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Introduction

Central themes of my thesis:

• Design mechanisms to find matchings
among agents and goods (or other
agents)

• Achieve desirable properties (fairness,
efficiency, incentive compatibility, etc.)

• Polynomial time algorithms
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Matching Markets

Ride-sharing Delivery

Vacation rental Ad markets
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Markets without Money

Focus of my thesis: markets without money, e.g.

• Resident matching

• Kidney donor exchange

• School choice

• National park lotteries

Without money is often necessary but makes things harder!
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Overview

• Part I: Cardinal-utility matching markets
• Markets with endowments

• Envy-freeness and Pareto-optimality

• Efficient algorithms for Nash bargaining

• Part II: Online matching
• Online matching with high probability

• Online hypergraph matching
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Part I: Cardinal-Utility Matching
Markets



One-Sided Matching Market

Agents Goods
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Formal Model

Given

• set 𝐴 of 𝑛 agents,
• set 𝐺 of 𝑛 goods,
• preferences for each agent over the goods.

Goal:

• Find a perfect matching of agents to goods,
• achieving desirable game-theoretic properties,
• in polynomial time.
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Caveat: Must Allow Lotteries

Cannot achieve fairness without lotteries:

Agents Goods

Only fair allocation: run a lottery!
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Ordinal vs Cardinal

Agents Goods
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Ordinal vs Cardinal
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Ordinal vs Cardinal

Agents Goods
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Why Cardinal?

Ordinal preferences have some advantages:

• Easier to elicit

• Simple, efficient algorithms

• Strategyproofness

Problem: efficiency!
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Ordinal Inefficiency

Hard to be efficient without the cardinal information:

Agents Goods

100
99

100
1
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Ordinal Inefficiency II

Theorem (Immorlica et al.)
There are instances with 𝑛 agents and goods such that:

• all agents agree on the order of the goods,
• there is a lottery which improves the utility of every agent
by a factor of 𝑙𝑜𝑔𝑛 compared to the uniform lottery.

⇒ ordinal mechanisms are log𝑛 Pareto inefficient!
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Real Example: National Park Lotteries

• Goods = days in March
• Each agent can pick three days (modelled via {0, 1} utilities)

12



The Story

A story in four acts:

1. The Hylland Zeckhauser Mechanism

2. Challenges and Hardness of HZ

3. Envy-Freeness and Pareto-Optimality

4. Nash Bargaining as an Alternative
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1. The Hylland Zeckhauser
Mechanism
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Linear Fisher Market Model

Given

• agents 𝐴,
• divisible goods 𝐺,
• utilities (𝑢𝑖𝑗)𝑖∈𝐴,𝑗∈𝐺.

Definition (Fisher Market Equilibrium)
A Fisher market equilibrium consists of an allocation
(𝑥𝑖𝑗)𝑖∈𝐴,𝑗∈𝐺 and non-negative prices (𝑝𝑗)𝑗∈𝐺 such that

• every agent spends their budget on a utility-maximizing
bundle,

• the market clears.
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Hylland Zeckhauser Mechanism

Hylland and Zeckhauser (1979) give pricing-based mechanism
for cardinal-utility matching market:

1. Split each good into one unit of probability shares
2. Give each agent $1 of fake currency
3. Find a market equilibrium (HZ equilibrium)
4. Turn equilibrium allocation into lottery via
Birkhoff-von-Neumann theorem

⇒ Intuitively: HZ ≈ Fisher market + matching + rounding
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HZ Equilibria

Definition (HZ Equilibrium)
A Hylland-Zeckhauser (HZ) equilibrium consists of allocation 𝑥
and prices 𝑝 such that

1. 𝑥 is a fractional perfect matching.

2. No agent overspends, i.e. 𝑝 ⋅ 𝑥𝑖 ≤ 1.

3. Every agent gets optimum bundle, i.e.
𝑢𝑖 ⋅ 𝑥𝑖 = max{𝑢𝑖 ⋅ 𝑦 ∣ ∑𝑗∈𝐺 𝑦𝑗 = 1, 𝑝 ⋅ 𝑦 ≤ 1}.
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Properties of HZ Equilibria

HZ allocations satisfy very desirable properties:

• Pareto-optimal (PO): can’t improve one agent without
hurting another

• Envy-free (EF): no agent prefers another agents’ lottery
odds to their own

• Asymptotically incentive compatible (IC): no incentive for
agents to lie⋆

Theorem (Hylland, Zeckhauser 1979)
HZ equilibria always exist (proof via non-constructive
Kakutani’s fixed point theorem).

18



Properties of HZ Equilibria

HZ allocations satisfy very desirable properties:

• Pareto-optimal (PO): can’t improve one agent without
hurting another

• Envy-free (EF): no agent prefers another agents’ lottery
odds to their own

• Asymptotically incentive compatible (IC): no incentive for
agents to lie⋆

Theorem (Hylland, Zeckhauser 1979)
HZ equilibria always exist (proof via non-constructive
Kakutani’s fixed point theorem).

18



Properties of HZ Equilibria

HZ allocations satisfy very desirable properties:

• Pareto-optimal (PO): can’t improve one agent without
hurting another

• Envy-free (EF): no agent prefers another agents’ lottery
odds to their own

• Asymptotically incentive compatible (IC): no incentive for
agents to lie⋆

Theorem (Hylland, Zeckhauser 1979)
HZ equilibria always exist (proof via non-constructive
Kakutani’s fixed point theorem).

18



Properties of HZ Equilibria

HZ allocations satisfy very desirable properties:

• Pareto-optimal (PO): can’t improve one agent without
hurting another

• Envy-free (EF): no agent prefers another agents’ lottery
odds to their own

• Asymptotically incentive compatible (IC): no incentive for
agents to lie⋆

Theorem (Hylland, Zeckhauser 1979)
HZ equilibria always exist (proof via non-constructive
Kakutani’s fixed point theorem).

18



Properties of HZ Equilibria

HZ allocations satisfy very desirable properties:

• Pareto-optimal (PO): can’t improve one agent without
hurting another

• Envy-free (EF): no agent prefers another agents’ lottery
odds to their own

• Asymptotically incentive compatible (IC): no incentive for
agents to lie⋆

Theorem (Hylland, Zeckhauser 1979)
HZ equilibria always exist (proof via non-constructive
Kakutani’s fixed point theorem).

18



Computation

How do you find an HZ equilibrium?

Theorem (Devanur, Papadimitrious, Saberi, Vazirani 2002)
Can find Fisher market equilibria in polynomial time using
combinatorial, flow-based algorithm. Always finds rational
equilibrium.

Conjecture
HZ algorithm = DPSV + matching? Should be doable!
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2. Challenges and Hardness of HZ



Actual Algorithms

Theorem (Alaei, Khalilabadi, Tardos 2017)
There is an algorithm based on algebraic cell decomposition
which checks > 𝑛5𝑛2 cells.

Theorem (Vazirani, Yannakakis 2020)
There is a polynomial time algorithm for {0, 1} utilities.

⇒ galactic running time or restrictive utilities…
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Irrationality

Theorem (Vazirani, Yannakakis 2020)
There are instances of HZ in which there is a unique
equilibrium with irrational allocations and prices!

⇒ rules out exact, combinatorial algorithm

Theorem (Vazirani, Yannakakis 2020)
HZ is in FIXP, approximate HZ is in PPAD.
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Hardness

Theorem (Chen, Chen, Peng, Yannakakis 2022)
The problem of computing an 𝜖-approximate HZ-equilibrium is
PPAD-hard for 𝜖 = 1/𝑛𝑐 for any constant 𝑐 > 0.

⇒ computing HZ-equilibria is as hard as
• computing general Nash-equilibria,

• computational versions of Kakutani’s
/ Brouwer’s fixed-point theorems.
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Generality

Challenge
HZ is highly specific (one-sided, linear) but general
equilibrium theory has much broader applications.

⇒ some results in chapter “Markets with Endowments”, won’t
cover these today
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4. Pareto-Optimality and
Envy-Freeness



Central Question

Question
Recall that HZ is

• Pareto-optimal (PO): can’t improve one agent without
hurting another.

• Envy-free (EF): no agent prefers another agents’ lottery odds
to their own.

Can we find an envy-free (EF) and Pareto-optimal (PO)
allocation in polynomial time?
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Main Result

EF+PO and HZ are quite different:

1. HZ may have only irrational solutions, but there are always
rational EF+PO solutions

2. HZ little structure (fixed point), but EF+PO is polyhedral

Theorem (Tröbst, Vazirani 2024)
Finding an EF+PO allocation is PPAD-hard.
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Proof Strategy

Strategy: polynomial reduction of approximate HZ to EF+PO
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Proof Strategy II

Strategy:

1. Modify the instance in a clever way

2. Use the second welfare theorem: get prices and budgets
from Pareto-optimality.

3. Main idea: use envy-freeness and linearity to show that
budgets must be (approximately) equal.
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Let There Be Prices

Lemma (Optimal Bundles)
We can find budgets 𝑏 and prices 𝑝, so that for every agent 𝑖, 𝑥𝑖
is an optimum solution to

max 𝑢𝑖 ⋅ 𝑥𝑖

s.t. ∑
𝑗∈𝐺

𝑥𝑖𝑗 ≤ 1,

𝑝 ⋅ 𝑥𝑖 ≤ 𝑏𝑖,
𝑥𝑖 ≥ 0.

≈ Second Welfare Theorem, get prices by setting up correct
primal and dual LPs
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Idea 1: Expand the Instance (𝑘 = 4)

𝐴 𝐺
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Idea 2: Equal Budgets From Envy-Freeness

Lemma
Let 𝑖, 𝑖′ ∈ 𝐴 be two agents that agree on all utilities. Then
𝑏𝑖 = 𝑏𝑖′ .

Proof. Suppose 𝑏𝑖 > 𝑏𝑖′ . Then 𝑖 gets a better bundle than 𝑖′ due
to non-satiation. 𝑖′ agrees that 𝑖’s bundle is better: envy! �

Lemma
Let 𝑖, 𝑖′ ∈ 𝐴 be such that utilities agree up to one good where
they differ by at most 𝜖. Then |𝑏𝑖 − 𝑏𝑖′ | ≤ 5𝑛2𝜖.
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Idea 3: Interpolation
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But Does This Help?

Question
How many interpolating agents are there between any two
normal agents?

Answer: Up to 𝑛
𝜖 .

So |𝑏𝑖 − 𝑏𝑖′ | ≤ 5𝑛3.

Completely useless! /
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Generalizing to Optimal Bundle Equality

Lemma
Let 𝑖, 𝑖′ ∈ 𝐴 such that 𝑖 and 𝑖′ agree on which bundles are
optimal bundles. Then 𝑏𝑖 = 𝑏𝑖′ .

Caveat:

• In HZ, optimum bundles depend on utilities, prices, and the
budget of the agent.

• For the lemma, agents must agree on the optimum bundles
at all possible budgets.
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Key Idea: Optimal Bundles Rarely Change

𝑢/𝑝

𝑔1 𝑔2 𝑔3 𝑔4

Without matching constraint: bundles only change when critical
bang per buck treshhold is reached.
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Optimal Bundles in HZ

𝑝

𝑢

In HZ: more complex characterization of optimal bundles.
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Bringing It Together

Lemma
Let 𝑖, 𝑖′ ∈ 𝐴, then |𝑏𝑖 − 𝑏𝑖′ | ≤ 5𝜖𝑛4.

Proof. Between two agents, at most 2𝑛2 changes can happen.
Each contributes at most 5𝜖𝑛2. �
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Bringing It Together II

Theorem

If 𝜖 ≤ 1
5𝑛5 and 𝑘 = 𝑛3

𝜖 , then (𝑥, 𝑝) is a 3
𝑛-approximate HZ

equilibrium in the original instance.

Theorem
The problem of finding an EF+PO allocation in one-sided
cardinal-utility matching market is PPAD-hard.
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4. Nash Bargaining



Nash Bargaining Setup

Nash 1950, considered the problem of
bargaining:

• Consider two agents who want to share
their vacation homes:

• Agent 1 has a house in the mountains
with utility 𝑑1.

• Agent 2 has a house on the beach with
utility 𝑑2.

• How should they share?
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Nash Bargaining Point

𝑢1

𝑢2

0 𝑑1

𝑑2
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Existence and Characterization

Theorem (Nash 1950)
Let 𝑈, set of utility vectors, be convex. Then

• there is a unique point satisfying Pareto-optimality,
symmetry, invariance under affine transformations, and
independence of irrelevant alternatives.

• it is the maximizer of ∏𝑖∈𝐴(𝑢𝑖 − 𝑑𝑖) for 𝑢 ∈ 𝑈.

⇒ maximizes log-concave objective over convex set!

⇒ convex program!
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Nash-Bargaining and Pricing

Eisenberg, Gale 1959

• Define EG convex program

• Later: this models Nash bargaining and linear Fisher market

Vazirani 2012: Nash-bargaining-based mechanism for linear
Arrow Debreu market

• Nash bargaining is rational convex program

• Nash bargaining and pricing not the same

• Combinatorial, strongly polynomial time algorithm
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Nash-Bargaining for Matching Markets

Results (Hosseini, Vazirani 2022)

• Introduce Nash bargaining as tractable alternative to HZ.

• Practical algorithms based on convex programming
(Frank-Wolfe, cutting planes).

• Computational experiments up to 𝑛 = 20000 (1 hour on a
laptop).

Results (Hosseini, Vazirani 2022)
Extends to many other models inspired by general equilibrium
theory.
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Efficient Computation

Theorem (Panageas, Tröbst, Vazirani 2022)
We can compute an 𝜖-approximate Nash bargaining solution
after 𝑂 (𝑛 log𝑛

𝜖2 ) iterations of a multiplicative-weights
algorithm. Each iteration can be carried out in 𝑂(𝑛2) time.

Theorem (Panageas, Tröbst, Vazirani 2022)
We can compute an 𝜖-approximate Nash bargaining solution
after 𝑂 (𝑛3𝜅2

𝜖 ) iterations of a conditional gradient algorithm.
Each iteration consists of computing a max-weight bipartite
matching (𝑂(𝑛3) time).
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Unfairness of Nash Bargaining

Unfortunately, not envy-free and not strategy-proof:

1
0

2
1

⇒ off by factor 2!
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Fairness of Nash Bargaining

Theorem (Tröbst, Vazirani 2024)
The Nash-bargaining-based mechanism is 2-approximately
envy-free.

Theorem (Tröbst, Vazirani 2024)
The Nash-bargaining-based mechanism is 2-approximately
incentive-compatible.
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Conclusion

Conclusion
Nash bargaining is a practical HZ alternative for one-sided
cardinal-utility matching markets.
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Part II: Online Matching



Online Bipartite Matching

Offline Online
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Online Bipartite Matching II

• 𝐺 = (𝑆, 𝐵, 𝐸) is a bipartite graph consisting of offline
vertices 𝑆 and online vertices 𝐵.

• Online vertices arrive one by one in adverserial order.

• The algorithm must irrevocably and immediately match
revealed online vertices.

• The goal is to maximize the competitive ratio, i.e.

|𝑀online|
OPToffline

.
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Applications

Typical applications include online advertising or ride hailing.

(highly simplified model)
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Algorithms for Online Bipartite Matching

Theorem (Karp, Vazirani, Vazirani 1990)
The Greedy algorithm (match whenever possible) is
1/2-competitive. 1/2-competitive is best possible for
deterministic algorithms.

Theorem (Karp, Vazirani, Vazirani 1990)
The randomized Ranking algorithm is (1 − 1/𝑒)-competitive in
expectation. (1 − 1/𝑒)-competitive in expectation is best
possible for randomized algorithms.
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Online Matching with High
Probability



The Power of Randomized Algorithms

Many problems have more natural, efficient, or better
algorithms using randomization:

• Quicksort
• Miller-Rabin primality test
• Hashing
• Polynomial identity testing
• Perfect matching on parallel machines
• Many online algorithms!
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Expectation vs. Concentration

Usually we analyze in expectation or showing non-zero
probability of success.

Example: Let 𝐶 be the total number of comparisons of Quicksort
with random pivots.

• Most people have seen: 𝔼[𝐶] = 𝑂(𝑛 log𝑛).
• Fewer know: ℙ[𝐶 > 𝑐0 ⋅ 𝑛 log𝑛] < 1

𝑛 for some 𝑐0.
• But did you know:

ℙ[|𝐶/𝔼[𝐶] − 1| > 𝜖] < 𝑛−2𝜖(ln ln𝑛−ln(1/𝜖)+𝑂(ln ln ln𝑛))
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Usefulness of Concentration Results

Concentration results are useful:

• Insight about typical behavior in practice.
• Confidence that bad behavior is extremely unlikely.

However, concentration results are relatively rare because we
can simply run the algorithm 𝑂(log𝑛) many times (boosting).

Problem
Online algorithms cannot be boosted!
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Concentration of Ranking

Question
Does the competitive ratio of Ranking hold with high
probability or just in expectation?

Theorem (Mihail, Tröbst 2021)
Let 𝑀 be the matching generated by Ranking, then

ℙ [|𝑀| < (1 −
1
𝑒 − 𝛼)OPT] < 𝑒−2𝛼2OPT.
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Extensions

Theorem (Mihail, Tröbst 2021)
For the Fully Online Matching Problem, we have

𝔼[|𝑀| < (𝜌 − 𝛼)OPT] < 𝑒−𝛼2OPT

where 𝑀 is produced by Fully Online Ranking and 𝜌 ≈ 0.521.

Theorem (Mihail, Tröbst 2021)
For the Vertex-Weighted Online Bipartite Matching Problem
and each 𝛼 > 0, there exists an algorithm such that

ℙ [𝑤(𝑀) < (1 −
1
𝑒 − 𝛼)OPT] < 𝑒

− 1
50 𝛼4 OPT2

||𝑤||22 .
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Thank You!
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