40

INTELLIGENT

ASSISTANCE

Intelligent Assistance
for Software
Development and
Maintenance

Using relatively simple
technology, Marvel
understands the
user’s actions and
their consequences. In
many cases it will do
tasks automatically,
lightening the
workload.

Gail E. Kaiser, Columbia University

Peter H. Feiler, Software Engineering Institute

Steven S. Popovich, Columbia University

of his dream of an intelligent assistant
for programmers.' The fundamental
requirementforanintelligentassistant, he
wrote, is that it understand what it does.
That is, it should be based on an explicit
model of the programming world.
Winograd described an imaginary pro-
gramming environment that would pro-

I na 1973 article, Terry Winograd wrote

vide early error checking, answer ques-
tions about the program and the
interactions among program parts,
handle trivial programming problems,
and automate simple debugging tasks.
We have developed an environment that
handles the first two duties, early error
checking and answering questions about
programs. Our environment has a certain
understanding of the systems being devel-
oped and how to use tools to produce soft-
ware. It aids individual programmers and
helps coordinate programmer teams.
Our assistant’s knowledge is described
in a model and achieves intelligence byin-

0740-7459/88,/0500/0040/$01.00 ©1988 1EEE

terpreting the model. We have not yet ap-
plied the model of this environment to
other project aspects, such as project man-
agement, which are handled by some inte-
grated project support environments.

Our model draws from research into
software engineering and artificial intel-
ligence. From software-engineering re-
search, we gained experience in building
and using particular tools and environ-
ments in specific development processes.
From artificiak-intelligence research, we
discovered suitable structures to repre-
sent knowledge about software entities
and the role of tools in the development
process.

The resultis Professor Marvel — Marvel
for short —an environment that supports
two aspects of an intelligent assistant: It
provides insight into the system and it ac-
tively participates in development
through opportunistic processing. Like its
fictional counterpart, the Kansas magi-
cianwho turned out to be the wizard in The

|EEE Software

Wezard of On. Marvel can produce impres-
sive results with relatively simple tech-
nology.

Marvel's roots and the prototype imple-
mentation is described in the box on p. 43.
A more elaborate implementation that
will extend Marvel’s concepts to nonpro-
gramming activities is under way.

Key components

T()yfulﬁll \\'mrad’s fundamental re-
quirement, an intelligent assistant must
understands what it does. However, there
is a spectrum of intelligent systems. Most
software tools are moronic assistants that
know what 1o do but do not understand
the purpose of the objects they manipulate
or how their tasks fitinto the development
process. In other words, they know the how
but do not understand the why.

Adevelopmentenvironmentcannotun-
derstand why it performs an activiee unless
it knows

¢ the properties of the objects itmanipu-
lates,

e the system’s toolsand activities, and the
objects they manipulate,

¢ the preconditions under which a tool
oractivity can be activated, and

e the results or postconditions of cach ac-
tivity (the state of development after an ac-
tivity terminates).

Object base. Marvel has two kev compo-
nents. The first is a dawabase that stores
data represented as objects, as in object-
oriented languages. This object base
maintains all the entities that are part of
the evolving system, all the information
about the history and status of the project,
and all the tools used in developmentand
maintenance.

The object base defines the object
classes and the relationships among ob-
jects (such as one ohjectisa componentof
another and when applied to another ob-
jectwill produce a third). The object base

May 1988

(

|

i
|
|

is active: Accessing objects may trigger ac-
tion.

Process model. The second key compo-
nent is a model of the development
process that imposes a structure on pro-
gramming activities. The model is an ex-
tensible collection of rules that specify the
conditions that must exist for particular
tools to be applied to particular objects.
Some rules are relevant only when a user
invokes 4 tool, others apply when the en-
vironment initiates tool processing, and
still others apply equally to both cases.

Interpretation through forward and
backward chaining lets the environment
perform activities automatically when it
knows the results of these activities will

Most software tools are

moronic assistants that

know the how but do not
understand the why.

soon be required by the user.

Rather than add intelligence to in-
dividual tools, the model encapsulates all
theintelligence in the environment, so itis
notnecessary to modify the tools. The box
on p. 47 illustrates the potential for intel-
ligent assistance by describing how an ob-
ject base and a development model en-
hance two well-known programming
tools.

Insight

Marvel has insight, which means it is
aware of the user’s activities and can anti-
cipate the consequences of these activities
based on an understanding of the develop-
ment process and the produced software.

Insight lets individual programmers be-
come informed more quickly about the

structure and relationships in the software
product, to be aware of the consequences
and side effects of their tasks, and to be
guided in the job of making even major
changes 1o a system and getting it back
into a consistent state.

Insight also helps coordinate the activi-
ties of multiple programmers so they can
accomplish their tasks without interfering
with each other, knowing that the results
of simultancous work will be combined in
acontrolled wav.

The two key elements that support in-
sightare arich, structured information re-
pository and a set of mechanisms that
make appropriate information available
atappropriate times. The informadon re-
pository is the object base. The access
mechanisms fall into two categories, those
that support direct access or browsing,
and those that support retrieval.

Object base. Marvel's object base is con-
ceptually related to object-oriented pro-
gramming languages. in that cach object
isan instance of aclass thatdefinesits type.
The object base contains a set of objects
that represent both the system and its de-
velopment history. Object types include
module, procedure, type, design descrip-
tion, user manual, and development step.
Typing lets Marvel provide an object-
oriented user interface: The environment
makes available only those commands
that are relevant to the object under con-
sideration, within the contextof the user’s
recentactivitices.

However, unlike most object-oriented
languages, Marvel's object base is persis-

tent: [tretainsits state across invocatonsof

the environment. Thislets Marvel provide
a filedess environment. Marvel exposes its
users only to the logical entities compris-
ing the target system, not to the physical
storage organization of directories and
files. Other knowledge-based environ-
ments offer similar capabilities in their
database support.”

Each class defines certain properties of
an object and inherits other properties
from its superclass or superclasses. Some
properties, called attributes, define the
contentsand status of objects. Other prop-
erties, called methods, define the develop-
ment activities applicable to the objects of
aclass. Attributes may be simple values (in-
tegers and strings) or they may represent
relationships with other objects.

Simple attribute values include object
names, object status (such as if it has been
analyzed for static semantic errors), and
string entities (such as pieces of source text
or binary object code). Attributes thatrep-
resent relationships include the logical,
syntactic structure (for example, amodule
iscomposed of procedures, types, and vari-
ables), semantic dependencies (such asin-
tended use — indicated by the import
clauses of modules— or actual use as dem-
onstrated by the invocation of a proce-
dure). Relationships are bidirectional by
default, which permits more flexible
querying. A user can ask for all uses of pro-
cedure pas well as all uses of other proce-
dures by procedure p.

All information about objects is main-
tained in the object base, and inferred or
derived by Marvel where possible. Users
are spared the tedium of entering redun-
dant information.

Information access. Information in the
object base isaccessed for two reasons: (1)
viewing and querying and (2) modifica-
tion, Both users and tools may access infor-
mation.

Users generally modify the structural
hierarchy, the names of objects, and
source-textattributes through aview of the
objectbase. Aviewis the subset of informa-
tion in the object base that is currently rel-
evant. Other attributes (analysis status or
use relationships) are maintained by tools
toreflect the currentstate of the target sys-
tem. Users can also browse and query this
auxiliary information.

Browsing. Browsing takes place accord-
ing to views. The default view is the logical
structure (the library-module-component
hierarchy) of the target system. For ex-
ample, the user sees program libraries
containing modules, which in wrn con-
tain other modules or indivisible compo-

42

nents (procedures, types, variables, and so
on).

The user navigates through this struc-
tural hierarchy just as he navigates
through directory structures in file sys-
tems. However, limited bandwidth prohib-
its exposing the user to the complete struc-
ture at once (unless we use very small
fonts!), which is generally all right in any
case because of information overload.

Views can be displayed and browsed
many ways. In Marvel, objects and their
parts have selectable textual repre-
sentations. By selecting such an entity, the
user specifies the current focus and by
doing so determines processing and com-
mand selection. Hence, Marvel has an ob-
ject-oriented interface.

Marvel tries to balance the amount ofin-
formation presented to the user. One view
displays a single level of the structural hier-
archy. If the user selects an object to edit, it
can be opened for viewing if the compo-
nent represents areference to another ob-
ject. The newly opened object can be
viewed in the current window or in
another window.

Another view shows multiple levels of
the hierarchy at once. This lets Marvel re-
spond to user requests for more contextin-
formation, reducing the need for re-
peated user queries or browsing
operations. For example, a view of a mod-
ule’s content contains the names of the
component objects and their type
(whether they are procedures or docu-
ments). Similarly, Marvel provides visual
feedback of values for certain essential at-
tributes (if amodule containsan error, for
example), thus eliminating additional
queries while still avoiding information
overload.

Marvel also lets the user navigate by fol-
lowing cross-references, such as opening
the specification of a module referenced
in the importlist of another module. Such
cross-link browsing capabilities make it
easier for the user to get an impression of
the context of a piece of software.

In summary, the browsing capability lets
the user manually navigate through the
object base, changing the focus. This lets
Marvel track user actions, anticipate con-
sequences, and help the user cope with the
consequences. However, manual naviga-
tion isinadequate for general search tasks.

For example, if the user maintains a system
with 150 modules, trying to find the three
modules with outstanding errors can be a
tedious task if done by browsing. A general
querying capability combined with a
browsing capability solves this problem.

Queries. A general answering capability
supports searches of the object base ac-
cording to conditions phrased in a stylized
command language: “Retrieve all software
objects with proper name x,” for example,
or “Retrieve all modules that contain er-
rors.”

The search space can be constrained sev-
eral ways. One way is through particular
search conditions, such as by object type or
attribute value. Another way is to limit the
the search to a particular substructure,
such as searching a procedure in a partic-
ular library. Marvel also prunes the search
space by using dependency information,
such as import and actual procedure use.

Queries may be explicit or implicit. Ex-
plicit queriesare initiated by the user. Mar-
vel has predefined, short forms of com-
mon queries, such as:

* What components use a particular
function?

® Are certain components not used at
all? (Useful during maintenance and
cleanup.)

* Which components (ormodules) have
errors?

* Which components have a particular
error? and

¢ [sanybody else intending to or modify-
ing a particular component (or module)?

Such queries let the user get an impres-
sion of the structure and connectivity of
the software to be modified or main-
tained.

Implicit queries are initiated by Marvel
for several reasons. It does so when it en-
counters an exceptional condition and
needs essential information to repair the
problem. For example, if the user wants to
edit procedure p, but procedure pisnotin
the module currentlyin focus, Marvel que-
riesthe object base fora procedure named
p. If the query returns a unique element,
Marvel can change the focus; if there are
many procedures named p, Marvel asks
the user to choose one.

A second reason for Marvel to generate
implicit queries is to presenta query result

IEEE Software

Marvel: Past, present, and future

Marvel's concepts are based on our experience with another en-
vironment that provided assistance to users. We extracted the proper-
ties that made that environment an active assistant into Marvel's
model.

The concepts of this model have been validated through a first pro-
totype implementation, based on the earlier environment, that sup-
ports the rules and strategies. This prototype has been followed by an
implementation with full object base support and dynamic extension of
the object base structure and the set of rules and strategies.

Marvel’s ancestry. In the late 1970s and early 1980s, we and other
members of the Gandalf project developed a multiuser, software-engi-
neering environment called Smile.! Smile, which supports program-
ming in C and runs on Unix, has been used on the Gandalf’ and
Gnome?® projects at Carnegie Mellon University and by the Inscape
project’ at AT&T Bell Laboratories, and has been distributed to at least
40 sites.

Smile passes the crucial test of supporting its own maintenance. It
has supportedthe simultaneous activities of sevento 10 programmers.
The largest system developed and maintained in Smile has about
61,000 lines of source code.

Smile is arelatively intelligent assistance. It supports insight and op-
portunistic processing. It provides a file-less environment fo its users,
answers queries, coordinates the activities of muitiple programmers,
and automatically invokes tools. It hides the particulars of the Unix file
system and utilities and presents its own model of the programming
world. Smile's objectbase is implemented through a combination of file
system and in-core object structure that is kept persistent in a file.
Smile's knowledge of software objects and the programming process
is hard-coded into the environment.

Marvel’s proof of concept. We chose first to validate Marvel's con-
ceptof rules and strategies. We started with Smile forthe prototype im-
plementation. This lets us concentrate on the implementation of the
rule-processing facility with minimal extensions to Smite's simple ob-
jectbase, yet still gave us an operational environment prototype. it also
let us compare the prototype with the original Smile system, which has
been in use for several years.

This implementation of Marvel replaced Smile’s hard-coded know!-
edge about the software-development process with rules. Rules and
strategies are written using a text editor, and the text file is parsed by a
rule compiler.

The rule compiler translates rule preconditions and postconditions
into (1) a ‘fast-load” syntax tree and (2) symbol-table structures that link
each occurrence of a predicate or a relation in a precondition with a
potentially satisfying postcondition and vice versa, and also link these
predicates and relations to each relevant rule.

A rule set and strategy can be loaded at start-up and additional
strategies can be loaded later, but there is no checking among simul-
taneously usedstrategies. Individual rules can be separately turned on
and off.

Forward chaining, backward chaining, and the abillity to turn strate-
gies on and off are implemented through an interpreter that works
directly with the structures produced by the rule compiler. This rule in-
terpreter takes a simple approach for processing rules rather than em-
ploying a match network mechanism; the entire condition of every
applicable rule is rechecked whenever a relevant predicate or relation
is asserted or negated. To support the rule interpretation, we added
some attributes and relations to Smile’s hard-coded object base.

The performance resulting from this simple-minded approach is un-
acceptable for large numbers of rules and large object bases, but was
satisfactory for processing the rules describing Smile’s behavior. For-
ward chaining proceeds breadth-first using a queue of rules whose
preconditions are satisfied. Backward chaining is depth-first, attempt-
ing to derive the desired postconditions of one candidate rule before
trying an alternative rule.

Once the object base and the rule compiler and interpreter were in
place we were able to capture Smile’s knowledge about programming
activities and their automation in rules and strategies and replace the
hard-coded knowledge. The working prototype provided us with feed-
back for improvementin a number of areas. These were takeninto ac-
count in a second implementation of Marve!.

Looking into the future. After the concept prototype of Marvel was
completed at SEI, an implementation of Marvel that is independent of
the Smile implementations was begun.

One version of this implementation is operational. It includes en-
hancement ofthe rule interpreter and an extensible objectbase. Inthis
implementation, the rule interpreter supports consistency checking
and merging of strategies as they are loaded dynamically, as well as
dynamicunloading of strategies. The new object base supports object-
class hierarchies and dynamic extensibility of structures stored in the
object base. We have published details of this object-base imple-
mentation.®

Our work is progressing in several areas. We are adding multiple-
user support to the new object-base implementation. We are investi-
gating concurrency and recovery supportthrough long transactions. To
support Smile’s capability of background processing, we are consider-
ing extending the rule interpreter to allow concurrent rule firing.

References

1. G.E. Kaiser and P.H. Feiler, “Intelligent Assistance without Artificial Intel-
ligence,” Proc. Compcon, CS Press, Los Alamitos, Calif., 1987, pp. 236-
241.

2. A. Nico Habermann, D. Notkin, “Gandalf: Software-Development En-
vironment,” JEEE Trans. Software Eng., May 1985.

3. D.B. Garian and P.L. Miller, “Gnome: An introductory Programming En-
vironment Based on a Family of Structure Editors,” SIGPlan Notices, May
1984, pp. 65-72.

4. D.E. Perry, “Software Interconnection Models,” Proc. Int'| Conf. Software
Eng., CS Press, Los Alamitos, Calif., 1987, pp. 61-69.

5. G.E.Kaiseretal., “Database Support for Knowledge-Based Engineering
Environments,” /EEE Expert, Summer 1988.

to the user automatically. For example, say
auser gives the command to edit the speci-
fication of a module component that is
being exported. Marvel informs the user
of the expected extent of the con-
sequences and requests confirmation to
go ahead with the editing. Marvel can use
the same information to check if the af-
fected components are accessible (have

May 1988

been reserved by the user) for modifica-
tion. The result of this query can again be
presented to the user, or Marvel can at-
tempt to reserve and/or add new editing
tasks to the user’s agenda.

Implicit queries are made when the re-
sult of the query provides insight into ex-
pected activities, making the user aware of
the potential consequences of his actions.

Opportunistic
processing

Marvel performs opportunistic pro-
cessing, which means it undertakes simple
development activities so programmers
need not be bothered with them. In our
model only menial activities are auto-
mated, such as determining when the

43

source code has changed, invoking the
compiler, and recording errorsfound dur-
ing compilation.

Marvel performsan activitywhen the op-
portunity arises, between the time a user’s
action causes additional processing and
the time the user requests the results of the
action. This form of assistance differs from
intelligent assistants such as the Program-
mer’s Apprentice (also known as
KBEmacs?’), which focuses on automatic
program construction.

In addition to objects, the object base
maintains the process model that helps
Marvel decide when to apply tools on the
user’s behalf. The process model is an ex-
tensible collection of rules consisting of a
precondition, an activity, and many post-
conditions.

Marvel carries out its actions by inter-
preting the rules in different ways. For-
ward chaining lets Marvel invoke tools as
soon as their preconditions are satisfied;
backward chaining lets it find the tools
whose postconditions satisfy the precondi-
tions of other tools that have been acti-
vated.

The extent of this automation is control-
led through strategies. Each strategy speci-
fiesa certain degree of assistance thatisap-
propriate for a type of user or law of
programming activity. For example, Mar-
vel automatically performs different func-
tions for an long-term user than it would
for a novice. Similarly, Marvel may report
on the use of undefined variables less fre-
quentlywhen new code iswritten than dur-
ing test and debugging.

It is important to realize two facts about

the use of rules in Marvel. First, Marvel
consists of a generic kernel. An instance of
Marvel is created by supplying a descrip-
tion of the object base structure and the
process model to the kernel. Second, only
systems managers need to write object
base descriptions, rules, and strategies.
Users select from strategies defined for
them to choose a desired behavior of Mar-
vel. They can extend the set of strategies if
desired.

Rules. Marvel rules are based on condi-
tion/action pairs. When the condition is
true or satisfied, the action is applied to
working memory (in this case, the object
base). However, these so-called produc-
tion rules are inadequate because they do
not separate the invocation of a tool from
the results produced by the tool, which we
must do to integrate existing tools without
modification. Therefore, we divide a rule
into three parts: a precondition, an activ-
ity, and a postcondition.

Figure 1 shows a compile rule that il-
lustrates the properties of these three
parts.

Preconditions. A precondition is a
Boolean expression that must be true
before an activity can be performed. The
operands of a precondition are objects
and their attributes.

In Figure 1, notcompiled (module) is a
precondition for the compile-module ac-
tivity. Assuming that static semantic analy-
sisand code generation are separate activi-
ties, the precondition also requires all
semantic analysis to have completed

notcompiled (module) and

analyzed (component c)
{ compile module }
compiled (module) |
errors(module);

in(module, component c)
{edit component c}

notanalyzed(component) and
notcompiled(module);

for all components ¢ such that in (module, component c):

Figure 1. Compile rule and edit rule.

44

successfully. This takes the form of “for all
components ¢such that in(module, com-
ponent ¢): analyzed(component ¢),”
where analyzed (¢) is true only if the analy-
sis of component cdid not find any errors.

Activities. The activity part of a rule rep-
resentsan integral development task, such
as compile module and edit procedure.
Activities are medium-grained: Low-level
editing commands applied during the
course of an edit-procedure activity are
not considered activities. Nor are high-
level commands, such as “fix bug,” be-
cause they involve many tasks and perhaps
many users.

In the object base, each activity is associ-
ated with atool that carriesitout. Each tool
hasan attribute thatdeterminesifit can be
invoked by the environment without
human intervention. For example, the
compile-module activity is associated with
the compiler, which can be invoked auto-
matically; the edit-procedure activity is as-
sociated with an editor, which requires
human interaction.

Postconditions. A postcondition is an
assertion that becomes true when an activ-
ity is completed. A postcondition can con-
sist of several alternative assertions. Each
alternative reflects a different result of the
activity. For example, the compile rule in
Figure 1 shows compiled (module) and er-
rors(module) as the two possible asser-
tions, capturing the fact that compilation
may succeed or fail. The postcondition al-
ternatives are mutually exclusive — only
one gets asserted, based on the result of
the activity. Both preconditions and post-
conditions are written as well-formed
formulas in first-order, predicate calculus.

Our rules are similar syntactically to
Hoare's assertions,* where a program-
ming language constructis associated with
its preconditions and postconditions. If
the preconditions are true before the lan-
guage construct is executed, the postcon-
ditions will be true afterward. However,
the semantics of Marvel’s postconditions
differ from Hoare's in that the purpose of
the postcondition isnot verification, but to
update the object base.

Controlled automation. Forward and
backward chaining contribute to oppor-

IEEE Software

tunistic processing by letting Marvel use
rules to determine what needs to be done
and what can be done automatically.

Forward chaining. If the preconditions of
an activity are satisfied and the activity is
one that it can perform, Marvel does so
without human intervention. This be-
havior is similar to language-oriented edi-
tors, which automatically perform actions
like type checking and code generation
when a user makes a subtree replacement
in a program’s abstract syntax tree.

Marvel would interpret the rule in
Figure 1 to mean that the assistant may
compile all modules M if all the compo-
nentsof Mhave been analyzed successfully
and Mhasnot yet been compiled. Ifamod-
ule was previously unsuccessful at compil-
ing, the postcondition errors(module)
will be true. The compile-module activity
willnotbe reported unnecessarilywhile er-
rors(module) is true, because the precon-
dition notcompiled (module) cannot be
satisfied. If the user edits a component to
fix the error, the edit activity will cause
notcompiled(module) to be true again,
and compilation can be attempted.

Forward chaining means Marvel can
perform this second attempt at compila-
tion when that precondition is satistied. It
does not have to perform the activity as
soon as the preconditions are true or at
any particular time thereafter. However, it
may go ahead and apply the tool, and use
forward chaining to determine additional
activities whose preconditions are now
satisfied as new postconditions are
generated, using otherwise idle comput-
ing resources.

Backward chaining. Ifauser invokesan ac-
tivity whose preconditions are not satisfied
(execute program, for example), Marvel
looks for activities it can perform to
generate postconditions that would satisfy
the preconditions. It uses backward chain-
ing to do so; this is similar to Make.

When a user requests regeneration of an
executable system after changes have been
made to its source code, Marvel uses de-
pendency information it maintains in the
object base to determine which modules
must be recompiled. Of course, it may not
be possible to satisfy all the preconditions,
and in this case the user is informed of the

May 1988

{ reserve module }
reserved (module, userid);

reserved (module, userid)
{ change component }

reserved (module, userid)
{ change component c }

notreserved(module) and saved (module)

notanalyzed (component) and notcompiled (module);

for all components k such that in(module, component k)
and uses(component k, componentc):

Figure 2. Change rules and reserve rule.

problem. Marvel is not expected to find
and repair bugs, for example. In general,
Marvel will not automatically perform ac-
tivities that invoke tools requiring human
intervention.

Consider the case of a large program-
ming team where multiple users are not
permitted to change the same module at
the same time. This might be handled with
arule like that in Figure 2, which requires
each user to reserve a module before
changing it. The preconditions for the re-
serve-module activity are (1) the module
hasnotbeenreserved (notreserved (mod-
ule)) and (2) the module has been saved
by the version-control tool (saved(mod-
ule)).

The second rule in Figure 2 states that
the change-component activity cannot be
done unless the module that contains the
component is reserved. The change-com-
ponent activity lets the user modify the
specification of a component, as opposed
to edit component, which lets the user
modify the component’s body only.

The third rule in Figure 2 states that not
only should the containing module be re-
served, but the user must reserve any other
modules whose components use the com-
ponent that will be changed (cand £ are
two objects of the same type). Backward
chaining lets Marvel automatically reserve
any modules whose components may be
modified to remain consistent with the
changed component. It also prevents the
user from modifying the specification of a
component when other modules cannot
be reserved (according to the first rule),
which means that someone else is cur-
rently working on them. Thus, the user
does not start a job he may not be able to
finish.

Hints and strategies. When Marvel per-

forms opportunistic processing, it must
choose the degree of automation wisely. In
other words, itmustadapt to the user’scur-
rentgoals. Todo this, Marvel selectsappro-
priate pointson the spectrum between the
earliest and latest time an activity can be
performed automatically and disables au-
tomatic processing when it gets in the
user’s way. We have provided Marvel with
hints and strategies to help it make these
decisions.

A hint is a rule with no postconditions.
The preconditions of a hint are used to
help Marvel decide when to apply a tool
whose preconditions are satisfied.

For example, it makes sense that Marvel
should delay recompiling a module auto-
matically even when preconditions are
satisfied if a user with modification rights
is browsing the module. The rationale is
that the user may decide to edit some com-
ponents, and the generation of code will
have been wasted. This is captured in a
hint shown in Figure 3, giving this precon-
dition for the compile-module activity.
When Marvel follows a strategy that in-
cludes this hint, compilation is delayed
until the user changes hisfocus to another
module.

Of course, the user must be allowed to
invoke the compiler without changing
focus to another module. That is why this
precondition is stated as a hint, not as part
of a rule. Hints apply only to the oppor-
tunistic processing of the environment,
not to user-initiated activities. In other
words, hints are considered during for-
ward chaining; ignored during backward
chaining.

A strategy is a collection of hints and
rules thatapplyonlywhen the strategy isin
force. Marvel employs strategies by com-
bining their rules and hints. One or more
strategies may be employed at the same

45

not reserved(module) or
<reserved(module, userid) and
not equals(module, focus
(userid)) >
{ compile module }

Figure 3.Compile hint.

time. When this results in more than one
rule for the same activity, all their precon-
ditions must be satisfied, but only one
member of the set of postconditions may
be asserted.

Marvel cannot choose its own strategies.
Instead, the user selects appropriate
strategies by telling the environment
something about his intentions: for ex-
ample, that he is a manager versus a pro-
grammer, developing a new software sys-
tem versus maintaining an old software
system, or making major changes versus
making a minor revision. A strategy whose
rules and hints result in automatic type
checking immediately after each compo-
nent is edited would be appropriate for a
minor revision, but not for a major change
involving many interrelated components.

Handling side effects

Using atool often causessside effects. For
example, the analysis tool invoked for the
analyze-component activity may change
the values of several component attri-
butes. Setting the value of an attribute is
considered an activity, resulting in a situa-
tion where one action of Marvel is
embedded inside another rather than
being a consequence of forward or back-

ward chaining. This case demonstrates a
limitation of Marvel’s rules: Secondary ac-
tions whose arguments are not simple
derivativesof the arguments of the precon-
ditions or the activity cannot easily be ex-
pressed as postconditions.

Instead, potential side effects are indi-
cated by tool attributes. In such cases, the
secondary activities are often described by
their own rules, and these must be con-
sidered for further processing.

Figure 4 shows some rules related to a
component’s uses attribute. The uses attri-
bute lists the other components the com-
ponent depends on. The first rule gives
the obvious preconditions and postcondi-
tions for the analyze-component activity.
The second rule states that a component ¢
cannot use another component & unless
component kis in the same module or is
imported into the module. The third rule
states that a component cannot be im-
ported bya module Munlessitis exported
by another module N. The fourth rule
states that a component cannot be ex-
ported byamodule unlessitisin thatmod-
ule.

Consider what happens when the analy-
sis tool finds that procedure p (a compo-
nent) calls procedure ¢ (another compo-
nent) and tries to set the uses attribute of
procedure p to include procedure ¢. If gis
in the same module as p, there is no prob-

notanalyzed(component)
{analyze component }

analyzed(component) |

errors(component);

in(module, component ¢) and

{ component c uses componentk }
uses(component ¢, componentKk);

exports(module N, component) and
not equal(module M, module N)
{import component }

imports(module M, component);

in(module, component)
{ export component }
exports(module, component);

<in(module, componentk) or imports(module, componentk) >

Figure 4. Analyze rule, uses rule and import/export rules.

46

lem — the attribute is set and the analysis
continues.

If ¢ is not in the same module, Marvel
checks if it is imported. If ¢ is not already
imported, Marvel notes that im-
ports(module, component) is a postcon-
dition of the import-component activity
(the third rule) and further realizes it can
perform the import-<component activity.

So it considers the preconditions of the
import-component activity. Marvel que-
ries its object base to find the module that
does contain ¢. If ¢ is already exported
from this module, Marvelimportsit. If not,
backward chaining lets Marvel follow the
preconditions of this activity given in the
fourth rule,add gto the exports of itsmod-
ule,import ginto the original module,and
finally allow the analysis tool to set the uses
attribute of p.

This is only one possible strategy. It ig-
nores the possibility that distinct proce-
dures named g might be found in more
than one module. Sometimes language-
specific typing information can narrow
the possibilities, but Marvel usually must
interrupt the user to explain its dilemma
and ask which gis intended.

Another possibility is that there is no
component named ¢in the object base. If
so, Marvel considers the add-component-
q activity, whose postcondition is, of
course, the existence of ¢. If permitted by
the current strategy, Marvel could carry
out this activity on its own by creating a
stub for the procedure within the module
where the use occurs. Or Marvel could ask
the user to create the procedure (or its
stub) before continuing the analysis, but
this might be intrusive.

The preferred solution is to inform the
analysis tool of the problem and prevent it
from performing the procedure-p-uses-
procedure-qactivity. This causes the analy-
sis tool to terminate unsuccessfully, gener-
ating the errors(p) predicate among its
postconditions.

In the above discussion, import compo-
nent and export component do not re-
quire human interaction, so Marvel can
carry out the repairs. An alternative
strategy requires the assistant to take the
imports and exports as given. This might
be appropriate for languages such as Ada
that include their own module constructs,
where reference to an external compo-

|IEEE Software

nent without the appropriate With clause
should be detected as an error. A second
alternative would require Marvel to ask the
programmer if ¢ is a typographical error
before carrying out all the previously de-
scribed actions.

Over time the modular structure of sys-
tems degenerates. For systems written in
languages with explicit export/import
declarations, such as Ada, the number of
these declarations tends to increase, even
though some imported components are
no longer used.

Marvel can maintain such old code by
providing both rigid and flexible strategies
in the same environment. Flexible strate-
giesletitreflectthe actual usage of compo-
nents automatically in the export/import
lists, removing unnecessary exports/im-
ports and adjusting exports/imports as
the code isbeing reorganized. Rigid strate-
gies provide stability during development
phases such as testing and integration by
taking the export/import declarations as
givens to be checked against.

In Figure 4, Marvel implicitly queried its
object base to locate procedure ¢. Implicit
queries are necessary to determine if pre-
conditions are satisfied and to find the
next rules to be applied in forward and
backward chaining. Implicit queries are
also used to anticipate the postconditions
ofactivities. Thislets Marvel notify the user
as soon as a user action is likely to lead to
adverse results.

Consider the two rules in Figure 5.
Through forward chaining, changing a
component will lead to semantic analysis,
which may resultin errors. When a user in-
vokes the editor on a particular compo-
nent with the change-component com-
mand, he indicates to Marvel his intention
to modify the component specification.
Marvel notices that forward chaining after
the completion of the editing activity
would propagate to other components
based on the used-by attribute, whose re-
processing might result in error.

Instead of letting the user edit the com-
ponent specification blindly, Marvel can
query the object base and inform the user
of the potentially affected sites. This lets
the user abort his change-component
command if he was not aware of the poten-
tial damage caused by the intended
change.

May 1988

Adding knowledge to tools

Make' has a simplistic world model consisting of files and command lines. A Make file de-
fines dependencies among files and gives the command lines for restoring consistency
among dependent files. Make's notion of consistency is based entirely on files and time: If the
time stamp of an inputfile is later than the time stamp of an output file, then the indicated com-
mand line is passed to the Unix shell. Make is widely used for generating a new executable
version of a system after one or more source files have been modified.

However, Make’s knowledge is primitive. Its object base consists of files that have a single
attribute, their time stamp. Make does not know anything about applying tools to files; it just
handles command lines as indivisible strings. Make does not have any understanding of
source versus object files, of modules versus systems, of programmers or of programming.

How can we add this knowledge to Make?

First, a notion of an objectis defined, where each object belongs to aclass. One class might
be system, while another might be module. Each class defines the attributes, or properties,
of its objects. For example, a module-object-code object might have a history attribute that
describes how it was generated and a derivation-of attribute that points to the object repre-
senting the corresponding source code.

Rules would then be added to model the part of the development process relevant to Make.
One rule might be that a programmer object can modify a module object; another might state
that after such a modification, the module object is no longer consistent with its derivation at-
tribute and there is an obligation to restore this consistency. Athird rule might state thata pre-
condition for a programmer to test a system is that all module object code objects that are
components of the corresponding executable system must be consistent with their module.

If Make were armed with this knowledge, then it would be more intelligent than itis now. It
would then be easier to integrate Make with other tools that support configuration manage-
ment, version control, and task management, assuming all these tools were similarly aug-
mented with knowledge of software objects and with understanding of their roles in the
development process.

The Cornell Program Synthesizer® also has a simplistic world model, consisting of nodes
in a parse tree. The nodes have types, such as program and identifier.

When an identifier node is inserted as a child of an expression in the parse tree, the Syn-
thesizer compares the identifier's name with the names defined in the symbol table. If not
found, the part of the display corresponding to the new node is highlighted; the highlighting is
removed when a matching identifier node is inserted as a child of a declaration.

The immediate feedback provided by the Synthesizer makes it easy to correct static
semantic errors while the programmer is still in the context of editing a program.

The primitive knowledge of the Synthesizer has been somewhat improved in the Synthe-
sizer Generator. The Synthesizer Generator uses a knowledge base that defines classes
of nodes such as expression, attributes of nodes such as type, and equations that specify de-
pendencies among attributes.

The language-based editors produced by the Synthesizer Generator automatically reeval-
uate the attribute equations whose input attributes have changed in value. However, these
editors do not know that the purpose of updating attributes to provide immediate feedback to
programmers about static semantic errors and to incrementally generate the object code
needed to test the program. With this understanding, the editors could, for example, sepa-
rate error detection from error reporting according to whether the programmer is making
many changes or only one; in the first case, the programmer is unfikely to want to hear about
errors after every keystroke.

This knowledge could be added to the Synthesizer Generator and the language-based
editors it produces via rules that model the part of the development process relevant to pro-
gram editing. One rule might be that a programmer object can modify the parse tree repre-
sented by aprogram object. Asecond rule might state that the editor has an obligation to notify
the programmer of any errors in the program; another might say that a precondition for a pro-
grammer to resume execution of program is that no substantive changes have been made
to any procedure already on the runtime stack.

Adding this kind of knowledge to the Synthesizer Generator would make its editors rela-
tively intelligent. For example, they could then simulate attribute reevaluation at appropriate
points to obtain insight into the consequences of the programmer’s actions and wamn the pro-
grammer about changes that invalidate the internal execution state of the debugger.

References
1. S.I. Feldman, “Make: A Program for Maintaining Computer Programs,” Software Practice and Ex-

perience, April 1979, pp. 255-265.

2. T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer: A Syntax-Directed Programming
Environment,” Comm. ACM, Sept. 1981; reprinted in Interactive Programming Environments, D.R.
Barstow, H.E. Shrobe, and E. Sandewall, eds., McGraw-Hill, New York, 1984.

3. T.RepsandT. Teitelbaum, “The Synthesizer Generator,” SIGPlan Notices, May 1984, pp. 41-48.

47

reserved(module, userid)
{ change component }

notanalyzed (component)
{ analyze component }

analyzed(component) |

errors(component);

notanalyzed (component) and notcompiled (module);

Figure 5. Change and analyze rules.

A sample session

Figure 6 shows a snapshot of Marvel in
the middle ofaprocedure edit. The screen
has two windows: In the large window is a
transcript of a session in which the user is
interacting with the Marvel command in-
terpreter. The window is scrollable, so the
complete transcript is accessible. In the
small window Marvel presents an item in
the objectbase for the user to edit using his

favorite editor; in this case, Emacs. The
bottom of the screen shows icons that are
part of the X Windows system.

The transcriptin thelarge window shows
interactions between the user and Marvel
that demonstrate some of Marvel’s be-
havior. At the beginning of the session, the
user enters an existing workspace to mod-
ify a system, in this case an interactive pro-
gram for fractional arithmetic. This work-

space isa Marvel database that is private to
the user. It is connected to a public
database, where the baseline version of the
software resides.

One module has previously been re-
served from the public database and made
available for modification in the private
workspace. All other parts of the system
that physically reside in the public
database are accessible transparently for
reading.

The user’s attention is focused on the
object that represents the whole program,
which isindicated by the prompt showing
the system name — Fractions. First, the

[BasicOpsl: change
what [declarationl:
item (addl: quit

Cannot complete this command.

[BasicOps): reserve CommandInterp

Reserving Module CommandInterp

[BasicOps): change declaration quit

Compile? [yesl: no

[BasicOpsl: edit ci

Editing ci in CommandInterp

Module CommandInterp imports quit, and it is not reser

Reserve from /usr/users/phf/Fractions? [yes]

ci is not an item in current module.
Move to module CommandInterp? [yesl:

csh
Loading data base Zusr/users/phf/fractions.phf
Entering private database in write mode
(Fractions): print modules
List of Modules:
BasicOps Tools MyIO Tyupes
CommandInterp String TheirlQ Misc
(Fractions]: module BasicOps
[EasicOpsl; print allmodule
Module BasicOps:
List of procedures
add subtract multiply divide
help quit introduction
List of objects
operator
Exported items
add subtract multiply divide
help quit

editwindow mﬁg

struct fract *first
struct fract *second

introduction():

while (1)
{
op = getop():
PARUSE:
if (op == "q")
€
quit()z

return

Module CommandInterp imports quit 3
Continue? {yesl: if {(op == "h" as
i
Editing declaration of quit in BasicOps help()
continue:
Update affects Module CommandInterp procedure ci 3
quit (NORMAL) first = getfract(

switech (op)
case “a”:
answer (Fi
break:
fems

case

Bu

ci(useMenu; boglean)

second = getfract():

useMenu)

)

rst," + “,second.add(first,second?);

ffer: ci.2,123d5.¢c (Normal)

=1

(=)
MAIL

Figure 6. AMarvel screen.

48

IEEE Software

user requests a view of the system, namely,
its list of modules. The user then focuses
on the BasicOps module, and the prompt
changes.

Now the user requests another view, in
this case a more detailed view of a particu-
lar module. Because the user did not
specify a module name, the system chose
the module in the current focus. The re-
sultisaview showing all the components of
the module (several procedures and an
object; the module does not contain data-
type definitions), and a list of components
that are available externally as part of the
module specification (exported items).

With the Change command, the user at-
tempts to modify the Quit procedure’s
specification. The system prompts for
missing command parameters, providing
defaults. Marvel first performs an implicit
query to determine the consequences of
the planned change. The user isinformed
that the Quit procedure isused by another
module for which the user does not have
modification rights. Under the default
strategy, chosen by the user, Marvel does
not reserve the module, but aborts the
command.

The user then explicitly reserves the
module. Marvel confirms that the module
is to be reserved from the public database,
and a second modification attempt
succeeds. The user is informed which
components are potentially affected
before the actual editing, and is asked after
the modification if the affected compo-

Acknowledgments

Dave Ackley, Naser Barghouti, Susan Dart,
Mark Dowson, Bob Ellison, David Garlan, Dan
Miller, John Nestor, Gavin Oddy, Cecile Paris,
Colin Tully, Nelson Weiderman, Ursula Wolz,
and the anonymous referees reviewed drafts of
this article and made many useful criticisms
and suggestions. Purvis Jackson assisted us with
technical editing.

This work was started while Kaiser was a visit-
ing computer scientist at the SEI. The first pro-
totype implementation was done at the SEL
Research on Marvel continues at Columbia
University, supported in part by Kaiser's Digi-
tal Equipment Corp. faculty award, in partbya
grant from Siemens Research and Technology
Laboratories, and in part by the Defense Dept.

May 19¢8

nents should be analyzed and compiled as
well. Because the user expects to correct
the affected procedure, he declines the
offer.

The modified component is analyzed
and compiled in the background, while
the user issues the Edit command to make
a local modification to the Ci procedure.
Marvel changes the focus to the appro-
priate module, displays the procedure
specification, and presents the user with
the proc2dure body in the editor window.

he model embodied in the Marvel

environment formalizes the con-

cepts of insight and opportunistic
processing by

* maintaining all knowledge about both
the specific development effort and the
general developmentprocessin the object
base,

* making multiple views of the object
base available both to users and tools,

* modeling the development process as
rules that define the preconditions and
postconditions of development activities,
and

e gathering collections of rules into
strategies.

This lets Marvel provide software-engi-
neering environments that intelligently
assist development and maintenance ef-
forts by individuals and teams of users
through controlled automation, using
available development tools. <>

References

1. T. Winograd, “Breaking the Complexity
Barrier (Again),” Proc. ACM SIGPlan-SIGIR
Interface Meeting on Programming Languages
— Information Retrieval, ACM, New York,
1973, pp. 13-30; reprinted in Interactive Pro-
gramming Environments, D.R. Barstow, H.E.
Shrobe, and E. Sandewall, eds., McGraw-
Hill, New York, 1984,

2. D.S. Wile and D.G. Allard, “Worlds: An Or-
ganizing Structure for Object-Bases,” S/G-
Plan Notices, Jan. 1987, pp. 16-26.

3. R.C. Waters, “KBEmacs: Where’s the AI?”
Al Magazine, Spring 1986, pp. 47-56.

4. C.A.R. Hoare, “An Axiomatic Approach to
Computer Programming,” Comm. ACM,
Oct. 1969, pp. 576-580, 583.

Gail E. Kaiser is an assistant professor of com-
puter science at Columbia University, where
she received a Digital Equipment Corp. faculty
award. Her research interests include pro-
gramming environments, evolution of large
software systems, application of artificial-intel-
ligence technology to development and main-
tenance, reusability, object-oriented lan-
guages and databases, and distributed systems.
Kaiser received an MS and PhD in computer
science from Carnegie Mellon University,
where she wasa Herw fellow, and a BS from the
Massachusetts Institute of Technology.

S

Peter H. Feiler is a senior computer scientist at
the Software Engineering Institute, where he
is a member of the team that s evaluating Ada
environments. His research interests include
development support environments, interac-
tive development tools, application of artificial
intelligence to software engineering, and sup-
port for concurrent applications.

Before joining SEI, he was a research scien-
tistand group leader at Siemens Corporate Re-
search and Technology Laboratories. He re-
ceived a Vordiplom (BS) in mathematics and
computer science from the Technical Univer-
sity in Munich and a PhD in computer science
from Carnegie Mellon University. He isa mem-
ber of the ACM, AAAI, and the Computer
Society.

Steven S. Popovich is a graduate student at
Columbia University. His research interests in-
clude programming environments, dis-
tributed systems, and artificial intelligence.

Before beginning his graduate studies, he
worked for the Software Engineering Institute,
the Carnegie Group, MindBank, Siemens Re-
search and Technology Laboratories, and Car-
negie Mellon University. He received a BS in
computer science from Carnegie Mellon Uni-
versity.

Questions about this article can be ad-
dressed to Kaiser at Computer Science Dept.,
450 Computer Science Bldg., Columbia Uni-
versity, New York, NY 10027.

49

