1 From Optimization to Feasibility

As noted above, our first goal will be to turn the problem of solving the optimization prob-

lem (4.2) into a feasibility program. This program is defined on the allocation (G8 9)8∈�,9∈�
as well as the dual variables (? 9)9∈� and (@8)8∈�.

CP8(?, @) ≤ D8 · G8 ∀8 ∈ �,∑
8∈�

G8 9 ≤ 1 ∀9 ∈ �,∑
9∈�

G8 9 ≤ 1 ∀8 ∈ �,∑
9∈�

? 9 +
∑
8∈�

@8 = = +
∑
8∈�

28 min
9∈�

? 9 + @8
D8 9

∀8 ∈ �, 9 ∈ �,

G, ?, @ ≥ 0

(4.7)

where

CP8(?, @) B max D8 · H8

s.t.
∑
9∈�
(? 9 + @8)H 9 ≤ 1 + 28 min

9∈�

? 9 + @8
D8 9

,

H ≥ 0.

From a high level perspective, we would like to express the fact that (G, ?, @) satisfy the

KKT conditions of CP (4.2) in order to show that G is an optimal solution of (4.2). However,
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the KKT conditions come with complementarity constraints that are not easily dealt with.

But what those complementarity constraints essentially do is to enforce that each agent is

getting an optimal bundle of goods given the prices ? and @.

For a simplified setting, consider the case in which 28 = 0 for all 8 ∈ �. In this case, CP8(?, @)

gives us the maximum utility that agent 8 can obtain under prices ? on the goods with a

budget of 1 − @8 . Our feasibility program then reduces to the condition that the sum of all

prices is = and each agent gets an optimal bundle with the given prices and budgets.

With the introduction of endowments, the program gets more complicated. CP8(?, @) now

measures the optimal bundle that agent 8 could get if they were given a budget of 1− @8 + 38
where 38 is the budget needed to buy back a bundle of utility 28 , their disagreement utility.

Note that it is necessary that each agent gets a budget that is large enough to buy back to

their disagreement utility. Otherwise, the resulting allocation would not be individually

rational.

Theorem 4.2. Let G be a Nash bargaining solution, i.e. an optimal solution to CP (4.2), then there

exist non-negative dual variables ?, @ such that (G, ?, @) is a feasible solution for (4.7). Conversely,

if (G, ?, @) is a feasible solution to (4.7), then G is an optimal solution for (4.2).

Proof. We will start with the first half of the theorem. Let G be a Nash bargaining solution.

Then there are non-negative dual variables ?, @ that satisfy the KKT conditions which we

restate below for convenience.

(1) ∀9 ∈ � : ? 9 > 0 =⇒ ∑
8∈� G8 9 = 1.

(2) ∀8 ∈ � : @8 > 0 =⇒ ∑
9∈� G8 9 = 1.

(3) ∀8 ∈ �, ∀9 ∈ � : ? 9 + @8 ≥
D8 9

D8 ·G8−28 .

(4) ∀8 ∈ �, ∀9 ∈ � : G8 9 > 0 =⇒ ? 9 + @8 =
D8 9

D8 ·G8−28 .
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Our goal is to show that (G, ?, @) is a feasible solution for (4.7). Observe that by definition

of CP8 , we get that

CP8(?, @) =
(
max
9∈�

D8 9

? 9 + @8

) (
1 + 28 min

9∈�

? 9 + @8
D8 9

)
=

©­« 1
min9∈�

? 9+@8
D8 9

ª®¬
(
1 + 28 min

9∈�

? 9 + @8
D8 9

)
= 28 +

1
min9∈�

? 9+@8
D8 9

= 28 +max
9∈�

D8 9

? 9 + @8
.

From the KKT conditions, we can deduce that D8 · G8 ≥ 28 +
D8 9
? 9+@8 for all 8 ∈ � and 9 ∈ �.

Accordingly, we get D8 · G8 ≥ CP8(?, @) as is required by our feasibility program.

Finally, we use the KKT conditions to compute

∑
9∈�

? 9 +
∑
8∈�

@8 =
∑
9∈�

? 9

∑
8∈�

G8 9 +
∑
8∈�

@8

∑
9∈�

G8 9

=

∑
8∈�

∑
9∈�

G8 9(? 9 + @8)

=

∑
8∈�

∑
9∈�

G8 9
D8 9

D8 · G8 − 28

=

∑
8∈�

D8 · G8
D8 · G8 − 28

= = +
∑
8∈�

28

D8 · G8 − 28

= = +
∑
8∈�

28 min
9∈�

? 9 + @8
D8 9

and hence prove the first half of the theorem.
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For the converse direction let (G, ?, @) be a feasible point of (4.7). Our goal is to show that G

is a Nash bargaining point. Clearly G is at least a fractional matching. Moreover, it is not

hard to see that CP8(?, @) > 28 and hence G is a feasible point of (4.2). It remains to show

that G, ?, @ satisfy the KKT conditions stated above.

The first observation is that since D8 · G8 ≥ CP8(?, @) holds by assumption, we have

∑
9∈�
(? 9 + @8)G8 9 ≥ 1 + 28 min

9∈�

? 9 + @8
D8 9

. (4.8)

This is because CP8(?, @) represents the maximum utility one can get with prices ? 9 + @8
and a budget of 1 + 28 min9∈�

? 9+@8
D8 9

. So since the bundle G8 provides this much utility, it

must cost at least this budget. Otherwise, CP8(?, @)would be larger.

Now sum the above inequality over all 8 ∈ � to obtain:

∑
8∈�

∑
9∈�
(? 9 + @8)G8 9 ≥ = +

∑
8∈�

28 min
9∈�

? 9 + @8
D8 9

. (4.9)

Since (G, ?, @) is a solution to (4.7), we also have

= +
∑
8∈�

28 min
9∈�

? 9 + @8
D8 9

=

∑
9∈�

? 9 +
∑
8∈�

@8

≥
∑
9∈�

? 9

∑
8∈�

G8 9 +
∑
8∈�

@8

∑
9∈�

G8 9

=

∑
8∈�

∑
9∈�
(? 9 + @8)G8 9 .

(4.10)

The inequality comes from the fact
∑
8∈� G8 9 ≤ 1 for all 9 ∈ � and

∑
9∈� G8 9 ≤ 1 for all 8 ∈ �.

So the inequalitites in (4.9) and (4.10) must actually be equalities. We can also deduce from

the tight inequality in (4.9) that
∑
9∈� G8 9 = 1 whenever @8 > 0 and

∑
8∈� G8 9 = 1 whenever

? 9 > 0. This takes care of the first two KKT conditions.
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Because (4.9) is an equality, the same must hold for (4.8) for all 8 ∈ �. This allows us to

deduce that G8 is actually a feasible solution for the program that defines CP8(?, @) and

thus D8 · G8 = CP8(?, @). But this implies:

D8 · G8 = CP8(?, @)

=

(
max
9∈�

D8 9

? 9 + @8

) (
1 + 28 min

9∈�

? 9 + @8
D8 9

)
= 28 +max

9∈�

D8 9

? 9 + @8

= 28 +
D8 9

? 9 + @8
for all 9 ∈ � s.t. G8 9 > 0.

We conclude that D8 · G8 ≥ 28 +
D8 9
? 9+@8 , with equality only if G8 9 > 0. This establishes the

remaining two KKT conditions and hence finishes the proof. �

4.3.2 Main Analysis

By Theorem 4.2, we know that finding a feasible solution to (4.7) is equivalent to finding

a Nash bargaining point. Our approach is now to find an approximate feasible solution

to (4.7). Finally, we will show that this approximate feasible solution is also an approxi-

mate Nash bargaining point in a certain sense. Our MWU algorithm is given below; see

Algorithm 4.1.

On a high level the algorithm works as follows. Recall that the prices must satisfy

∑
9∈�

? 9 +
∑
8∈�

@8 = = +
∑
8∈�

28 min
9∈�

? 9 + @8
D8 9

(4.11)

in order to be a feasible solution to (4.7). During the algorithm, our prices ?, @ may tem-

porarily lose this property and become unscaled prices ?̃ , @̃.
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In Algorithm 4.1, we run ) phases where ) is to be determined later. In each phase we do

the following:

1. First, we rescale the unscaled prices ?̃(C), @̃(C) that were generated in the previous

phase so that they satisfy (4.11).

2. Next, each agent 8 independently buys an optimal bundle at these prices, i.e. they

solve for CP8 .

3. Then, we determine what the maximum amount is that any agent or good is allocated.

Call this �(C).

4. Finally, we make a multiplicative update to the prices in the standard way according

to how over- or underdemanded each agent / good is. The resulting prices are the

unscaled prices for the next iteration.

At the end, we return a weighted average of the allocations and prices. Our goal in this

section will be to show that (G, ?, @) is an approximate feasible solution to (4.7) and hence

that G is an approximate Nash bargaining point.

Before we can actually analyze Algorithm 4.1, we need to show that it is well-defined, i.e.

that the rescaling step can actually be carried out. This is captured by the following lemma.

Lemma 4.2. Assume that the instance is feasible, i.e. that there exists at least one allocation which

improves the utility of every agent over their disagreement utility. Given ?̃ , @̃, we can always rescale

them to ?, @ so that
∑
9∈� ? 9 +

∑
8∈� @8 = = +∑

8∈� 28 min9∈�
? 9+@8
D8 9

.

Proof. Start by defining

� B
∑
9∈�

?̃ 9 +
∑
8∈�

@̃8 −
∑
8∈�

28 min
9∈�

?̃ 9 + @̃8
D8 9

.
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Algorithm 4.1: Multiplicative Weights Update
1 Initialize prices ?̃(0)← 1, @̃(0)← 1
2 for C = 1 to ) do
3 Rescale ?̃(C), @̃(C) by a common factor 0(C) to ?(C), @(C) such that∑

9∈� ?
(C)
9
+∑

8∈� @
(C)
8

= = +∑
8∈� 28 min9∈�

?
(C)
9
+@(C)

8

D8 9
.

4 for 8 = 1 to = do

5 G
(C)
8
← arg maxH

{
D8 · H :

∑
9∈�

(
?
(C)
9
+ @(C)

8

)
H 9 ≤ 1 + 28 min9∈�

?
(C)
9
+@(C)

8

D8 9

}
.

6 Compute demand vectors 3(C)← ∑
8∈� G

(C)
8
, ℎ(C)← ∑

9∈� G
(C)
9
.

7 �(C)← min
(

1
max 9∈� 3(C)9

, 1
max8∈� ℎ(C)8

)
8 for 9 = 1 to = do
9 ?̃

(C+1)
9
← ?̃

(C)
9
(1 + &�(C)3(C)

9
)

10 for 8 = 1 to = do
11 @̃

(C+1)
8
← @̃

(C)
8
(1 + &�(C)ℎ(C)

8
)

12 return G ←
∑)
C=1 �(C)G(C)∑)
C=1 �(C)

, ? ←
∑)
C=1 �(C)?(C)∑)
C=1 �(C)

, @ ←
∑)
C=1 �(C)@(C)∑)
C=1 �(C)

.

Provided that � > 0, we can set ? B =
� ?̃ and @ = =

� @̃ and the lemma follows. So our goal is

now to show that � > 0.

Now let us use the feasibility: we know that there is some fractional matching (H8 9)8∈�,9∈�
which satisfies D8 · H8 > 28 for all 8 ∈ �. In particular, we have max 9∈� D8 9 ≥ D8 · H8 > 28 . Now

compute:

∑
8∈�

28 min
9∈�

?̃ 9 + @̃8
D8 9

≤
∑
8∈�

28 min
9∈�

?̃ 9 + @̃8
D8 · H8

≤
∑
8∈�

28
1
=

∑
9∈�

?̃ 9 + @̃8
D8 · H8

<
1
=

∑
8∈�

∑
9∈�
(?̃ 9 + @̃8) =

∑
9∈�

?̃ 9 +
∑
8∈�

@̃8 .

Hence, � > 0 as desired. �
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In order to bound the rate of convergence of Algorithm 4.1, we use a potential function

argument; see [4] for more details on this classic technique. The potential function in

iteration C is simply the sum of the unscaled prices, i.e. Φ(C) B ∑
9∈� ?̃

(C)
9
+∑

8∈� @̃
(C)
8
. We

will give upper and lower bounds on Φ()) where ) is the total number of iterations. This

allows us to ultimately show the desired $(1/&2) convergence rate.

Lemma 4.3. For any ) ∈ N, we have Φ()) ≤ 2= · exp
(
&
∑)−1
C=1 �(C)

)
where �(C) is the reciprocal

maximum demand in iteration C; see Algorithm 4.1.

Proof. Pick some time index C. Then we compute

Φ(C + 1)
Φ(C) =

∑
9∈� ?̃

(C+1)
9
+∑

8∈� @̃
(C+1)
8

Φ(C)

=

∑
9∈�(1 + &�(C)3(C)

9
)?̃(C)
9
+∑

8∈� +(1 + &�(C)ℎ(C)
8
)@̃(C)
8

Φ(C)

= 1 + &�(C)
∑
9∈� 3

(C)
9
?̃
(C)
9
+∑

8∈� ℎ
(C)
8
@̃
(C)
8

Φ(C)

by making use of the definition of the udpates of ?̃ , @̃.

Next, we factor out the rescaling factor 0(C) and apply the definitions of 3 and ℎ. This allows

us to bound:∑
9∈� 3

(C)
9
?̃
(C)
9
+∑

8∈� ℎ
(C)
8
@̃
(C)
8

Φ(C) =

∑
8∈�

∑
9∈�(?(C)9 + @

(C)
8
)G(C)
8 9

0(C)Φ(C)

≤

∑
8∈�

(
1 + 28 min9∈�

?
(C)
9
+@(C)

8

D8 9

)
0(C)Φ(C)

=

= +∑
8∈� 28 min9∈�

?
(C)
9
+@(C)

8

D8 9

0(C)Φ(C)
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The crucial inequality follows directly from the definition of G(C)
8

in Algorithm 4.1.

Finally, observe that because of the rescaling, we have that

= +∑
8∈� 28 min9∈�

?
(C)
9
+@(C)

8

D8 9

0(C)Φ(C)
=

∑
9∈� ?

(C)
9
+∑

8∈� @
(C)
8

0(C)Φ(C)
= 1

and thus

Φ(C + 1)
Φ(C) ≤ 1 + &�(C) ≤ 1 + exp(&�(C)). (4.12)

Finally, we can boundΦ()) by expressing it as a telescopic product over (4.12). The resulting

bound is

Φ()) ≤ Φ(1) · exp
(
&
)−1∑
C=1

�(C)
)
= 2= · exp

(
&
)−1∑
C=1

�(C)
)
. �

Lemma 4.4. We have

Φ()) ≥ exp

(
&(1 − &)max

(
max
9∈�

)∑
C=1

�(C)3(C)
9
,max
8∈�

)∑
C=1

�(C)ℎ(C)
8

))
.

Proof. Note that by the definition of Φ and the way the prices are updated, we know that

Φ()) =
∑
9∈�

?̃
())
9
+

∑
8∈�

@̃
())
8

=

∑
9∈�

)−1∏
C=1
(1 + &�(C)3(C)

9
) +

∑
8∈�

)−1∏
C=1
(1 + &�(C)ℎ(C)

8
).
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Finally, we use the identity 4�(1−H) ≤ 1 + � for 0 < � ≤ H < 1 to compute:

∑
9∈�

)−1∏
C=1
(1 + &�(C)3(C)

9
) +

∑
8∈�

)−1∏
C=1
(1 + &�(C)ℎ(C)

8
)

≥
∑
9∈�

exp

(
&(1 − &)

)−1∑
C=1

�(C)3(C)
9

)
+

∑
8∈�

exp

(
&(1 − &)

)−1∑
C=1

�(C)ℎ(C)
8

)
≥ max

(
max
9∈�

exp

(
&(1 − &)

)−1∑
C=1

�(C)3(C)
9

)
,max
8∈�

exp

(
&(1 − &)

)−1∑
C=1

�(C)ℎ(C)
8

))
= exp

(
&(1 − &)max

(
max
9∈�

)∑
C=1

�(C)3(C)
9
,max
8∈�

)∑
C=1

�(C)ℎ(C)
8

))
. �

By combining Lemmas 4.3 and 4.4, we can conclude that

&(1 − &)max

(
max
9∈�

)∑
C=1

�(C)3(C)
9
,max
8∈�

)∑
C=1

�(C)ℎ(C)
8

)
≤ ln(2=) + &

)−1∑
C=1

�(C). (4.13)

Let us nowuse this fact to show that the averaged output (G, ?, @) is indeed an approximately

feasible solutin of (4.7).

Lemma 4.5. If ) ≥ 2= log1+&(2=)
& = $(= log =

&2 ), then we have

CP8(?, @) ≤ D8 · G 8 ∀8 ∈ �,∑
8∈�

G 8 9 ≤
1

1 − 2& = 1 + $(&) ∀9 ∈ �,∑
9∈�

G 8 9 ≤
1

1 − 2& = 1 + $(&) ∀8 ∈ �,

∑
9∈�

? 9 +
∑
8∈�

@ 8 = = +
∑
8∈�

28 min
9∈�

? 9 + @ 8
D8 9

∀8 ∈ �, 9 ∈ �,

G, ?, @ ≥ 0.
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In other words, (G, ?, @) is a feasible solution to (4.7), except for an $(&) violation of the matching

constraints.

Proof. Non-negativity is trivial and the fact that

∑
9∈�

? 9 +
∑
8∈�

@ 8 = = +
∑
8∈�

28 min
9∈�

? 9 + @ 8
D8 9

holds for all 8 ∈ �, 9 ∈ � comes from the fact that we always rescale prices so that this is

satisfied.

Now let us show that CP8(?, @) ≤ D8 · G 8 holds. Clearly we have that CP8(?(C), @(C)) ≤ D8 · G(C)8
for every individual iteration C. In fact, this holds with equality by the choice of G(C)

8
. The

reason why the inequality extends also to the averages is simply because CP8(?, @) is a

convex function. This is because we canwrite CP8(?, @) = 28+max 9∈�
{

D8 9
? 9+@8

}
and taking the

maximum over a collection of convex functions is convex. So we can take the �(C)-weighted

average over the inequalities CP8(?(C), @(C)) ≤ D8 · G(C)8 to get CP8(?, @) ≤ D8 · G 8 by Jensen’s

inequality.

Finally, it remains to show that we approximately satisfy the matching constraints which

requires a more substantial calculation. Note that
∑
8∈� G 8 9 can also be expressed as∑)

C=1 �
(C)3(C)

9
and likewise

∑
9∈� G 8 9 can be expressed as

∑)
C=1 �

(C)ℎ(C)
8
. This follows directly

from the definitions in Algorithm 4.1.

Using inequality (4.13), we get

max

(
max
9∈�

)∑
C=1

�(C)3(C)
9
,max
8∈�

)∑
C=1

�(C)ℎ(C)
8

)
≤ ln(2=) + &

∑)
C=1 �

(C)

&(1 − &)∑)
C=1 �

(C)

=
1

1 − &
+ ln(2=)

&(1 − &)∑)
C=1 �

(C)
.

(4.14)
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Observe that at every iteration C, there exists at least one 9 ∈ � or 8 ∈ � so that ?̃(C)
9

or

@̃
(C)
8

increases by a factor of (1 + &). Hence after ) iterations it follows via the pigeonhole

principle that

max
(
max
9∈�

?̃
()+1)
9

,max
8∈�

@̃
()+1)
8

)
≥ (1 + &))/2= ≥ (2=)1/& ,

where the last inequality holds by setting ) ≥ 2= log1+&(2=)
& .

This now lets us compute:

max ©­«max
9∈�

∑)
C=1 �

(C)3(C)
9∑)

C=1 �
(C)

,max
8∈�

∑)
C=1 �

(C)ℎ(C)
8∑)

C=1 �
(C)

ª®¬
= max

©­­«max
9∈�

ln
∏)

C=1 exp
(
&�(C)3(C)

9

)
&
∑)
C=1 �

(C)
,max
8∈�

ln
∏)

C=1 exp
(
&�(C)ℎ(C)

8

)
&
∑)
C=1 �

(C)

ª®®¬
≥ max ©­«max

9∈�

ln
∏)

C=1(1 + &�(C)3(C)
9
)

&
∑)
C=1 �

(C)
,max
8∈�

ln
∏)

C=1(1 + &�(C)ℎ(C)
8
)

&
∑)
C=1 �

(C)
ª®¬

= max ©­«max
9∈�

ln ?̃()+1)
9

&
∑)
C=1 �

(C)
,max
8∈�

ln @̃()+1)
8

&
∑)
C=1 �

(C)
ª®¬

=
1

&
∑)
C=1 �

(C)
ln

(
max

(
max
9∈�

?̃
()+1)
9

,max
8∈�

@̃
()+1)
8

))
≥ ln 2=

&2 ∑)
C=1 �

(C)
.

(4.15)

Finally, combining (4.14) and (4.15) yields

max ©­«max
9∈�

∑
8∈�

G 8 9 ,max
8∈�

∑
9∈�

G 8 9
ª®¬ ≤ 1

1 − &
+ &

1 − &
·max ©­«max

9∈�

∑
8∈�

G 8 9 ,max
8∈�

∑
9∈�

G 8 9
ª®¬
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or equivalently

max ©­«max
9∈�

∑
8∈�

G 8 9 ,max
8∈�

∑
9∈�

G 8 9
ª®¬ ≤ 1

1 − 2& = 1 + $(&). �

Proof of Theorem 4.1. ByLemma4.5, we know thatAlgorithm4.1 converges to an &-approximately

feasible solution of (4.7) in $(= log =
& )many iterations. It is not hard to see that each iteration

can be implemented in $(=2) time. It only remains to show that the output allocation G is

indeed also an &-approximate Nash bargaining point.

Let G★ be an actual Nash bargaining point, i.e. a maximizer of (4.2). We claim that

∏
8∈�
(D8 · G★8 − 28) ≤

∏
8∈�
(D8 · G 8 − 28).

To see this, first observe that for any 8 ∈ �, we have

D8 · G★8 − 28
D8 · G 8 − 28

≤
D8 · G★8 − 28
CP8(?, @)

≤
∑
9∈�
(? 9 + @ 8)G★8 9 − 28 min

9∈�

? 9 + @ 8
D8 9

.

In essence, this is because CP8(?, @)measures the optimal budget wrt. to prices ?, @ and so

the utility of G★ can be bounded in terms of the cost of this bundle using the prices ?, @.

Finally, we can use the AM-GM inequality to show

∏
8∈�

D8 · G★8 − 28
D8 · G 8 − 28

≤ ©­« 1
=

∑
8∈�

©­«
∑
9∈�
(? 9 + @ 8)G★8 9 − 28 min

9∈�

? 9 + @ 8
D8 9

ª®¬ª®¬
1
=

≤ ©­« 1
=

©­«
∑
9∈�

? 9 +
∑
8∈�

@ 8 −
∑
8∈�

28 min
9∈�

? 9 + @ 8
D8 9

ª®¬ª®¬
1
=

= 1. �
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4.4 Conditional Gradient Descent

Since the problem of finding Nash-bargaining points can be captured by a convex program,

we can leverage techniques from convex optimization such as gradient descent to compute

rapidly converging approximations. In this section we will provide a conditional gradient

descent algorithm which is relatively simple and projection free while converging at a rate

of $(1/&). This convergence is faster than the MWU algorithm from Section 4.3, however

this comes at the cost of more expensive iterations and a dependence on the gap between

the largest and smallest utilities.

We will split our analysis in to three parts. First, we will cover the simplest case: one-sided

markets without endowments. Then wewill extend our algorithm to non-bipartite markets;

this also includes the two-sided setting as a special case. Lastly, we cover the extension to

endowments. For endowments, we will only explicitly handle one-sided markets, though

the results can easily be extended to the other settings as well.

4.4.1 One-Sided Markets without Endowments

Let us now consider the simplest setting of a one-sided market with without any endow-

ments. We are given a set � of agents and � of goods with |�| = |�| = = and utilities D8 9

for all 8 ∈ � and 9 ∈ �. Our goal is to solve the convex program (4.1) that we introduced in

Section 4.2.

In the following we will assume that the utilities have been rescaled so that max{D8 9 | 9 ∈

�} = 1 for all 8 and
∑
9∈� D8 9 ≥ 1

� for some value �. In particular, the objective function is

1-strongly concave with respect to D8 · G8 but not G8 9 . Note that since D8 · G8 is not bounded

from below, the objective function is neither Lipschitz nor smooth.
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Recall also that we have shown in Lemma 4.1 that

D8 · G8 =
∑
9∈�

D8 9G8 9 ≥
1

2=

∑
9∈�

D8 9 ≥
1

2�= .

for any optimal solution G. This is crucial to fix the lack of smoothness; we could restrict

ourselves to the problem

max
∑
8∈�

log(D8 · G8)

s.t. D8 · G8 ≥
1

2�= ∀8 ∈ �,∑
8∈�

G8 9 ≤ 1 ∀9 ∈ �,∑
9∈�

G8 9 ≤ 1 ∀8 ∈ �,

G ≥ 0.

without changing the optimal solution. However, while general purpose projected gradient

descent algorithms can achieve $(log(1/&)) convergence rates on this modified problem,

we wish to exploit the combinatorial structure of the solution space. Therefore we will

modify the objective function instead.

Definition 4.2. The quadratic extension of the logarithm at G0 > 0 is given by

�(G; G0) B


log(G0) + (G − G0) 1
G0
− 1

2(G − G0)2 1
G2

0
if G ≤ G0,

log(G) otherwise.
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Note that �(G; G0) is 1
G2

0
-smooth everywhere, i.e. its gradient is 1

G2
0
-Lipschitz. This motivates

the following convex program as an alternative to (4.1).

max
∑
8∈�

�
(
D8 · G8;

1
2�=

)
s.t.

∑
8∈�

G8 9 ≤ 1 ∀9 ∈ �,∑
9∈�

G8 9 ≤ 1 ∀8 ∈ �,

G ≥ 0.

(4.16)

Lemma 4.6. Every optimal solution to (4.16) is also optimal for (4.1).

Proof. First let G be the optimal solution for (4.1). By Lemma 4.1, the objective function of

the two programs agrees up to the first-order at G and thus G is also optimal for (4.16). But

now any other optimal solution G′ for the modified problem must satisfy D8 · G′8 = D8 · G8
for all 8 since the objective is strictly concave in D8 . Thus it is also an optimal solution for

(4.1). �

In the following let

)(G) B
∑
8∈�

log(D8 · G8),

#(G) B
∑
8∈�

�
(
D8 · G8;

1
2�=

)
be the objective functions of (4.1) and (4.16) respectively. We need to show that Lemma 4.6

can be extended to hold for approximate solutions as well. In the following, we use the

notation D(G) to represent the vector (D8 · G8)8∈�.
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Lemma 4.7. Let G be an arbitrary allocation and G★ an optimal one. Let #(G★) − #(G) ≤ & for

some & > 0. Then ||D(G) − D(G★)||2 ≤ 2&. Moreover, if � ∈ (0, 1/2), and & = min
{
�, �2/3

8=2�2

}
, then

)(G★) − )(G) ≤ $(1)�.

Proof. The first part follows directly from the fact that # is 1-strongly concave over the

feasible region. Now observe that by Taylor’s theorem we have

�
(
D8 · G8;

1
2=�

)
− log(D8 · G8) ≤

2
3

��D8 · G8 − 1
2=�

��3
(D8 · G8)3

.

But because D8 · G★8 ≥
1

2=� and ||D(G) − D(G★)||2 ≤ 2&, we know that

���D8 · G8 − 1
2=�

��� ≤ |D8 · G8 − D8 · G★8 |
and

D8 · G8 ≥
1

2=� −
√

2& ≥ (1 − �1/3) 1
2=� .

Finally, we compute

)(G★) − )(G) = #(G★) − #(G) + #(G) − )(G)

≤ � +
∑
8∈�

(
�
(
D8 · G8;

1
2=�

)
− log(D8 · G8)

)
≤ � + $(1)=3�3

∑
8∈�
|D8 · G8 − D8 · G★8 |3

≤ � + $(1)=3�3||D(G) − D(G★)||3/2

≤ $(1)�. �

These two lemmas together imply that it suffices to solve (4.16). Approximate solutions to

this modified program are also approximate solutions for (4.1), both wrt. the Euclidean

norm on the utility vectors and the original objective function. Finding an approximate

131



solution in an efficient wayway can be achieved using the conditional gradient method over

the matching polytope; see Algorithm 4.2. Note that the gradient of # is easily computable.

Algorithm 4.2: Conditional Gradient Descent
1 G(0) ≡ 0 for C ← 1, . . . , ) do
2 for 8 ∈ �, 9 ∈ � do
3 F

(C)
8 9
← %8 9#(G(C−1))

4 H(C)← max-weight matching with weights F(C) G(C)←
(
1 − 2

C+1
)
G(C−1) + 2

C+1 H
(C)

5 return G())

Theorem 4.3. Algorithm 4.2 returns some G with #(G∗) −#(G) ≤ & in $
(
=3�2

&

)
many iterations.

Each iteration can be implemented in $(=3) time.

Proof. The conditional gradient algorithm converges in $
(
�2!
&

)
iterations where � is the

diameter of the polytope that is being optimized over and ! is the smoothness of the

objective function. For a modern proof of this fact, see for example [77]. In this case,

the diameter of the matching polytope is 2
√
= and ! = 4=2�2 since �

(
D8; 1

2=�
)
is clearly

4=2�2-smooth. The amount of work in each iteration is $(=2) except for the computation

of the max weight matching which can be done in $(=3) using the Hungarian method. �

We remark that it is in principle possible to achieve faster convergence rates for conditional

gradient type algorithms by leveraging strong concavity in addition to smoothness [59].

Note that while # is strongly concave in the utilities, it is unfortunately not strongly concave

in the allocation G.

Nevertheless, # can be written as 6(*G)where 6 is strongly concave and*G is the linear

transformation of allocations to utilities. There are more complex variants of conditional

gradient methods, for example those which involve taking “away steps” [78], which can

be shown to converge in $(log(1/&)) phases even in this more general setting. However,

these algorithms depend on difficult to compute Hoffman-type constants of * relative
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to the matching polytope for which there is no known polynomial bound in the instance

parameters.

4.4.2 Non-Bipartite Markets without Endowments

The result from the previous section can be extended to the non-bipartite setting. This also

includes the two-sided setting as a special case. Recall that we have a set of = agents �with

non-negative utilities D8 9 for all 8 , 9 ∈ �. The goal is then to solve the convex program (4.5).

Assume that the utilities have been rescaled so that max{D8 9 | 9 ∈ �} = 1 for all 8 and∑
9∈� D8 9 ≥ 1

� for some value �. Since it is possible to efficiently optimize over the matching

polytope using combinatorial methods, the primary ingredient is to once again bound the

utilities away from 0. Algorithm 4.2 does not have to be modified; one simply has to use

the appropriate matching algorithm and surrogate objective function.

Lemma 4.8. Let G be an optimal solution to (4.5), then for all agents 8 we have

D8 · G8 ≥
1

2=2

∑
9∈�\{8}

D8 9 ≥
1

2�=2 .

Proof. The proof will be similar to the proof of Lemma 4.1, however the more complicated

KKT conditions will yield a weaker bound. So let ? and I be the optimal dual variables for

our solution of (4.5).

Using the KKT conditions (see Section 4.2), we know that

D8 9

D8 · G8
+

D98

D9 · G 9
≤ ?8 + ? 9 +

∑
�∈O:{8 , 9}⊆�

I�
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for all edges {8 , 9} ⊆ � with equality when G8 9 > 0. We use the notation O to denote the

collection of odd subsets of �. Therefore

∑
8∈�

?8 +
∑
�∈O

|�| − 1
2 I� =

∑
{8, 9}⊆�

©­«?8 + ? 9 +
∑

�∈O:{8 , 9}⊆�
I�

ª®¬ G8 9
=

∑
{8, 9}⊆�

(
D8 9G8 9

D8 · G8
+
D98G8 9

D9 · G 9

)
= =.

In addition, we can observe from the KKT conditions that

D8 · G8 = max
{

D8 9

?8 + ? 9 +
∑
�∈O:{8 , 9}⊆� I� − D98/(D9 · G 9)

����� 9 ∈ � \ {8}}
≥ max

{
D8 9

?8 + ? 9 +
∑
�∈O:{8 , 9}⊆� I�

���� 9 ∈ �}
≥

∑
9∈� D8 9

=?8 +
∑
9∈�\{8} ? 9 +

∑
�∈O:8∈�(|�| − 1)I�

≥ 1
2=2

∑
9∈�\{8}

D8 9 . �

This boundmay initially seemweakwhen compared to the 1
2=

∑
9∈� D8 9 bound fromLemma4.1.

However, this is actually tight up to a constant factor. Consider for some parameter ℓ ∈ N,

an instance that has 2ℓ + 1 agents. Agents 1, . . . , ℓ have utility 1 for agent 2ℓ + 1 and 0

everywhere else. Agents ℓ + 1, . . . , 2ℓ are indifferent, i.e have utility 1 for all agents. Finally,

agent 2ℓ + 1 has utility 1 for agents ℓ + 1, . . . , 2ℓ . One can then show that in the optimal

allocation G, agent 2ℓ + 1 will only get 1
ℓ+1 units from their utility 1 edges. Therefore∑

9∈� D8 9

D8 · G8
= ℓ (ℓ + 1) ≈ =

2

4 .
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However, this utility bound is still adequate in order to show convergence of the conditional

gradient method with the modified objective function

#(G) B
∑
8∈�

�
(
D8 · G8;

1
2=2�

)
.

Theorem 4.4. Algorithm 4.2 returns some G with #(G★) −#(G) ≤ & in $
(
=5�2

&

)
many iterations

where G★ is an optimal solution to (4.5). Each iteration can be implemented in $(=3) time.

Proof. The difference in the number of iterations compared to Theorem 4.3 comes from the

fact that # is now 4=4�2-smooth. Each iteration can still be implemented in $(=3) time by

using a weighted matching algorithm, now for non-bipartite graphs. �

4.4.3 Extension to Endowments

Finally, let us consider the case in which agents come with preexisting endowments, i.e.

each agent 8 has some disagreement utility 28 and the goal is then to solve the convex

program (4.2). We will only consider the one-sided model here since the extension to

two-sided and non-bipartite markets works much the same.
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The added difficulty of this setting is that, in general, a feasible solution may not exist. We

thus assume that there exists a feasible solution (Ĝ , �) of the LP

max �

s.t. D8 · G8 ≥ (1 + �)28 ∀8 ∈ �,∑
8∈�

G8 9 ≤ 1 ∀9 ∈ �,∑
9∈�

G8 9 ≤ 1 ∀8 ∈ �,

G ≥ 0,

� ≥ 0.

(4.17)

with � > 0. We call this � the feasibility gap of the instance.

In practice there are two likely scenarios as to how one might obtain �. Either one solves the

above linear program to find the optimal � or the disagreement utilities 28 are defined as

some constant fraction of the agents’ utilities over their initial endowments. More precisely,

assume that each agent 8 comes to the market with endowments 48 9 over the goods 9. Then

one may simply define 28 B 1
1+�D8 · 48 . The market will then guarantee that no agent

gets worse by a factor of more than (1 + �)which is an approximate notion of individual

rationality.

Regardless of how one obtains a feasible solution to (4.17), we may use it to derive a similar

lower bound as in Lemma 4.1. Once again, assume that the utilities have been rescaled so

that max{D8 9 | 9 ∈ �} = 1 for all 8 and
∑
9∈� D8 9 ≥ 1

� for some � > 0.

Lemma 4.9. Let G be an optimal solution to (4.2), then for all agents 8 we have

D8 · G8 ≥ 28 +
1

2=2(1 + 1/�)
∑
9∈�

D8 9 ≥ 28 +
1

2=2(1 + 1/�)� .
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Proof. Let ? 9 and @8 as always be optimal dual variables for the matching constraints in

(4.2). Then by the KKT conditions we have that D8 9
D8 ·G8−28 ≤ ? 9 + @8 with equality if G8 9 > 0.

From this complementarity we can deduce that

D8 · G8 − 28 = max
{

D8 9

? 9 + @8

���� 9 ∈ �}
and

D8 · G8
D8 · G8 − 28

=

∑
9∈�

G8 9(? 9 + @8).

Together this implies that

∑
9∈�

G8 9(? 9 + @8) = 1 + 28 min
{
? 9 + @8
D8 9

���� 9 ∈ �}
.

Now we may use our feasible solution (Ĝ , �) to (4.17) in order to bound

∑
9∈�

? 9 +
∑
8∈�

@8 =
∑
8∈�

∑
9∈�

G8 9(? 9 + @8)

= = +
∑
8∈�

28 min
{
? 9 + @8
D8 9

���� 9 ∈ �}
≤ = + 1

1 + �

∑
8∈�

∑
9∈�

D8 9 Ĝ8 9 min
{
? 9′ + @8
D8 9′

���� 9′ ∈ �}
≤ = + 1

1 + �

∑
8∈�

∑
9∈�

Ĝ8 9(? 9 + @8)

≤ = + 1
1 + �

©­«
∑
9∈�

? 9 +
∑
8∈�

@8
ª®¬

which implies in particular that
∑
9∈� ? 9 +

∑
8∈� @8 ≤

(
1 + 1

�

)
=.
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Finally, using the same idea as in Lemma 4.1, we get

D8 · G8 = 28 +max
{

D8 9

? 9 + @8

���� 9 ∈ �}
≥ 28 +

∑
9∈� D8 9

=@8 +
∑
9∈� ? 9

≥ 28 +
1

2=2(1 + 1/�)
∑
9∈�

D8 9 . �

The modified convex program will thus use the objective function

#(G) B
∑
8∈�

�

(
D8 · G8 − 28;

1
2=2(1 + 1/�)�

)
and we can now use Algorithm 4.2 to solve the modified convex program with the new

gradients

%8 9#(G) =


D8 9
D8 ·G8 if D8 · G8 ≥ 1

2=2(1+1/�)�

4=4(1 + 1/�)2�2D8 · G8D8 9 otherwise.

Theorem 4.5. Algorithm 4.2 returns G with#(G★)−#(G) ≤ & in$
(
=5(1+1/�)2�2

&

)
many iterations

where G★ is an optimal solution to (4.2). Each iteration can be implemented in $(=3) time.

Proof. The only difference to Theorem 4.3 is that the objective function # is now 4=4(1 +

1/�)2�2-smooth instead of 4=2�2 as before. �

We remark that an analogous result to Lemma 4.7 holds also in this setting, i.e. convergence

in the modified objective # implies convergence of the agents’ utilities in the Euclidean

norm. Thus, if one chooses & on the order of $
(

1
=
√
(1+1/�)�

)
, then one is guaranteed that

D8 · G8 ≥ 28 for all agents 8.
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4.5 Discussion

In this chapter, we have introduced two different algorithms forNash bargaining in cardinal-

utility matching markets which are practical, simple, and have good theoretical running

time guarantees. Our work leaves three interesting open problems for future research:

• Note that our multiplicative weights approach only applies to one-sided and bipartite

two-sided markets. Can it be extended to non-bipartite markets?

• Since ourwork focuses on the theoretical guarantees, it would also be interesting to see

an actual practical comparison of high quality implementations of these techniques.

Note that the work by Hosseini and Vazirani [70] provides an implementation of

conditional gradient descent which also uses some of the insights from this chapter.

However, they did not implement the MWU algorithm to compare against.

• Both of our algorithms extend techniques that can be used for Fishermarket equilibria.

There are other techniques such as tâtonnement [104] and proportional response

dynamics [127] which also converge towards such equilibria. Can they be extended

to our setting as well?
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Part II

Online Matching
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Chapter 5

Background

5.1 Introduction

In the Online Bipartite Matching Problem (OBMP), we are given a bipartite graph� = ((, �, �)

consisting of a set � of buyers and a set ( of sellers (or, alternatively, goods). The buyers

arrive online, one by one and in adversarial order, and whenever a buyer 8 ∈ � arrives,

the set #(8) of its neighbors among the sellers is revealed. At that point we must match

8 immediately and irrevocably to a currently unmatched neighbor or leave 8 unmatched

forever. Our goal is to maximize the total size of the matching.

The problem was introduced in the seminal work by Karp, Vazirani, and Vazirani [82]

who proposed the Ranking algorithm as solution to it and showed that it is (1 − 1/4)-

competitive in expectation (see Sections 5.2 and 5.3 for details). Over the years, online

matching problems have received a large amount of interest due to the vast number of

applications created by the internet and mobile computing. Online advertising alone poses

the AdWords Problem [99, 74, 121] that lies at the heart of a multi-billion dollar market.

Another interesting application, the Fully Online Matching Problem [71, 73], came about
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due to the rise of ride-sharing and/or ride-hailing apps such as Uber and Lyft where riders

and drivers come online and need to be matched almost instantaneously while minimizing

some function of latency and distance traveled to the rider. For a more complete overview

of online matching and its place in matching-based market design, we refer to [98] and

[40].

In the remainder of this chapter we will give an overview of some of the core concepts

and definitions surrounding the Online Bipartite Matching Problem, including the notion

of competitiveness and the Ranking algorithm. Then, in the following chapters, we will

present several novel results on online matching.

In Chapter 6 we will extend the classic (1 − 1/4)-competitiveness result for Ranking and

show that it holds with high probability as opposed to just in expectation. As we shall see,

the proof is a remarkably natural and beautiful application of the method of bounded

differences. We also extend this result to several other variants of online matching which

will be defined later.

In Chapter 7 we will look at generalizations of online matching on hypergraphs, i.e. where

the online vertices must be matched to sets (hyperedges) of offline vertices. We will give

new upper and lower bounds while focusing on the case in which the hypergraph has

large rank.

5.2 Competitiveness

Before we can study online matching, we need to fix some constraints and understand

what our actual objective is. It is in general impossible to perfectly solve the OBMP, i.e. we

cannot guarantee that we always find the largest possible matching in the underlying graph

�. When faced with hard problems in computer science, we often turn to approximations.
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However, in the case of online matching it is not entirely clear with respect to what solution

the approximation guarantee should be measured.

The most common metric is 
-competitiveness which measures the quality of a proposed

online algorithm relative to an oracle with perfect information of the arrival of future

vertices. In other words, this means that our benchmark is the maximum matching in the

underlying graph �. A formal definition is given below.

Definition 5.1. An algorithmA is 
-competitive if for any instance � = ((, �, �) of the Online

Bipartite Matching Problem and any possible arrival order of the buyers �,A outputs a matching

of size at least 
 · OPT where OPT is the size of a maximum matching in �.

It is not immediately obvious that 
-competitiveness for any positive 
 can even be achieved.

However, in the case of the OBMP this follows from some classic results about matchings.

Recall that a matching " is called maximal if we cannot add any other edge to it without

intersecting an edge in ". Recall also that the size of any maximal matching is at least half

the size of any maximum matching. We call an algorithm A greedy if it matches buyers

whenever they have at least one unmatched neighbor when they arrive. Observe that any

greedy algorithm always produces a maximal matching and is thus 1
2 -competitive. In fact,

one can show that for the OBMP there is never a reason not to be greedy since the most

that we can gain from not matching a vertex now is to match one more vertex later.

Theorem 5.1 (Karp et al. 1990 [82]). No deterministic algorithm can be 
-competitive for the

OBMP for 
 > 1
2 .

Proof. Let A be some candidate algorithm. Consider the example instance shown in

Figure 5.1 which clearly has OPT = 2. Let 81 arrive first.
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91

92

81

82

Figure 5.1: Shown is an example demonstrating the upper bound of 1
2 -competitiveness for

deterministic online algorithms for the OBMP.

First, consider what happens ifA does not match 81 at all. In that case, consider a different

instance in which 82 does not exist. Here OPT = 1 andA gets nothing so the competitive

ratio ofA would be 0.

Next, ifA matches 81 to 91, then it cannot later match 82 and so the competitive ratio will

be at most 1
2 . The same applies ofA matches 81 to 92: simply consider a different instance

in which 82 has an edge to 92 instead of 91. The key point here is that all three mentioned

instances are indistinguishable from the perspective ofA when 81 arrives and sinceA is

deterministic, it must make the same decision in all of them.

Thus the overall competitive ratio ofA can be at most 1
2 . �

A key observation made by Karp et al. [82] was that while deterministic aglorithms cannot

be more than 1
2-competitive, randomized algorithms can. Let us first restate our definition

of competitiveness for randomized algorithms.

Definition 5.2. A randomized algorithmA is 
-competitive (in expectation) if for any instance

� = ((, �, �) of the Online Bipartite Matching Problem and any possible arrival order of the buyers

�, the expected size of the matching produced byA is at least 
 · OPT where OPT is the size of a

maximum matching in �.
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Now we can see that we can in fact beat the 1
2 -competitiveness bound in the example from

Figure 5.1. When 81 arrives, wematch it uniformly at random to either 91 or 92. The expected

size of the matching is then 3
2 which is 3

4OPT.

The key question is how to extend this result to arbitrary instances. The most straight-

forward generalization is to always match buyers to available sellers uniformly and inde-

pendently at random. This algorithm is called Random and while it is slightly better than

deterministic algorithms for small instances, its competitive ratio is unfortunately still just
1
2 in general [82].

5.3 Ranking

Nonetheless, it is possible to improve on the 1
2-competitiveness through a clever use of

randomness in the form of the Ranking algorithm (Algorithm 5.1). The idea and namesake

behind the algorithm is to start by computing a uniformly random ranking on the sellers.

When a buyer arrives, they are matched to the highest ranked seller available.

Algorithm 5.1: Ranking (with permutation)

1 Sample a uniformly random permutation � on (.

2 for each buyer 8 who arrives do

3 Match 8 to the first unmatched buyer in #(8)wrt. to �.

The reason why Ranking is better than Random is not obvious. Intuitively, it has to do

with the fact that Ranking has a self-correcting nature: it is more likely to match to a seller

who has had fewer opportunities to be matched in the past. This is because a seller who

has had many opportunities to be matched is likely worse in the sampled ranking since

otherwise it would have already been matched.
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It turns out that this feature of Ranking boosts its competitive ratio to 1− 1
4 ≈ 0.63. However,

the original proof of this fact due to Karp et al. [82] is rather complicated. We will present

the primal-dual analysis of Ranking which is based on work by Devanur et al. [35] and

Eden et al. [44]. Chapter 6 and Chapter 7 will employ similar techniques.

The first step is to cleverly reframe the sampling of the ranking of the sellers. Instead of

sampling a random permutation we instead sample prices. Almost any distribution works

here and leads to the same algorithm but for the analysis, a particular choice is optimal.

See Algorithm 5.2.

Algorithm 5.2: Ranking (with prices)

1 for each seller 9 do

2 Sample H 9 ∈ [0, 1] uniformly at random.

3 Set ? 9 B 4H9−1.

4 for each buyer 8 who arrives do

5 Match 8 to the unmatched buyer 9 ∈ #(8)minimizing ? 9 .

Next, we follow the terminology by Eden et al. [44]. We call ? 9 the price of seller 9. We

introduce dual variables (A 9)9∈( (revenues) and (D8)8∈� (utilities). When buyer 8 is matched

to seller 9, we set A 9 = ? 9 and D8 = 1− ? 9 . The revenues of sellers who are never matched are

set to 0 and likewise the utilities of buyers who are not matched is set to 0 as well. Observe

that the total amount of revenue and utility is exactly the size of the matching produced by

Ranking.

Lemma 5.1. Let (8 , 9) ∈ � be arbitrary and fix all prices except for ? 9 . Let D★ be the utility of buyer

8 under the Ranking if seller 9 were removed from the list of sellers. Then:

1. No matter what ? 9 is, D8 ≥ D★.

2. If ? 9 < 1 − D★, then 9 will be matched.
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Proof (Sketch). For Claim 1, the idea is to show that adding a new seller only improves the

utilities of all the buyers. This is called the monotonicity of the posted price mechanism and

can be shown via induction. For details we refer to [44], though we will give a similar

argument later in Chapter 6.

Claim 2 follows from the observation that 1 − D★ is the price of the seller that 8 would have

been matched to with 9 missing. So if ? 9 < 1 − D★ and 9 has not been matched by the time

that 8 arrives, then 9 would just get matched to 8. �

Lemma 5.2. Let (8 , 9) ∈ � be arbitrary. Then E[D8 + A 9] ≥ 1 − 1
4 .

Proof. Fix all prices except for ? 9 and once again let D★ be the utility of 8 if 9 were removed

from the instance. Part 1 of Lemma 5.1 implies that E[D8] ≥ D★ where the expectation is

now only over ? 9 .

Now let H★ be such that 1 − 4H★−1 = D★. Then by part 2 of Lemma 5.1, we know that if

H 9 < H★, 9 will be matched since in that case ? 9 < 1 − D★. Therefore

E[A 9] ≥
∫ H★

0
4H 9−1 dH 9 = 4H

★−1 − 1
4
= 1 − D★ − 1

4
.

Summing up both of these bounds yields E[A 9 + D8] ≥ 1 − 1
4 as claimed. �

Theorem 5.2. Ranking is (1 − 1
4 )-competitive.

Proof. Let " be some maximum matching. As already noted, the size of the matching

produced by Ranking is given by
∑
9∈( A 9+

∑
8∈� D8 . Now simply observe that by Lemma 5.2,

we have

E


∑
9∈(

A 9 +
∑
8∈�

D8

 ≥
∑
(8, 9)∈"

E[A 9 + D8] ≥
∑
(8 , 9)∈"

(
1 − 1

4

)
=

(
1 − 1

4

)
OPT. �
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Ranking has been massively influential in the online matching literature and there are

many variants of the algorithm for various related problems, some of which we will discuss

in Chapter 6. However, it is not the only popular algorithmic technique in the field. The

other two notable algorithms are Water Filling / Balance and the rounding algorithms

based on Online Correlated Selection (OCS) [48].

5.4 Water Filling and Balance

Ranking is the most prevalent algorithmic technique for unweighted or vertex weighted,

integral variants of online matching. However, if the matching is allowed to be fractional, the

Water Filling algorithm is a popular alternative which, unlike Ranking, can be extended

to work with edge weights as well [34]. The idea goes back to Kalyanasundaram and Pruhs

[81] who developed the Balance algorithm that we will discuss later.

For now, we will consider the Fractional Online Bipartite Matching Problem (FOBMP). The

setup is the same, i.e. we have an underlying graph � = ((, �, �)with sellers and buyers.

Buyers arrive online in adverserial order andmust bematched immediately and irrevocably.

However, we are now allowed to match buyers fractionally to their neighbors when they

arrive. The goal is thus to determine non-negative (H8 9)(8 , 9)∈� such that
∑
9∈( H8 9 ≤ 1 for all

8 ∈ � and
∑
8∈� H8 9 ≤ 1 for all 9 ∈ (.

Recall that the size of the maximum integral matching and the size of the maximum

fractional matching are the same in bipartite graphs. So the offline optimum OPT does not

change between the integral and fractional variants of the problem. Therefore, the FOBMP

is in general an easier problem than the OBMP.

The challenge in online matching in general is that when a buyer arrives, we do not know

which of the sellers are still needed for future buyers. The idea behind Water Filling is
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quite natural: we simply try to be as conservative as possible. Whenever a buyer 8 arrives,

we start matching it to its neighbor with the lowest fill level, i.e. the amount that they are

currently matched. This way we delay filling up a seller completely by as much as possible.

If multiple neighbors of 8 have the same fill level, we will fill them up at the same rate.

Another way to think of this is in terms of a continuous process. As long as an arriving

buyer is not fully matched, we match infinitesimal amounts dC to whichever seller is least

matched. Formally, this is Algorithm 5.3.

Algorithm 5.3: Water Filling

1 for 4 ∈ � do

2 Initialize H4 B 0.

3 for each buyer 8 who arrives do

4 while 8 is not fully matched and has a neighbor who is not fully matched do

5 Let 9 ∈ #(8) be a neighbor minimizing
∑
8′∈#(9) H8′ 9 .

6 Increase H8 9 by some infinitesimal dC.

At this point, we should briefly discuss the issue of computational complexity. In online

algorithms in general, there is often little focus on running times since the main challenge

is usually to achieve the best possible competitive ratio, regardless of running time. In the

case of Ranking, it is clear that the algorithm can be implemented very efficiently. However,

Algorithm 5.3 describes a process which by its very nature of using infinitesimals cannot

be directly implemented like this at all.

It is not too hard to see that Algorithm 5.3 can be turned into a “proper” algorithm; the

updates that need to be applied to H for each buyer’s arrival can be computed in polynomial

time. However, for more elaborate variants of Water Filling, it is not always trivial to

come up with an algorithm that can be implemented, let alone in polynomial time. In that

case, one can approximate the process by replacing dC with some small ΔC instead.
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We will now give a short proof, based on an analysis by Devanur et al. [34], that Water

Filling is (1− 1
4 )-competitive for the FOBMP. This might initially seem disappointing. After

all, the FOBMP is supposed to be easier than the OBMP and yet Water Filling does not

perform any better than Ranking! Note though that Water Filling is deterministic whereas

Ranking is randomized. Indeed, we showed in Section 5.2 that deterministic algorithms

for the OBMP cannot be more than 1
2-competitive. More importantly, Water Filling

generalizes better to more complex settings which is what we will make use of in Chapter 7.

Just like for the analysis of Ranking, we will use the terminology of Eden et al. [44]. For

each seller 9 ∈ ( we will have a revenue A 9 ≥ 0 and likewise for each buyer 8 ∈ � we will

have a utility D8 ≥ 0. The instantaneous price ? 9 of a seller is 4G 9−1 where G 9 =
∑
8∈#(9) H8 9

is the fill level. When 8 is matched to 9 by dC, we increase A 9 by ? 9dC and D8 by (1 − ? 9)dC.

Note how we still maintain the invariant that the size of the matching produced by the

algorithm is always equal to
∑
9∈( A 9 +

∑
8∈� D8 .

Lemma 5.3. At the end of the algorithm, we have D8 + A 9 ≥ 1 − 1
4 for any (8 , 9) ∈ �.

Proof. Let G 9 be the final fill level of seller 9. Note that

A 9 =

∫ G 9

0
4 C−1 dC = 4G 9−1 − 1

4
.

Now consider what happened when 8 was getting matched during the algorithm. Since

the final fill level of 9 is G 9 , 8 would have gotten matched exclusively to sellers with a fill

level of at most G 9 . Thus for each dC its utility would have increased by at least 1 − 4G 9−1.

Therefore:

D8 ≥
∫ 1

0
(1 − 4G 9−1) dC = 1 − 4G 9−1.
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Finally, summing up these two inequalities yields A 9 + D8 ≥ 1 − 1
4 as claimed. �

Theorem 5.3. Water Filling is (1 − 1
4 )-competitive.

Proof. The proof is now essentially identical to the proof of Theorem 5.2. �

Lastly, Water Filling can also be used in settings where the matching is not fractional but

in which the sellers can be matched many times. If each seller can be matched exactly 1

times, this is called the Online Bipartite 1-Matching Problem and essentially approximates

the FOBMP. This is actually where the idea originated in the form of the Balance algorithm;

see Algorithm 5.4.

Algorithm 5.4: Balance

1 for each buyer 8 who arrives do

2 Match 8 to a neighbor which has been matched the least (if possible).

Kalyanasundaram and Pruhs [81] showed that this algorithm is (1 − (1 + 1
1 )−1)-competitive

which approaches 1 − 1
4 as 1 →∞. The modern analysis is quite similar to that of Water

Filling with the price of a seller being (1 + 1
1 )G 9−1 if they have been matched G 9 many times.

5.5 Upper Bounds via Yao’s Principle

We have seen that Ranking is (1 − 1
4 )-competitive for the OBMP. But can we do any better?

This question was asked and answered already in the original Ranking paper [82] and it

turns out the answer is: no, we cannot. In this last section we will see a common upper

bounding technique used in online algorithms which we will make use of in Chapter 7. It

is based on the following useful lemma.
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Lemma 5.4 (Yao’s Principle). Let 
 be the competitive ratio of any randomized algorithm for

the OBMP. Let Δ be a distribution over instances of the OBMP consisting of both the graph

� = ((, �, �) and the arrival order of the buyers. Finally, let � be the expected competitive ratio of

the best deterministic online algorithm on the distribution Δ. Then 
 ≤ �.

Yao’s principle comes from a game theoretic view on the competitive ratio. We can think

of the competitive ratio as being determined by a zero-sum game between two players:

the algorithm player and the instance player. The algorithm player tries to create the

best possible online algorithm whereas the instance player tries to generate the most

challenging instance. By the well-known minimax principle due to von Neumann, as

long as the players are allowed to use mixed strategies (i.e. randomized algorithms and

distributions of instances), the order of the players does not matter. Thus, Yao’s principle

follows.

Theorem 5.4 (Karp et al. 1990 [82]). There is no (1+ 1
4 + &)-competitive algorithm for the OBMP

for any & > 0.

Proof. Clearlywe are going to use Yao’s principle, i.e. we need to come upwith a distribution

over difficult instances and show that no deterministic algorithm does well on them. Let

us fix some large = ∈ N to determine the size of the instances, i.e. there will be = buyers

and = sellers. The instances are generated as follows.

For the first arriving buyer, we add edges to all sellers. For the second arriving buyer, we

connect it to = − 1 sellers which are chosen uniformly at random out of the = total sellers.

In general, for the 8’th arriving buyer, we connect it to a subset of = − 8 − 1 sellers which is

chosen uniformly among the = − 8 sellers that the (8 − 1)’th buyer had access to.

Now it is easy to see that OPT = =, i.e. there is a perfect matching. Each buyer can

be matched to the unique seller which is no longer available to the next arriving buyer.
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Consider some optimal deterministic algorithmA. As noted previously, we may assume

without loss of generality thatA is greedy.

We are going think ofA as a stochastic process with time C ≥ 0. At each integral C, a buyer

arrives andA matches it if possible. We keep track of two random variables: G(C) is simply

the number of buyers who have not yet been considered byA and H(C) is the number of

sellers which are still eligible to be matched. By “eligible” we refer to the sellers which

have not been matched previously and for which there will still be edges to other buyers

later.

Note that ΔG(C) = G(C) − G(C + 1) = −1 and G(0) = =. Likewise, H(0) = =. As long as H(C) ≥ 1,

it too decreases by at least one in each time step sinceA is greedy and will match a seller if

possible. However, it may decrease by 2. Consider a buyer 8 which arrives at some time

C. By construction, there is a unique seller 9 ∈ #(8)which is not a neighbor of the buyers

that arrive after 8. If 9 is currently unmatched at time C andA does not match 8 to 9, then 9

becomes ineligible in addition to the seller that 8 is actually matched to.

Crucially, due to the construction of our instances, the set of H(C) sellers which is eligible at

time C is equally likely to be any subset of size H(C) of the G(C) sellers that could be eligible.

Moreover, the probability that A does not pick the one special seller which is going to

become ineligible anyways is H(C)−1
H(C) . Together, this yields

E[ΔH(C)] = E[H(C) − H(C + 1)] = −1 − H(C)
G(C)

H(C) − 1
H(C) .

This allows us to set up the following stochastic difference equation:

E[ΔH(C)]
E[ΔG(C)] = 1 + H(C) − 1

G(C)
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By Kurtz’ theorem [87], this is closely approximated by the solution to the corresponding

differential equation

dH
dG = 1 + H(C) − 1

G(C)

with probability tending to 1 as = →∞. Its solution with the given boundary conditions

of G(0) = H(0) = = is

H = 1 + G
(
= − 1
=
+ ln G

=

)
. (5.1)

Finally, by solving (5.1), we can obtain that if H = 1, i.e. there is only one remaining eligible

seller, we have G = =
4 + >(=). This implies that the competitive ratio ofA on our distribution

of instances is 1 − 1
4 − >(1) and by Yao’s principle, the theorem follows. �

Lastly, we remark that the above proof can be easily extended to work for fractional algo-

rithms as well: the optimum competitive ratio of the FOBMP is also 1 − 1
4 .
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Chapter 6

High Probability Guarantees

6.1 Introduction

In Chapter 5, we introduced the Online Bipartite Matching Problem and the Ranking

algorithm which achieves the optimal competitive ratio of 1 − 1
4 . To be more precise, we

showed that this bound holds in expectation over the randomness used by Ranking. In this

chapter, we will turn towards proving competitiveness with high probability instead. This

chapter is based on the paper “Online Matching with High Probability” which was joint

work with Milena Mihail [101].

For many online matching problems, there are extensions of Ranking which achieve

competitive ratios of 1 − 1
4 or at the very least strictly greater than 1

2 . Often, these are

best-known for their respective problems. However, all results on Ranking-like online

matching algorithms in the literature only establish the competitive ratio in expectation

without guaranteeing any form of concentration beyond the trivial bounds that follow

from Markov’s inequality.
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Under the restriction that the graph is 3-regular, Cohen and Wajc [30] proposed the Mark-

ing algorithm for Online Bipartite Matching and showed that it has a competitive ratio of

1 − $(
√

log 3/
√
3) in expectation and 1 − $(log =/

√
3) with high probability. They remark

that this is the first high probability guarantee > 1/2 for Online Bipartite Matching, though

only in this restricted setting. Accordingly, the analysis presented in this chapter provides

the first such bound without additional assumptions on the problem instances.

The analysis of concentration bounds for randomized algorithms goes back to the 1970s

with classic results such as the second moment bound for Quicksort [112]. See [38] for an

extensive overview of the field. However, it has remained the case that in the analysis of

algorithms, results are usually quantified in terms of expected solution quality only.

In some sense this is due to the well-known fact that, as a consequence of standard Chernoff

bounds, any randomized algorithm which is good in expectation can be boosted to be good

with probability 1 − 1
= by simply repeating it $(log =)many times. But it is precisely in the

case of online algorithms where this argument fails due to the fact that online algorithms,

by definition, cannot be repeated. Despite this, the literature on high probability bounds

for online algorithms is relatively sparse (for some exceptions, see e.g. [85, 90]). Given

the impact that Ranking has had over the last 30 years, it is quite remarkable that such a

fundamental aspect of it had been left unanswered.

6.1.1 Our Results and Techniques

Our results concern Ranking type algorithms in three different settings: the classic Online

Bipartite Matching Problem (see Section 6.2), the Fully Online Matching Problem inspired

by ride-sharing (see Section 6.3) and the Online Vertex-Weighted Bipartite Matching Prob-

lem inspired by the internet advertising markets (see Section 6.4).
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In Section 6.2wewill show the following result, complementing the
(
1 − 1

4

)
-competitiveness

result of Ranking for the Online Bipartite Matching Problem (Theorem 5.2).

Theorem 6.1. Let � = ((, �, �) be an instance of the Online Bipartite Matching Problem which

admits a matching of size =. Then for any 
 > 0 and any arrival order,

P
[
|"| <

(
1 − 1

4
− 


)
=
]
< 4−2
2=

where " is the random variable denoting the matching generated by Ranking.

The key technical ingredient for this result is a bounded differences property of the random

variable |"| (see Lemma 6.2). We prove this via structural properties of matchings (see

Lemma 6.3) similar, to ones which have been used in previous analyses of Ranking [65, 16].

Together withMcDiarmid’s inequality shown below (a consequence of Azuma’s inequality),

this gives rise to a particularly natural proof of Theorem 6.1.

Lemma 6.1 (McDiarmid’s Inequality [96]). Let 21, . . . , 2= ∈ R+ and consider some function

5 : [0, 1]= → R satisfying

| 5 (G1, . . . , G8−1, G
′
8 , G8+1, . . . , G=) − 5 (G1, . . . , G=)| ≤ 28

for all G ∈ [0, 1]= , 8 ∈ [=] and G′
8
∈ [0, 1]. Moreover let Δ= be the uniform distribution on [0, 1]= .

Then for all C > 0, we have

PG∼Δ=
[
5 (G) < EH∼Δ= [ 5 (H)] − C

]
< 4
− 2C2∑=

8=1 2
2
8 .

Wewant to contrast this technique brieflywith two related results. The analysis of Marking

by Cohen andWajc [30] uses the 3-regularity of the graph in an essential way. They are able

to show directly that the probabilities that the offline vertices are unmatched are negatively
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correlated and apply a Chernoff bound. In fact, they even show that the probability that

any given offline vertex is matched goes to 1 as 3→∞which is certainly not the case for

Ranking.

The technique by Komm et al. [85] can be used to show concentration bounds for several

problems which are loosely related to online matching such as the Online :-Server Problem.

Their key idea is to use a repeating strategy where any existing randomized algorithm is

used and simply restarted periodically when certain conditions are met. This improves the

expectation guarantee of the original algorithm to a high probability guarantee similar to

typical re-running technique for non-online algorithms. However, this only works if one

can indeed cheaply restart the algorithm without harming the analysis which is the case in

the Online :-Server Problem but not in the Online Bipartite Matching Problem.

In Section 6.3 we will define the Fully Online Matching Problem and the natural extension

of Ranking for this setting. We remark that we allow for non-bipartite graphs here and we

will give a similar concentration bound as in Theorem 6.1.

Theorem 6.2. Let � be an instance of the Fully Online Matching Problem which admits a matching

of size =. Then for any 
 > 0,

P
[
|"| <

(
� − 


)
=
]
< 4−


2=

where" is the random variable denoting the matching generated by Ranking and � is the competitive

ratio of Ranking for this setting.

We remark that by [71], we know � > 0.521 and for the special case where � is bipartite,

we have � =,(1) ≈ 0.567.
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In Section 6.4 we will consider the Online Vertex-Weighted Bipartite Matching Problem. In

this setting, a generalization of Ranking was shown to be (1 − 1
4 )-competitive by Aggarwal

et al. [2]. We will modify this algorithm to show the following.

Theorem 6.3. For any 
 > 0, there exists a variant of Ranking such that for any instance

� = ((, �, �) with weights F : (→ R+ of the Online Vertex-Weighted Bipartite Matching, any

arrival order of � and any matching "∗,

P
[
F(") <

(
1 − 1

4
− 


)
F("∗)

]
< 4
− 1

50

4 F("∗)2
||F||22

where " denotes the matching generated by Ranking and

F(") B
∑
{8, 9}∈"

F 9 .

Lastly, we argue that this bound also applies to the Online Single-Valued Bipartite Matching

Problem which is a variant of the vertex-weighted problem in which goods can be matched

multiple times.

6.2 Online Bipartite Matching

It is common to analyze Ranking by replacing the sampling of the permutation � (see

Algorithm 5.1) by independently sampling prices (see Algorithm 5.2). Note that the precise

distribution of the prices does not matter for the actual performance of the algorithm. In the

following we will simply sample an independent, uniform G 9 ∈ [0, 1] for every 9 ∈ ( called

the rank of 9. Then, sorting ( by the values of G 9 yields a uniformly random permutation.

Formally, this is Algorithm 6.1.
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Algorithm 6.1: Ranking (with uniform ranks)

1 for 9 ∈ ( do

2 Sample a uniformly random G 9 ∈ [0, 1].

3 for each buyer 8 who arrives do

4 Match 8 to an unmatched 9 ∈ #(8)minimizing G 9 .

In the following, consider a fixed graph � = ((, �, �)with a fixed arrival order. Assume

that |(| = = and that � has a matching of size =. We define a function 5 : [0, 1]( → R by

letting 5 (H) be the size of the matching " generated by Algorithm 6.1 if G 9 = H 9 for all

9 ∈ (. Our goal will then be to show the following lemma. It is a different perspective on a

structural property that appears under various forms in the online matching literature (e.g.

Lemma 2 in [16]).

Lemma 6.2 (Bounded Differences). Let G ∈ [0, 1](, 9★ ∈ ( and � ∈ [0, 1] be arbitrary. Define

G′
9
to be � if 9 = 9★ and G 9 otherwise. Then | 5 (G) − 5 (G′)| ≤ 1.

Note that Lemma 6.2 implies Theorem 6.1 via McDiarmid’s inequality (Lemma 6.1). Specif-

ically, by applying McDiarmid to the function 5 with 2 ≡ 1 we get

P
[
|"| <

(
1 − 1

4
− 


)
=
]
≤ PG∼Δ(

[
5 (G) < EH∼Δ([ 5 (H)] − 
=

]
≤ 4−2
2=

where we used that (1− 1
4 )= ≤ EH∼Δ([ 5 (H)] since Ranking is (1− 1

4 )-competitive. It remains

to prove Lemma 6.2.

Lemma 6.3. Let 9 ∈ (, then we can define the graph �−9 which contains all vertices of � except for

9. For some fixed values of G ∈ [0, 1](, we let " be the matching produced by Ranking in � and

let "−9 be the matching produced by Ranking in �−9 . Then |"−9| ≤ |"| ≤ |"−9| + 1.
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Proof. For any buyers 8 , 8′ ∈ �, let # (8)(8′) be the set of neighbors of 8′ in � which are

unmatched by the time that 8 arrives in the run of Ranking with the fixed ranks G. Likewise,

let # (8)−9 (8′) be the set of unmatched neighbors of 8′ in the run of Ranking on �−9 when 8

arrives. We claim that for all 8 ∈ � there exists some 9′ ∈ ( such that for all 8′ ∈ � we have

# (8)(8′) = #
(8)
−9 (8′) or # (8)(8′) = #

(8)
−9 (8′) ∪ { 9′}.

Let us show this claim via induction on 8 ∈ � in order of arrival. Note that when the first

buyer arrives, this holds for 9′ = 9 because we have removed only 9′ from the graph and

nobody has been matched yet. Now assume that the statement holds when 8 arrives, we

need to see that it still holds after 8 has been matched. Clearly, if 8 gets matched to the same

vertex in � and in �−9 , then the inductive step follows trivially.

So now assume that 8 gets matched to different vertices in � and in �−9 . By the inductive

hypothesis this can only happen if 8 getsmatched to 9′ in� and it getsmatched to some other

9′′ (potentially 9′′ = ⊥, i.e. it is not matched at all) in �−9 . But then # (8+1)(8′) = #
(8+1)
−9 (8′) or

# (8+1)(8′) = #
(8+1)
−9 (8′) ∪ { 9′′} for all 8′ ∈ �. Thus the claim holds by induction.

Finally, let us see that the claim implies the lemma. First note that since 8 always has more

unmatched neighbors in � than in �−9 , we have |"| ≥ |"−9|. But on the other hand, if at

some time in the algorithm 8 is matched to 9′ in � and not matched at all in �−9 , then we

have that # (8+1)(8′) = #
(8+1)
−9 (8′) for all 8′ ∈ �. Thus the two runs will be identical from that

point onward and |"| = |"−9| + 1. �

Finally, we can show that this implies the bounded differences property of 5 that we claimed

in Lemma 6.2.

Proof of Lemma 6.2. By Lemma 6.3 we know that removing a good from the graph can

decrease the size of the matching computed by Ranking by at most one, assuming that

the values of the G 9 are fixed. But of course if we are removing 9★ ∈ (, the matching "−9★
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computed by Ranking in �−9★ does not depend on the value of G 9★ or G′
9★
. So we have

|"−9★| ≤ 5 (G) ≤ |"−9★| + 1

and

|"−9★| ≤ 5 (G′) ≤ |"−9★| + 1

which implies | 5 (G) − 5 (G′)| ≤ 1 as claimed. �

As we have already seen, this is enough to prove Theorem 6.2 in the case where |(| = =.

To prove the general case we can use a simple reduction. In particular, assuming that

there is a matching " of size = but |(| > =, let (" be the goods covered by " and let

�" = ((" , �, �). We have seen in Lemma 6.3 that for any fixed G ∈ [0, 1](, Ranking will

produce a matching in � that is not smaller than the matching it produces in �" when run

with G restricted to (" . Therefore, Theorem 6.2 on �" implies Theorem 6.2 on � which

establishes the general case.

6.3 Fully Online Matching

In the Fully Online Matching Problem we have a not necessarily bipartite graph � the

vertices of which arrive and depart online in adversarial order. When a vertex arrives, it

reveals all of its edges to vertices that have already arrived. By the time it departs, its entire

neighborhood is guaranteed to have been revealed.

This problem was introduced by Huang et al. [71] and is motivated by ride-sharing. Each

vertex represents a rider who, upon arrival, is willing to wait only for a certain amount of

time. Two riders can only be matched if the time that they spend on the platform overlaps,
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even in the offline solution. This additional condition allows Huang et al. to show that

the generalization of Ranking shown in Algorithm 6.2 is 0.521-competitive in general and

0.567-competitive on bipartite graphs.

Algorithm 6.2: Fully Online Ranking

1 for vertex 8 who arrives do

2 Sample a uniformly random G8 ∈ [0, 1].

3 for vertex 8 who departs do

4 Match 8 to an unmatched 9 ∈ #(8)minimizing G 9 .

In order to show a concentration bound, we can apply similar techniques as in Section 6.2.

Let� = (+, �) be a graphwhich admits a perfectmatching of size =. Then let 5 : [0, 1]+ → R

once again represent the size of the matching generated by Algorithm 6.2 when given the

G8 values. The corresponding bounded differences condition then becomes:

Lemma 6.4 (Bounded Differences). Let G ∈ [0, 1]+ , 8★ ∈ + and � ∈ [0, 1] be arbitrary. Define

G′
8
to be � if 8 = 8★ and G8 otherwise. Then | 5 (G) − 5 (G′)| ≤ 1.

This implies Theorem 6.2 as before though note that this time we will lose a factor of 2

since we now have 2= variables. We remark that this follows directly from Lemma 2.3 in

[71] but for completeness we will give a short proof sketch.

Lemma 6.5. Using the notation from Lemma 6.3, we have |"−9| ≤ |"| ≤ |"−9| + 1 for any 9 ∈ +

and fixed values of G ∈ [0, 1]+ .

Proof. As in the proof of Lemma 6.3, let # (8)(8′) (or # (8)−9 (8′)) be the set of neighbors of 8′

in � (or �−9) which is unmatched by the time that 8 departs in the run of Fully Online

Ranking with the fixed values of G. We claim that for all 8 ∈ + , there exists some 9′ ∈ +

such that for all 8′ ∈ + , we have # (8)(8′) = #
(8)
−9 (8′) or # (8)(8′) = #

(8)
−9 (8′) ∪ { 9′}.
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This claim follows via an almost identical induction as in Lemma 6.3. Then, since 8 always

has more unmatched neighbors in � than in �−9 , we have |"| ≥ |"−9|. And if at some

time in the algorithm, 8 is matched to 9′ in � and not matched at all in �−9 , then we have

that # (8+1)(8′) = #
(8+1)
−9 (8′) for all 8′ ∈ + . Thus the two runs will the identical from that point

onward and |"| = |"−9| + 1. �

Since Lemma 6.5 implies Lemma 6.4, this yields Theorem 6.2 for graphs which contain a

perfect matching. But as in Section 6.2, we may drop this condition by reducing a graph

� with a matching " to the subgraph induced by the vertices covered by ". Adding the

vertices back in only increases the performance of Fully Online Ranking by Lemma 6.5.

6.4 Online Vertex-Weighted Bipartite Matching

In this section, we will consider a weighted extension of the Online Bipartite Matching

Problem which has been inspired by online advertising markets. In the Online Vertex-

Weighted Bipartite Matching Problem, we have a bipartite graph � = ((, �, �) with vertex

weights F : ( → R+ on the offline vertices. Here ( represents the advertisers and �

represents website impressions or search queries which should get matched to ads from

the advertisers. The vertices � arrive online in adversarial order and should get matched

to a neighbor 9 such that the total weight of the matched vertices in ( is maximized. This

problem can be seen as a special case of the AdWords Problem which instead imposes

edge-weights and budgets on the offline vertices.

Perhaps somewhat surprisingly, it took 20 years for Ranking to be extended for the un-

weighted to the vertex-weighted setting by Aggarwal et al. [2]. This is because in the

presence of weights, it is no longer enough to pick a uniformly random permutation over

the offline vertices. Instead, one has to skew the permutation so that higher weight vertices
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are more likely to appear first. This is done elegantly in Algorithm 6.3 by ordering the

vertices not by their G 9 but rather by the careful chosen quantity F 9(1 − 4G 9−1).

Note the similarity to Algorithm 5.2. In the unweighted case, we employed a very similar

pricing strategy to analyze the algorithm. However, this was not the original analysis of

Karp et al. [82] so this generalization was not obvious at the time.

Algorithm 6.3: Vertex-Weighted Ranking

1 for 9 ∈ ( do

2 Sample a uniformly random G 9 ∈ [0, 1].

3 for each buyer 8 who arrives do

4 Match 8 to an unmatched 9 ∈ #(8)maximizing F 9

(
1 − 4G 9−1) .

Unfortunately, Algorithm 6.3 does not lend itself to an analysis via the method of bounded

differences. This is because a vertex with small weight, which should have little impact on

the total weight of the matching, can sometimes be chosen over a vertex with much larger

weight. See the example shown in Figure 6.1.

9

9′

8

F 9 = 1

F 9′ = 1010

Figure 6.1: Shown is a simple instance in which the value of G 9 can have a large impact
on the final matching despite the fact that F 9 is small. If G 9′ � 1 − 10−10, 8 will choose 9 in
line 4 for sufficiently small values of G 9 .
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In particular, the problem lies with the fact that F 9(1 − 4G 9−1) can get arbitrarily close to 0 if

G 9 gets close to 1. We will overcome this problem by changing the function slightly. For

any & > 0, we consider &-Ranking as shown in Algorithm 6.4.

Algorithm 6.4: &-Ranking

1 for 9 ∈ ( do

2 Sample a uniformly random G 9 ∈ [0, 1].

3 for each buyer 8 who arrives do

4 Match 8 to an unmatched 9 ∈ #(8)maximizing F 9

(
1 − 4G 9−1−&) .

In the following, fix some instance � = ((, �, �) with vertex-weights F and some & > 0.

Then we let 5 : [0, 1]( → R represent the total weight of the matching generated by

Algorithm 6.4 with fixed samples G 9 . We will show that &-Ranking is still (1 − 1
4 − &)-

competitive while also allowing us to give a concentration bound.

To give a concise proof of the (1− 1
4 − &)-competitiveness, we will folllow a similar approach

aswe did to prove the competitiveness of Ranking inChapter 5. Wewill use the primal-dual

analysis due to Devanur et al. [35] with the economic viewpoint by Eden et al. [44].

As usual we associate random variables A 9 with all 9 ∈ ( and D8 with 8 ∈ �. The value

F 94
G 9−1−& represents the price of 9 and whenever a match between 8 and 9 is made, this is a

sale. We will then set A 9 (the revenue) to be F 94
G 9−1−& and D8 (the utility) to be F 94

G 9−1−&. If a

vertex is never matched, its revenue or utility respectively will be zero.

Lemma 6.6. Using the notation from Lemma 6.3, we have that for all 9 ∈ ( and fixed samples G,

F("−9) −
2
&
F 9 ≤ F(") ≤ F("−9) + F 9 .

Additionally, for any 8 ∈ �, its utility D8 in the run on � will be no less than in the run on �−9 .

166



Proof. For any buyers 8 , 8′ ∈ �, let # (8)(8′) be the set of neighbors of 8′ in � which are

unmatched by the time that 8 arrives in the run of Algorithm 6.4 with the fixed values of G.

Likewise, let # (8)−9 (8′) be the set of unmatched neighbors of 8′ in the run of &-Ranking on

�−9 when 8 arrives. We claim that for all 8 ∈ � there exists some 9′ ∈ ( such that

F 9′(1 − 4G 9′−1−&) ≤ F 9(1 − 4G 9−1−&)

and for all 8′ ∈ �, we have # (8)(8′) = #
(8)
−9 (8′) or # (8)(8′) = #

(8)
−9 (8′) ∪ { 9′}.

This claim is almost the same as in the proof of Lemma 6.3 and may likewise be shown via

induction. Note that the extra condition on F 9′ holds at the beginning where 9′ = 9 and

whenever 8 matches to 9′, it frees up a vertex 9′′ with

F 9′′(1 − 4G 9′′−1−&) ≤ F 9′(1 − 4G 9′−1−&)

due to the fact that 9′ was picked over 9′′ in line 4. If 8 was not even matched in �−9 , we can

simply set 9′ = 9 for the induction.

Now note that since # (8)−9 (8) ⊆ # (8)(8) for all 8 ∈ �, we always maximize over a larger set in

line 4. Thus the utility of 8 will be no smaller in the run on � compared to the run on �−9 .

On the other hand, let) ⊆ ( be the set of goodsmatched in the run on� and let)−9 ⊆ (\{ 9}

be the set of goods matched in the run on �−9 . Then we observe that ) \ )−9 ⊆ { 9} because

for all 9′ ≠ 9, if 9′ gets matched to 8 in ", then either 9′ ∈ # (8)−9 (8), implying that 8 will match

to 9′ in "−9 , or 9′ was already matched to some other vertex. In both cases, if 9′ ∈ ) then

9′ ∈ )−9 . This implies that F(") ≤ F("−9) + F 9 .
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We also have that |)−9 \)| ≤ 1. Simply imagine a buyer 8★ that arrives after all other buyers

and has edges to all goods. Then by the claim, there exists some 9′ ∈ ( such that

(( \ { 9}) \ )−9 = #
(8★)
−9 (8

★) ⊆ # (8★)(8★) ∪ { 9′} = ( \ () ∪ { 9′})

and so )−9 ⊆ ) ∪ { 9′}. This implies that F(") ≥ F("−9) − F 9′.

Finally, we also know by the claim that F 9′(1 − 4G 9′−1−&) ≤ F 9(1 − 4G 9−1−&)which implies

F 9′ ≤
1

1 − 4−&F 9 ≤
1(

1 − 1
4

)
&
F 9 ≤

2
&
F 9 .

Thus we have shown F("−9) − 2
&F 9 ≤ F(") ≤ F("−9) + F 9 as required. �

Lemma 6.7 (Bounded Differences). Let G ∈ [0, 1](, 9★ ∈ ( and � ∈ [0, 1] be arbitrary. Define

G′
9
to be � if 9 = 9★ and G 9 otherwise. Then | 5 (G) − 5 (G′)| ≤

(
1 + 2

&

)
F 9★.

Proof. As in the proof of Lemma 6.2, we can simply remove 9★ and apply Lemma 6.6. Then

F("−9★) −
2
&
F 9★ ≤ 5 (G) ≤ F("−9★) + F 9★ ,

F("−9★) −
2
&
F 9★ ≤ 5 (G′) ≤ F("−9★) + F 9★

which implies the result. �

Lemma 6.8. For any {8 , 9} ∈ �, we have E[A 9 + D8] ≥ (1 − 1
4 − &)F 9 .

Proof. Fix all ranks G except for G 9 . Then we can define D∗ to be the utility of 8 when

&-Ranking is ran on �−9 . By Lemma 6.6, we know that D8 ≥ D∗, regardless of the value of

G 9 .

On the other hand, if G 9 is small enough that F 9(1 − 4G 9−1−&) > D∗, then 9 will definitely get

matched because if 9 is not yet matched by the time that 8 arrives, then clearly 9 will be
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chosen in line 4 of the algorithm and so it gets matched to 8. Now if D∗ is very small, this

may be the case for all values of G 9 and in that case

E[A 9 | G−9] ≥
∫ 1

0
F 94

C−1−& dC =
(
1 − 1

4

)
4−&F 9 ≥

(
1 − 1

4
− &

)
F 9 .

Otherwise there will be some value I ∈ [0, 1] such that F 9(1− 4I−1−&) = D∗ and then we can

compute

E[A 9 | G−9] ≥
∫ I

0
F 94

C−1−& dC =
(
1 − 1

4

)
F 9 − D∗.

But clearly, in both cases we have

E[A 9 + D8 | G−9] ≥ E[A 9 | G−9] + D∗ ≥
(
1 − 1

4
− &

)
F 9

and so in particular E[A 9 + D8] ≥ (1 − 1
4 − &)F 9 as claimed. �

Lemma 6.9. &-Ranking is (1 − 1
4 − &)-competitive.

Proof. Let "∗ be a maximum weight matching and let " be the matching output by

&-Ranking. Notice that every time wematch an edge in the algorithm, we increase
∑
9∈( A 9+∑

8∈� D8 by exactly the weight of the edge. Thus by Lemma 6.8,

E[F(")] = E


∑
9∈(

A 9 +
∑
8∈�

D8

 ≥
∑
{8 , 9}∈"∗

E[A 9 + D8]

≥
∑
{8 , 9}∈"∗

(
1 − 1

4
− &

)
F 9 =

(
1 − 1

4
− &

)
F("∗)

and therefore &-Ranking is (1 − 1
4 − &)-competitive. �

Finally, we have the tools necessary to show Theorem 6.3 by combining Lemma 6.7 with

Lemma 6.9.
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Proof of Theorem 6.3. Given some 
 > 0, we consider the algorithm 

2 -Ranking which we

know to be (1 − 1
4 − 


2 )-competitive by Lemma 6.9. We apply Lemma 6.1 (McDiarmid’s

inequality) with Lemma 6.7 (bounded differences). This gives us

P
[
F(") <

(
1 − 1

4
− 


)
F("∗)

]
< 4
−2 
2

2
F("∗)2

(1+4/
)2||F||22

≤ 4
− 
4

50
F("∗)2
||F||22

where we use that 
 < 1 since otherwise the bound holds trivially. �

The results of this section may also be extended to a generalization of the Online Vertex-

Weighted Bipartite Matching Problem which is called the Online Single-Valued Bipartite

Matching Problem. The setup is almost identical in that we still have a bipartite graph

� = ((, �, �)with vertex weights F : (→ R+ on the offline vertices. However, now each

offline vertex 9 also has a capacity 2 9 ∈ N that represents how often it is allowed to be

matched.

Clearly, Theorem 6.3 can be extended to this setting by simply creating 2 9 many copies

of each offline vertex 9. This can be done implicitly and in a capacity-oblivious way by

sampling a new G 9 every time 9 is matched during the Ranking (or &-Ranking) algorithm.

Recently, Vazirani [121] showed that this “resampling” is in fact not necessary, i.e. that the

same value of G 9 can be used for every copy of 9 while still achieving (1− 1
4 )-competitiveness

of Ranking; see Algorithm 6.5.
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Algorithm 6.5: Single-Valued Ranking

1 for 9 ∈ ( do

2 Sample a uniformly random G 9 ∈ [0, 1].

3 for each buyer 8 who arrives do

4 Match 8 to a 9 ∈ #(8)which has been matched less than 2 9 times, maximizing

F 9

(
1 − 4G 9−1) .

The main benefit of Algorithm 6.5 is that it uses fewer random bits than running Ranking

on the reduced instance with 2 9 many copies of each offline vertex 9. However, it will

accordingly be less tightly concentrated which leads to a version of Theorem 6.3 in which

the bound depends not on ||F||22 but rather on
∑
9(2 9F 9)2.

6.5 Discussion

We have shown that Ranking and its many variants achieve their competitive ratios with

high probability rather than just in expectation. This leaves several interesting open prob-

lems. The first is to show a concentration bound for the original weighted version of

Ranking rather than &-Ranking. As mentioned, the bounded differences approach fails

due to the large influence that vertices with small weight can have on the matching. How-

ever, this should happen rarely and so amore fine-grained analysis may be able to overcome

this challenge.

A second interesting prospect is to consider the AdWords problem. Vazirani [121] showed

that a variant of Ranking can be used for AdWords with small bids under the assumption

of the so-called no-surpassing property which tends to hold in practice though the bound is

once again given in terms of expectation. An advantage of this approach over the classic

MSVV algorithm [99] is that Ranking does not need to know about the budgets. It may be
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possible to show a concentration bound for this algorithm as well. However, this is made

more challenging by the fact that the setting is edge-weighted.
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Chapter 7

Hypergraph Matching

7.1 Introduction

In the previous chapterswe have discussed several variants of theOnline BipartiteMatching

Problem, such as vertex weights or the fully online setting. We also discussed the Online

Bipartite 1-Matching Problem in which offline vertices can be matched multiple times. In

this chapter, we will look at a different generalization in which vertices are matched to

entire sets of vertices at once. This chapter is based on the paper “Almost Tight Bounds for

Online Hypergraph Matching” which was joint work with Rajan Udwani [117].

A hypergraph � = (+, �) consists of a set + of vertices and a set � of hyperedges.1 Each

hyperedge 4 ∈ � is a non-empty subset of + . The maximum size of any edge is called the

rank of the hypergraph. Note that a hypergraph of rank 2 is just an undirected graph in

the standard sense. A matching in a hypergraph is simply a collection of vertex-disjoint

hyperedges.
1Technically, this is an undirected hypergraph. We will only consider undirected hypergraphs in this

chapter.
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In Section 7.2, we will introduce several slightly different models of the Online Hypergraph

Matching Problem (OHMP), in which hyperedges (or vertices) arrive online in adverserial

order and must be matched immediately and irrevocably. Applications for hypergraph

matching arise in a variety of settings such as revenue management in airlines [114, 115],

combinatorial auctions [83, 86], and ridesharing [109].

In the rest of the chapter, our goal will be to give lower and upper bounds on the competitive

ratios for the Online Hypergraph Matching Problem, particularly in the case of large rank.

A notable difference between OBMP and the OHMP is the issue of efficient computability.

In most online matching problems, it is possible to compute the offline optimal solution

(i.e. the comparison point for the competitive ratio) in polynomial time using standard,

combinatorial algorithms. However, it is NP hard to find a Ω(log :)
: -approximate maximum

hypergraph matching [68].

We will consider both integral and fractional variants of the OHMP. In the integral case,

any greedy algorithm is 1
: -competitive and this is optimal among deterministic algorithms,

similar to the results thatwe have seen in the bipartite case in Chapter 5. Due to the hardness

result mentioned above, no polynomial time online algorithm can have a competitive ratio

better than Ω(log :)
: unless P = PN. This raises the question whether there is any, potentially

randozimed and exponential time, online algorithm which is substantially better than
1
: -competitive. In Section 7.3, we partially resolve this question in the negative by showing

that there is no online algorithm which is 2+&
: -competitive for any & > 0 and large :, thus

leaving only a constant factor gap.

In the fractional case, there is no computational hardness as fractional hypergraph match-

ings (which we will define in Section 7.2) can be computed via a linear program. Moreover,

this is a special case of the Online Packing Problem for which Buchbinder et al. [21] give

a Ω

(
1

log :

)
-competitive algorithm. In the special case of the fractional OHMP, we give a

174



simpler algorithm which is 1−>(1)
ln : -competitive. Moreover, we will show a matching upper

bound showing that no online algorithm is better than 1
ln : -competitive.

7.2 Models

There are two reasonable variants of online hypergraph matching: vertex arrival and edge

arrival. We will start by discussing the vertex arrival model since this is more closely

inspired by the OBMP though in the rest of this chapter we will focus on edge arrival.

In the vertex arrival model, we are given a hypergraph � = (+, �) where + = � ∪ ( can

be divided into buyers (online vertices) and sellers (offline vertices). Every hyperedge

contains exactly one buyer and at least one seller. Buyers arrive one by one in adversarial

order and reveal the hyperedges incident to them. At that point we must immediately and

irrevocably match at most one of these hyperedges with the goal of maximizing the total

number of matched hyperedges.

Clearly, this model generalizes the OBMP if the rank of the hypergraph is 2. One may add

the additional restriction that the hypergraph be :-partite, i.e. that + = � ∪ (1 ∪ · · · ∪ (:−1

such that every edge contains exactly one element from � and each (; . However, it is not

immediately clear if this helps in any way. The issue is that finding a maximum hypergraph

matching is NP-hard even in a 3-partite hypergraph; this problem is usually called the 3D

Matching Problem.

As already mentioned, we will largely focus on edge arrival. In the edge arrival model,

all vertices are offline and instead edges arrive one by one at which point we only need

to decide whether we want to match them or not. Note that vertex arrival can simply be

reduced to edge arrival by letting all the incident edges to an online vertex arrive in some

arbitrary order.
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However, in the case of large rank :, edge arrival and vertex arrival are essentially the

same. This is because we can turn an edge arrival instance of rank : into a vertex arrival

instance of rank : + 1: simply add one unique vertex for each arriving edge. Since the focus

of this chapter is on large rank, we will restrict ourselves to the edge arrival model as it is

conceptually simpler.

We will also consider the fractional variant of the OHMP. In that case, the optimal offline

solution is a solution to the following linear program.

max
∑
4∈�

G4 (7.1a)

s.t.
∑
4∈�
E∈4

G4 ≤ 1 ∀E ∈ +, (7.1b)

G4 ≥ 0 ∀4 ∈ � (7.1c)

Each decision variable G4 ∈ [0, 1] in the LP captures the fraction of edge 4 included in the

matching. The matching constraint (7.1b) enforces the total fraction of edges incident on

a vertex E ∈ + to be at most 1. An online algorithm can match an arbitrary fraction of

each arriving edge, subject to the same constraint as the LP. We remark that unlike in the

bipartite matching case, a feasible solution of the LP is not in general a convex combination

of integral hypergraph matchings.

Finally, note that by adding dummy vertices, we can assume wlog. that every edge has

exactly : offline vertices, making the instance :-uniform.
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7.2.1 Related Work

Perhaps closest to our setting is the work of Buchbinder and Naor [21] on online packing.

They considered an online packing problem that generalizes the fractional online hyper-

graph matching problem studied here and gave a $(log :) competitive algorithm. A special

case of the online packing problem was considered earlier in [9], in the context of online

routing.

Another closely related line of work is on the problem of network revenue management

[114, 115]. This is a stochastic arrival setting where seats in flights are offline resources

allocated to sequentially arriving customers. A customer with multi-stop itinerary requires

a seat on each flight in the itinerary. Recently, Ma et al. [94] gave a 1
:+1 algorithm for network

revenue management.

Another stream of work has focused on hypergraph matching from the perspective of

ridesharing. Pavone et al. [109] introduced a hypergraph matching problem with deadlines

to capture applications in ridesharing. Their model and results are incomparable to ours.

Lowalekar et al. [93] consider a model inspired by ridesharing but with a stochastic arrival

sequence. Finally, several papers [83, 86] consider related settings in combinatorial auctions

that correspond to online hypergraph matching with stochastic arrivals.

As mentioned previously, for the standard (offline) maximum hypergraph matching prob-

lem, Hazan et al. [68] showed that unless P = NP, no polynomial time algorithm can find

a Ω(;>6:)
: -approximate maximum hypergraph matching. The best-known approximation

algorithm is due to Cygan [32] who provides a factor 3
: approximation.

Lastly, we want to mention the recent work of Borst et al. [19] which appeared after the

results in this chapter were announced but before they were published. They consider

the integral, vertex-arrival variant of the online hypergraph matching and give an optimal

177



algorithm in the case of : = 3 which turns out to have a competitive ratio of (4 −1)/(4 +1) ≈

0.4621. In addition, they give an algorithm which beats the greedy algorithm for larger :

under the assumption that the degree of online vertices is bounded.

7.3 Integral Matchings

In the following, fix some : ≥ 2. We will focus on the OHMP in the edge arrival model.

We start with a simple observation which is essentially folklore.

Theorem 7.1. There is a 1
: -competitive algorithm for the OHMP. This is the best possible competitive

ratio for deterministic algorithms.

Proof. Consider the greedy online algorithm that includes an arriving edge 4 in the match-

ing if it can be added to the matching, i.e. if it is disjoint with all previously included

edges. Let 41, . . . , 4ℓ be the set of edges included in an offline optimum solution and let

+> ⊆ + denote the set of offline vertices that are covered by the edges chosen in the online

algorithm. For each edge 48 , at least one of the vertices that it intersects must be included

in +> . Thus, |+>| ≥ 1
:ℓ : and the online algorithm picks at least 1

:ℓ hyperedges.

To see that this is the best possible competitive ratio, consider the following instance. First,

an edge 4 with : vertices arrives. Now, for every E ∈ 4, another edge arrives which contains

E and : − 1 “fresh” vertices. Clearly OPT = : but this requires one to not match 4. Now

consider some deterministic algorithmA. IfA matches 4, then its competitive ratio is no

better than 1
: . But ifA does not match 4, then consider another instance in which no edge

arrives after 4: A would have a competitive ratio of 0 in that case. �
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In our first result, we show that even a randomized and possibly exponential time online

algorithm cannot achieve a much better competitive ratio for this problem. To show this,

we will use Yao’s principle, as restated below (recall Section 5.5).

Lemma 7.1 (Yao’s Principle). Let 
 be the best competitive ratio of any randomized algorithm.

Let � be the competitive ratio of the best deterministic algorithm against some fixed distribution of

instances. Then 
 ≤ �.

Before we get to our main result, we will first give a slightly weaker result that serves both

as a warm up and as a gadget for the main result.

Theorem 7.2. For even :, there does not exist a 4+&
: competitive algorithm for the :-uniform online

hypergraph matching problem for any & > 0.

Proof. Using Yao’s principle, we will construct a distribution of instances with even :

where OPT = :
2 but the best deterministic online algorithm can only achieve an expected

matching size of 2.

For any given even value :, the overall (random) instance �: will consist of :2 “red” edges

and :
2 “blue” edges constructed in :

2 phases. In each phase, there will be one red and one

blue edge which look indistinguishable to any online algorithm. The idea is that if the

algorithm ever picks a blue edge, it will be locked out of future edges, thus limiting the

expected matching size. See Figure 7.1 for an example of the construction. The construction

of the red and blue edge in each phase proceeds as follows:

1. Let � be a set of vertices which intersects every previous blue edge exactly once.

Create a new edge 41 which consists of � and : − |�|many new vertices that have

not been in any edges yet. Let 41 arrive in the instance.
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2. Now let �′ be a second set of vertices which intersects every previous blue edge and

41 exactly once. Create a new edge 42 which consists of �′ and : − |�′| many new

vertices. Let 42 arrive in the instance.

3. Randomly let one of {41, 42} be red and the other blue with equal probability.

Note that the sets � and �′ can always be found because each edge contains : vertices

and we have :/2 phases. The crucial property of this construction is that each blue edge

intersects all future edges whereas each red edge is disjoint from all future edges. In

particular, the :
2 red edges form a maximum size matching, i.e. OPT = :

2 .

Now consider some deterministic online algorithmA. Let 
8 be the probability thatA

matches the red edge in phase 8 and let �8 be the probability that A matches the blue

edge in phase 8. Clearly, since the red and blue edges are determined independently and

uniformly at random, we must have 
8 = �8 . Moreover, since at most one blue edge can be

picked, we know 
1 + · · · + 
:/2 ≤ 1. Thus the expected size of the matching generated by

A is at most


1 + · · · + 
:/2 + �1 + · · · + �:/2 ≤ 2. �

Theorem 7.3. If : is a power of two, then here does not exist a 2+&
: competitive algorithm for the

online hypergraph matching problem for any & > 0.

Proof. We will use induction to create a distribution over graphs �: for powers of two :,

with the following properties:

1. There are : red and : blue edges.

2. The edges appear in : phases, each of which consists of one red and one blue edge

where the color is chosen uniformly and independently at random.
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�1

�2

�3

�4

�5

Figure 7.1: Shown is gadget �10 proving that a competitive ratio of 4
: + & is imposisble for

: = 10. The numbers indicate in which phase each edge was added. The lightly shaded
areas represent the vertex sets �1, . . . , �5 which are useful for the construction of �: .

3. Every blue edge intersects all future edges.

4. Every red edge is disjoint from all future edges.

�1 is trivial to construct. We will just have a single vertex which is simultaneously in both

a red and blue singleton edge. Suppose that we can construct �:/2.

Now in order to construct �: , we first employ the :
2 phases of �: . After this we can

construct :2 disjoint sets �1, . . . , �:/2 of :2 vertices such that each �8 intersects all blue edges

and none of the red edges. See again Figure 7.1. Now, for the remaining :/2 phases, we

recursively employ the distribution �:/2 as follows. In phase 8 + :
2 , we extend the the two

edges from phase 8 of �:/2 by the set �8 to form sets of size :. This gives us the two edges

of rank : for phase 8 + :
2 .

Finally, one may check that properties 1 through 4 are satisfied by induction. Thus, we

may conclude the proof similar to the proof of Theorem 7.2: the optimum solution picks

all : red edges whereas any deterministic online algorithm can only get an expected value
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of 2 since at most one blue edge can be picked and red and blue edges in each phase are

indistinguishable for the online algorithm. �

7.4 Fractional Matchings

Inspired by the Water Filling (or Balance) algorithm of [81, 99], designed for the OBMP

and its variants, we propose the following online algorithm for the fractional OHMP in the

edge arrival model.

Algorithm 7.1: Hypergraph Water Filling
1 For each 4 ∈ �, set H4 B 0.
2 for each edge 4 which arrives do
3 Increase H4 continuously as long as

∑
E∈4(: ln :)GE−1 ≤ 1 where GE B

∑
5 ∈�:E∈ 5 H 5

is the fill level of E.

The final value of variable H4 in the algorithm is the fraction of edge 4 that is included in

the matching. At any moment, variable GE in the algorithm captures the total fraction of

edges incident on vertex E that have been included in the matching. In other words, the

value of GE is the fraction of E that has already been matched by the algorithm. In order

to preserve resources for future edges, Algorithm 7.1 stops matching an edge when the

value of
∑
E∈4(: ln :)GE−1 reaches 1. For illustration, consider the following scenarios at the

arrival of edge 4 incident on resources {1, . . . , :}.

1. G8 = 0 for all 8 ∈ [:] on arrival of 4. Then, the algorithm will match a ln(ln :)
ln(:)+ln(ln :)

fraction of the edge before stopping.

2. G8 = 1
2 for all 8 ≤

√
: ln : and G8 = 0 otherwise. Then, for sufficiently large values of :,

the algorithm does not match any fraction of edge 4.
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We would like to note that Algorithm 7.1 constructs a fractional matching by augmenting

the primal solution H, whereas the online packing algorithm of [21] augments the dual

solution. We show that Algorithm 7.1 achieves the best possible competitive ratio guarantee

for large :.

Theorem 7.4. Algorithm 7.1 is 1−>(1)
ln(:) -competitive for the fractional OHMP with edge arrivals.

Proof. Given a hypergraph � = (+, �), let ALG denote the total size of the fractional

hypergraph matching obtained by Hypergraph Water Filling and let OPT denote the

value of the optimal fractional offline solution. We use a primal-dual approach inspired by

[21, 35] to prove the result. Note that the dual of (7.1) is given by:

min
∑
E∈+

AE

s.t.
∑
E∈4

AE ≥ 1 ∀4 ∈ �,

AE ≥ 0 E ∈ +.

It suffices to find non-negative (AE)E∈+ which satisfy

∑
E∈+

AE ≤ ALG, (7.2)∑
E∈4

AE ≥
1 − 1

ln :
ln : + ln(ln :) =

1 − >(1)
ln : ∀4 ∈ �. (7.3)

From there, an approximate complementary slackness argument can be used to get the
1−>(1)

ln : bound on the competitive ratio; see the proof of Theorem 5.2 from the background

chapter.
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We set the dual variables using the following procedure. In the beginning, all variables A8

are set to 0. When Algorithm 7.1 is matching edge 4 in line 3 by some infinitesimal amount

dC, we increase AE by (: ln :)GE−1dC for all E ∈ 4. Note that by the condition in line 3, we

know that (7.2) holds at the end of the algorithm. It remains to show that (7.3) is also

satisfied. Fix an arbitrary edge 4 ∈ � and consider the following two cases.

Case 1: Let 4 ∈ � be arbitrary and let GE be the final fill levels of the vertices E ∈ 4. If GE = 1

for any E, we know that

AE =

∫ 1

0
(: ln :)C−1 dC = 1 − 1/(: ln :)

ln : + ln(ln :) ≥
1 − 1/ln :

ln(:) + ln(ln :) ,

so the this one vertex is already enough for (7.3).

Case 2: Otherwise, since all GE < 1 at the end of the algorithm, we must have that % B∑
E∈4(: ln :)GE−1 ≥ 1. But in that case, we can compute:

∑
E∈4

AE ≥
∑
E∈4

∫ GE

0
(: ln :)C−1 dC

=
% − 1/ln :

ln : + ln(ln :)

which shows the claim and thus the theorem. �

Next, we show that this bound is asymptotically tight, i.e. that no online algorithm can

beat the performance of Algorithm 1 for large :.

Theorem 7.5. For any & > 0 and : large enough, there does not exist any online algorithm which

is 1+&
ln(:) -competitive for the fractional OHMP with edge arrivals.

Proof. LetA be some algorithm for the fractional online hypergraph matching problem.

We can assume wlog. thatA is deterministic. This is because ifA is randomized, we may
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⇒

⇒

⇒ ⇒

Figure 7.2: Shown is the upper-bounding construction with : = 10, ; = 3, � = 0.5. In each
step we replace the blue edges with as many red edges of 1

1+� times the size as possible.
Then we pick the ; red edges that the algorithm puts the most weight on, make those the
new blue edges and repeat until only singleton edges are left.

create another algorithm A′ which simply fractionally allocates every edge 4 with the

expected value ofA. ThenA′ is a deterministic algorithm that performs just as well asA.

Fix some large ; ∈ N and small � > 0. We will now construct an instance in which every

hyperedge has size at most :. Some will have size strictly less than : but if a :-uniform

instance is desired, we can simply fill up with dummy vertices. The instance is created

according to the following procedure (see Figure 7.2).

1. Set < ← : and let ; disjoint edges of size : arrive. Let* be the set of all vertices in

these ; edges.

2. If < = 0, stop. Otherwise, set < ←
⌊
<

1+�
⌋
.

3. Partition* into as many disjoint edges of size < as possible and let these arrive.

4. Let 41, . . . , 4; be the ; of these edges thatA matches the most.

5. Update* ← 41 ∪ · · · ∪ 4; and go back to step 2.
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Now let 
 be the competitive ratio ofA. Our first observation is that steps 2–5 execute

(1− >(1)) log1+�(:)many times as : →∞. Moreover, in each iteration, we cover ; blue edges

with ⌊
;<⌊
<

1+�
⌋ ⌋
≥ (1 + �); − 1

red edges. The optimal solution can thus be increased by at least �; − 1 by shifting weight

from the blue edges to the red edges. Overall, this yields OPT ≥ (1− >(1)) log1+�(:)(�; − 1)

and therefore ALG ≥ 
(1 − >(1)) log1+�(:)(�; − 1).

Let �★ ⊆ � be the set of edges which are picked at various points in step 4 and let H be the

fractional matching constructed byA. Then because these edges are always the ; most

covered edges we know that

H(�★) ≥ min
<≥1

;⌊
;<⌊
<

1+�
⌋ ⌋ ALG ≥ 1

1 + � − 1
;

ALG.

Lastly, we know that that all edges in �★ overlap in ; vertices, namely the ; vertices that are

contained in the final iteration of the loop. This implies that H(�★) ≤ ;. Combining these

inequalities, we thus get


 ≤
(
1 + � − 1

;

)
;

(1 − >(1)) log1+�(:)(�; − 1)

=
((1 + �); − 1) ln(1 + �)
(1 − >(1))(�; − 1) · 1

ln(:)

Finally, observe that for small �, large ; and large :, we get 
 < 1+&
ln(:) as claimed. �
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7.5 Edge Weights

We will now consider a variant of the fractional OHMP which allows for non-negative edge

weights (F4)4∈�. It is quite easy to show that no online algorithm can achieve a bounded

competitive ratio in the presence of edge weights, not even for the OBMP. Whenever

we match any edge we risk that there may be a later edge including the same vertex of

arbitrarily larger value. For this reason, Feldman et al. [49] introduced the free disposal

condition in the context of online matching.

The idea behind free disposal is that in many applications of online matching (such as

online advertising), it makes sense to allow us to drop edges from the matching with no

penalty. Of course we do not count such dropped edges towards our objective function

and we do not allow us to go back and re-match them later.

Wewill now give an algorithm for the fractional OHMPwith edge arrivals and edgeweights

which is essentially a generalization of Algorithm 7.1 using ideas inspired by the work of

Devanur et al. [34] on free disposal.

Algorithm 7.2: Hypergraph Weighted Water Filling
1 For each 4 ∈ �, let H4 B 0.
2 For each E ∈ + , let 5E(C) B

∑
4:E∈4 ,F4≥C H4 for all C ≥ 0.

3 for each edge 4 which arrives do
4 while

∑
E∈4

∫ F4

0 (: ln(:)) 5E(C)−1 dC ≤ F4 do
5 for E ∈ 4 with GE = 1 do
6 Let 4−E be a minimum weight edge with E ∈ 4−E and H4−

8
> 0.

7 H4−E ← H4−E − dB
8 H4 ← H4 + dB

Theorem 7.6. For any & > 0 and : large enough, Algorithm 7.2 is 1−&
ln : -competitive for online

fractional weighted hypergraph matching problem with free disposal.
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Proof. The proof will use a similar primal-dual approach as Theorem 7.4 with non-negative

dual variables AE for all E ∈ + . The dual in question is given by the following linear

program.

min
∑
E∈+

AE

s.t.
∑
E∈4

AE ≥ F4 ∀4 ∈ �,

AE ≥ 0 E ∈ +.

Once again, when Algorithm 7.2 is matching an edge 4 by some amount dB, we increase

the dual by at most an according amount. Note that the total increase in the matching is

F4 −
∑
E∈4 F4−E where F4−E B 0 if GE < 1.

We increase each AE by
∫ F4

F4−E
(: ln :) 5E(C)−1 dCdB. By definition of 5E , we know that 5E(C) = 1

for all C < F4−E and thus

∑
E∈4

∫ F4

F4−E

(: ln :) 5E(C)−1 dC

=

∑
E∈4

∫ F4

0
(: ln :) 5E(C)−1 dC −

∑
E∈4

∫ F4−E

0
(: ln :) 5E(C)−1 dC

≤ F4 −
∑
E∈4

F4−E

using the condition in line 4 of the algorithm. This implies that at the end of the algorithm,

we have
∑
E∈+ AE ≤ ALG. It remains to show that for any 4 ∈ �, we get

∑
E∈4

AE ≥ F4
1 − 1/ln :

ln : + ln(ln :) .
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Let 5E be the step function defined in Algorithm 7.2 at the end of the algorithm. Then the

total AE collected by each E ∈ + satisfies

AE =

∫ ∞

0

∫ 5E(C)

0
(: ln :)B−1 dB dC

=

∫ ∞

0

∑
E∈4(: ln :) 5E(C)−1 − 1/ln :

ln : + ln(ln :) dC

Now let %(C) B ∑
E∈4(: ln :) 5E(C)−1, then this means that

∑
E∈4

AE =

∫ ∞

0

%(C) − 1/ln :
ln : + ln(ln :) dC∫ F4

0

%(C) − 1/ln :
ln : + ln(ln :) dC

=

∫ F4

0 %(C) dC − F4/ln :
ln : + ln(ln :) .

Finally, by the condition in line 4 of the algorithm and the fact that 5E(C) only increases

during the algorithm for all C, we know that
∫ F4

0 %(C)dC ≥ F4 which establishes the claim

and thus the theorem via the same complimentary slackness argument as in the proof of

Theorem 7.4. �

7.6 Discussion

In this paper we have given a tight asymptotic bound for the fractional :-uniform hyper-

graph matching problem and an almost tight bound for the integral variant. This leaves

room for some interesting directions for future research.

A major open problem is to beat the 1
: lower bound in the integral setting. In fact, just

recently Gamlath et al. [57] showed that for : = 2, no algorithm beats 1
2 , even if the
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underlying graph is bipartite. However, their construction in fact shows this result for

the fractional setting and where we know how to beat 1
: for large :. It thus remains open

whether 1
: + & is achievable for any :.

In fact, for small :, one may also explicitly distinguish between edge arrival and vertex

arrival models as mentioned in Section 7.2 or even the fully-online arrival model of Huang

et al. [72]. To the best of our knowledge, the only result here is the recent one by Borst et al.

[19] who managed to get an optimal algorithm for the : = 3 case under vertex arrivals.

Finally, we remark that even in the fractional setting, exactly tight bounds are only known

for : = 2 and finding a tight non-asymptotic result remains open.
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