FINDING THE RIGHT CURVE: OPTIMAL DESIGN OF CONSTANT FUNCTION MARKET MAKERS¹

Thorben Tröbst Theory Seminar February 16, 2024

¹ M. Goyal, G. Ramseyer, A. Goel, D. Mazieres EC 2023

Pont au Change, Paris

• Financial exchanges (stocks, derivatives, gold, currencies, etc.)

- Financial exchanges (stocks, derivatives, gold, currencies, etc.)
- Electricity exchanges

- Financial exchanges (stocks, derivatives, gold, currencies, etc.)
- Electricity exchanges
- Sports / election betting

- Financial exchanges (stocks, derivatives, gold, currencies, etc.)
- Electricity exchanges
- Sports / election betting
- Virtual goods (video game items, NFTs, etc.)

• Participants submit BUY or SELL orders at different price levels

- Participants submit BUY or SELL orders at different price levels
- Standing orders form the order book

- Participants submit BUY or SELL orders at different price levels
- Standing orders form the order book
- \cdot When lowest ask and highest bid cross, a trade is made

ORDER BOOK EXAMPLE

An order book:

202560 for sale starting at \$1.19			3557901 requests to buy at \$1.17 or			
Buy				Sell		
	Quantity				Quantity	

ORDER BOOK EXAMPLE

An order book:

(Steam community market)

• Buyers / sellers may need to wait

- Buyers / sellers may need to wait
- $\cdot\,$ Prices can shift quickly if there are too few standing orders

- Buyers / sellers may need to wait
- \cdot Prices can shift quickly if there are too few standing orders
- Highly centralized

ILLIQUID ORDER BOOK

- With few participants, there are large gaps in the order book
- Such a market is illiquid an inefficient

Price	Quantity
\$427.88	
\$320.51 or less	

(lowest ask is \$700)

MARKET MAKERS

• A market maker is an entity which both buys and sells the same good on an exchange

- A market maker is an entity which both buys and sells the same good on an exchange
- Market makers can be part of the exchange, partnered with the exchange, or independent

- A market maker is an entity which both buys and sells the same good on an exchange
- Market makers can be part of the exchange, partnered with the exchange, or independent
- Win-win-win situation:

- A market maker is an entity which both buys and sells the same good on an exchange
- Market makers can be part of the exchange, partnered with the exchange, or independent
- Win-win-win situation:
 - Exchange gets more trades

- A market maker is an entity which both buys and sells the same good on an exchange
- Market makers can be part of the exchange, partnered with the exchange, or independent
- Win-win-win situation:
 - Exchange gets more trades
 - Traders get convenience: faster execution, stable prices

- A market maker is an entity which both buys and sells the same good on an exchange
- Market makers can be part of the exchange, partnered with the exchange, or independent
- Win-win-win situation:
 - Exchange gets more trades
 - Traders get convenience: faster execution, stable prices
 - Market maker profits from bid-ask spread and/or commission

A Constant Function Market Maker with trade function $f : \mathbb{R}^2_{\geq 0} \to \mathbb{R}$ holds two assets *X* and *Y*. It accepts a trade changing its holdings from (x, y) to (x', y') iff f(x, y) = f(x', y').

A Constant Function Market Maker with trade function $f : \mathbb{R}^2_{\geq 0} \to \mathbb{R}$ holds two assets X and Y. It accepts a trade changing its holdings from (x, y) to (x', y') iff f(x, y) = f(x', y').

Example:

A Constant Function Market Maker with trade function $f : \mathbb{R}^2_{\geq 0} \to \mathbb{R}$ holds two assets X and Y. It accepts a trade changing its holdings from (x, y) to (x', y') iff f(x, y) = f(x', y').

Example:

• I hold $x = \notin 100$ and y = \$110 with f(x, y) = xy

A Constant Function Market Maker with trade function $f : \mathbb{R}^2_{\geq 0} \to \mathbb{R}$ holds two assets X and Y. It accepts a trade changing its holdings from (x, y) to (x', y') iff f(x, y) = f(x', y').

Example:

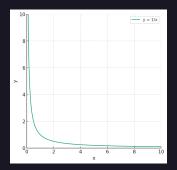
- I hold $x = \notin 100$ and y = \$110 with f(x, y) = xy
- · | will accept \$1.1 for €1 because $99 \cdot 111.1 \approx 100 \cdot 110$

A Constant Function Market Maker with trade function $f : \mathbb{R}^2_{\geq 0} \to \mathbb{R}$ holds two assets X and Y. It accepts a trade changing its holdings from (x, y) to (x', y') iff f(x, y) = f(x', y').

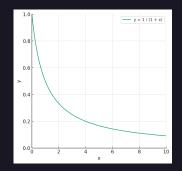
Example:

- I hold $x = \notin 100$ and y = \$110 with f(x, y) = xy
- · I will accept \$1.1 for €1 because $99 \cdot 111.1 \approx 100 \cdot 110$
- · I will accept \$12 for €10 because $90 \cdot 122 \approx 100 \cdot 110$

LEVEL SETS AND EXCHANGE RATES



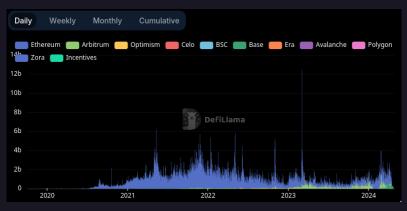
Acceptable holdings



Exchange rate if holding (1,1)

CFMM Success

CFMMs are popular in prediction markets and decentralized finance. Uniswap alone trades over **\$1** billion per day.



Source: DefiLlama

How is it possible to profitably trade with zero knowledge?

How is it possible to profitably trade with zero knowledge? ⇒ arbitrage

How is it possible to profitably trade with zero knowledge? ⇒ arbitrage

Example:

How is it possible to profitably trade with zero knowledge?

⇒ arbitrage

Example:

• x = €100 and y = \$110

How is it possible to profitably trade with zero knowledge?

⇒ arbitrage

Example:

- x = €100 and y = \$110
- Exchange rate changes to $\notin 1 = \$1.2$.

How is it possible to profitably trade with zero knowledge?

⇒ arbitrage

Example:

- x = €100 and y = \$110
- Exchange rate changes to $\pounds 1 = \$1.2$.
- Rational agents will trade with us until we have y = 1.2xbecause they make risk-free profit (arbitrage)

• Assume initial exchange rate is $\notin 1 = \$1.1$.

- Assume initial exchange rate is $\notin 1 = \$1.1$.
- We start with $x = \notin 100$ and y = \$110 (net worth 220).

- Assume initial exchange rate is $\pounds 1 = \$1.1$.
- We start with $x = \notin 100$ and y = \$110 (net worth 220).

- Assume initial exchange rate is $\notin 1 = \$1.1$.
- We start with $x = \notin 100$ and y = \$110 (net worth 220).
- Arbitrageurs will make sure that y = 1.2x. Since $x \cdot y$ stays the same, we can solve $x \approx \notin 95.74$ and $y \approx \$114.89$.

- Assume initial exchange rate is $\notin 1 = \$1.1$.
- We start with $x = \notin 100$ and y = \$110 (net worth 220).
- The exchange rate changes so that $\notin 1 =$ \$1.2.
- Arbitrageurs will make sure that y = 1.2x. Since $x \cdot y$ stays the same, we can solve $x \approx \notin 95.74$ and $y \approx \$114.89$.
- Networth is now \approx \$229.78.

- Assume initial exchange rate is $\notin 1 = \$1.1$.
- We start with $x = \notin 100$ and y = \$110 (net worth 220).
- Arbitrageurs will make sure that y = 1.2x. Since $x \cdot y$ stays the same, we can solve $x \approx \notin 95.74$ and $y \approx \$114.89$.
- Networth is now \approx \$229.78.
- But our original holdings would have been worth \$230!

If the real exchange rate is \hat{p} and a trade is made at an exchange rate $p' = (1 + \epsilon)\hat{p}$, then ϵ is the slippage.

If the real exchange rate is \hat{p} and a trade is made at an exchange rate $p' = (1 + \epsilon)\hat{p}$, then ϵ is the slippage.

In CFMMs like uniswap, traders submit maximum slippage with orders:

If the real exchange rate is \hat{p} and a trade is made at an exchange rate $p' = (1 + \epsilon)\hat{p}$, then ϵ is the slippage.

In CFMMs like uniswap, traders submit maximum slippage with orders:

If the real exchange rate is \hat{p} and a trade is made at an exchange rate $p' = (1 + \epsilon)\hat{p}$, then ϵ is the slippage.

In CFMMs like uniswap, traders submit maximum slippage with orders:

• Slippage covers fees

If the real exchange rate is \hat{p} and a trade is made at an exchange rate $p' = (1 + \epsilon)\hat{p}$, then ϵ is the slippage.

In CFMMs like uniswap, traders submit maximum slippage with orders:

- Slippage covers fees
- Slippage handles divergence of CFMM spot exchange rate from real exchange rate

If the real exchange rate is \hat{p} and a trade is made at an exchange rate $p' = (1 + \epsilon)\hat{p}$, then ϵ is the slippage.

In CFMMs like uniswap, traders submit maximum slippage with orders:

- Slippage covers fees
- Slippage handles divergence of CFMM spot exchange rate from real exchange rate

Order succeeds if the entire trade can be done within maximum slippage!

Question

What is the best choice of *f* to maximize chance of trading?

Question

What is the best choice of *f* to maximize expected fee revenue minus divergence loss?

The spot exchange rate is $p = \frac{\partial f}{\partial x} / \frac{\partial f}{\partial y}$. Note: for f(x, y) = xy this gives $\frac{y}{x}$.

The spot exchange rate is $p = \frac{\partial f}{\partial x} / \frac{\partial f}{\partial y}$. Note: for f(x, y) = xy this gives $\frac{y}{x}$.

Lemma

Under reasonable assumptions on f, p determines $x = \mathcal{X}(p)$ and $y = \mathcal{Y}(p)$.

The liquidity at exchange rate p is

$$L(p) := \frac{\mathrm{d}\mathcal{Y}(p)}{\mathrm{d}\ln(p)} = p \frac{\mathrm{d}\mathcal{Y}(p)}{\mathrm{d}p}$$

or alternatively

$$L(p) \coloneqq p \frac{\mathrm{d}\mathcal{X}(p)}{\mathrm{d}\ln(1/p)} = -p^2 \frac{\mathrm{d}\mathcal{X}(p)}{\mathrm{d}p}$$

Lemma

We can write:

$$\mathcal{Y}(p) = \int_0^p \frac{L(t)}{t} dt$$
$$\mathcal{X}(p) = \int_p^\infty \frac{L(t)}{t^2} dt$$

Question

What is the best choice of *f* to maximize chance of trading?

Question

What is the best choice of *f* to maximize chance of trading?

We need to answer:

Question

What is the probability that a trade fails for some slippage ϵ ?

Our model is:

- + Fixed reference exchange rate \hat{p}
- Agents accept slippage of small ϵ relative to \hat{p}
- At each time step, BUY or SELL with equal probability
- All trades have equal size k in Y (not needed)

The probability that a trade fails is $\approx \frac{k}{2\ln(1+\epsilon)L(\hat{p})}$.

The probability that a trade fails is $\approx \frac{k}{2\ln(1+\epsilon)L(\hat{p})}$.

Proof. A trade is accepted if *p* remains within $\left(\frac{\hat{p}}{1+\epsilon}, (1+\epsilon)\hat{p}\right)$.

The probability that a trade fails is $\approx \frac{k}{2\ln(1+\epsilon)L(\hat{p})}$.

Proof. A trade is accepted if *p* remains within $\left(\frac{\hat{p}}{1+\epsilon}, (1+\epsilon)\hat{p}\right)$. Therefore $y \in \left(\mathcal{Y}\left(\frac{\hat{p}}{1+\epsilon}\right), \mathcal{Y}\left((1+\epsilon)\hat{p}\right)\right)$.

The probability that a trade fails is
$$pprox rac{k}{2\ln(1+\epsilon)L(\hat{p})}$$

Proof. A trade is accepted if p remains within $\left(\frac{\hat{p}}{1+\epsilon}, (1+\epsilon)\hat{p}\right)$. Therefore $y \in \left(\mathcal{Y}\left(\frac{\hat{p}}{1+\epsilon}\right), \mathcal{Y}\left((1+\epsilon)\hat{p}\right)\right)$.

$$\begin{aligned} \mathcal{Y}\left(\frac{\hat{p}}{1+\epsilon}\right) - \mathcal{Y}\left((1+\epsilon)\hat{p}\right) &= \int_{\hat{p}/(1+\epsilon)}^{\hat{p}(1+\epsilon)} \frac{L(t)}{t} \, \mathrm{d}t \\ &\approx 2\ln(1+\epsilon)L(\hat{p}) \end{aligned}$$

Since trades have size k, there are $\approx \frac{2\ln(1+\epsilon)L(\hat{p})}{k}$ states. Trades are a random walk on a path.

Since trades have size *k*, there are $\approx \frac{2\ln(1+\epsilon)L(\hat{p})}{k}$ states. Trades are a random walk on a path.

Probability of being on the boundary: 2 $\frac{k}{2\ln(1+\epsilon)L(\hat{p})}$.

Since trades have size *k*, there are $\approx \frac{2\ln(1+\epsilon)L(\hat{p})}{k}$ states. Trades are a random walk on a path.

Probability of being on the boundary: $2 \frac{k}{2 \ln(1+\epsilon)L(\hat{p})}$.

Probability of failure on the boundary: $\frac{1}{2}$.

Let $\psi(p_X, p_Y)$ be a distribution over prices (in \$). If agents trade \$1 worth of goods, then expected inefficiency is (proportional to):

$$\int \int_{p_X, p_Y} \frac{\psi(p_X, p_Y)}{p_Y L(p_X/p_Y)} \,\mathrm{d}p_X \,\mathrm{d}p_Y$$

The optimal CFMM is given by

$$\min \quad \int \int_{p_X, p_Y} \frac{\psi(p_X, p_Y)}{p_Y L(p_X/p_Y)} \, dp_X \, dp_Y$$
s.t.
$$\int_0^{p_0} \frac{L(p)}{p} \, dp \le Y_0,$$

$$\int_{p^0}^{\infty} \frac{L(p)}{p^2} \, dp \le X_0,$$

$$X_0 P_X + Y_0 P_Y \le B,$$

$$L(p) \ge 0.$$

f(x,y) = xy corresponds to uniform beliefs on a square.

f(x,y) = xy corresponds to uniform beliefs on a square.

Theorem

 $f(x,y) = x^{\alpha}y$ corresponds to $\psi(p_X,p_Y) = \left(\frac{p_X}{p_Y}\right)^{\frac{\alpha-1}{\alpha+1}}$ on a square.

f(x,y) = xy corresponds to uniform beliefs on a square.

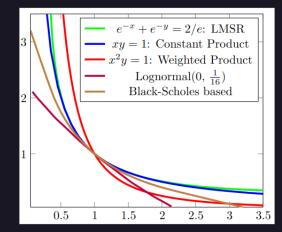
Theorem

 $f(x,y) = x^{\alpha}y$ corresponds to $\psi(p_X,p_Y) = \left(\frac{p_X}{p_Y}\right)^{\frac{\alpha-1}{\alpha+1}}$ on a square.

Theorem

 $f(x,y) = 2 - e^{-x} - e^{-y}$ corresponds to $\psi(p_X,p_Y) = \frac{p_X p_Y}{(p_X + p_Y)^2}$ on a square.

NUMERICAL SOLUTIONS



- \cdot Technique can be applied to maximize CFMM profit as well
- Constant product rule not optimal under reasonable beliefs on prices

THANK YOUR FOR LISTENING!