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Using relatively simple 
technolo~, Marvel 

understands the 
user’s actions and 

their consequences. In 
many cases it will do 
tasks automatically, 

lightening the 
woMoad. 

I n a 1973 article, Terry Winograd wrote 
of his dream of an intelligent assistant 
for programmers.’ The fundamental 

requirementforanintelligentassistant, he 
wrote, is that it understand what it does. 
That is, it should be based on an explicit 
model of the programming world. 

Winograd described an imaginary pro 
gramming environment that would pro- 
vide early error checking, answer ques- 
tions about the program and the 
interactions among program parts, 
handle trivial programming problems, 
and automate simple debugging tasks. 

We have developed an environment that 
handles the first two duties, early error 
checking and answering questions about 
programs. Our environment has a certain 
understanding of the systems being devel- 
oped and how to use tools to produce soft- 
ware. It aids individual programmers and 
helps coordinate programmer teams. 

Our assistant’s knowledge is described 
in a model and achieves intelligence byin- 

terpreting the model. We have not yet ap 
plied the model of this environment to 
other project aspects, such as project man- 
agement, which are handled by some inte- 
grated project support environments. 

Our model draws from research into 
software engineering and artificial intel- 
ligence. From software-engineering re- 
search, we gained experience in building 
and using particular tools and environ- 
ments in specific development processes. 
From artificial-intelligence research, we 
discovered suitable structures to repre- 
sent knowledge about software entities 
and the role of tools in the development 
process. 

The result is Professor Marvel-Marvel 
for short-an environment that supports 
two aspects of an intelligent assistant: It 
provides insi& into the system and it ac- 
tively participates in development 
through opportunistir procussing. Like its 
fictional counterpart, the Kansas magi- 
cian who turned out to be the wizard in 7% 
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Ilamcl’s roots and the protot!l,e iniplc- 
mentalion is tlcscl-ibed in the box on p. 4.3. 
;\ 11101-c‘ rlaborat~ implrmcntation that 
will extend Mmcl’s concepts to nonpm 
gl-amming activiti?F is under way. 

Key components 
To fulfill ~t’inograd’s fundamental re- 

quirement, an intclligcnt assistant must 
~~nderstands what it does. Ifowcver, thrrc 
is a spectrlun of intelligent systems. Most 
softbvarc tools are moronic assistants that 
know bvhat to do but do not Luldcrstand 
the p~~posc of the objects they manipulate 
or-how lhcii- tasks fit into the devr~oprne~~t 
p~n~ess. In othc1-M.ords, thrv know the 1zow 
1,111 do no1 undei-ctand the 7041~. 

;\dcvcloprricnt eii\.iroiiiIi(‘Iitcanliottiii- 
derstand \vhy it pciforins an activi?. unless 
it knwvs 

l the propcrtica of.thc objects it manipu- 
lates, 

l thes~atcm’stoolsand~tcti~itics, and the 
objects the! manipulate. 

l the preconditions under Lvhich a tool 
w~acti\ity can be activated, and 

l the 1-esul~o1-postco1~ditionsof~cach ac- 
ti\ilv (the state ofdevelopment after an ac- 
li\it\ tei-minatcs), 

Object base. .Ilar~el has two kc! cornptr 
~lcnts. The first is a database that stores 
data repi-csented m objects, as in object- 
oriented lang~~ages. This object base 
maintains all the entities that are part of 
the evolving system, all the information 
about the history and status of the pr-eject, 
and all the tools used in development and 
niaintenance. 

The object base dcfincs the object 
classes and the relationships among oh 
.jects (such asoncobject isacornponentof 
anorhcr and Tvhcn applied to another oh 
ject uill PI-oducc a third). The object base 

is active: ;\ccessing objects may triggri- ac- 
tion. 

Process model. The second key comptr 
ilent is a model of the developmcllt 
prcjcess that imposes a sti-ucture on pi-tr 
gramming activities. The model is an ex- 
ten5iblc collection of‘ rules that specify the 
conditions that mubt exist for particulai- 
tools to be applied to particular objects. 
Some rules are relerdnt only uhen a user 
imukes a tool, others appl! \vhcn the e11- 
vironmcnt initiates tool processing, and 
still others apply equally to both cases. 

Interpretation through forward and 
backward chaining lets the environment 
perform activities automatically when it 
knows the I-esults of these activities \\ill 

MostsoBware tools are 
moronic assistants that 
know the how but do not 

understand the why. 

soon be required bp the user. 
Rather than add intelligence to iI)- 

dividual tools, the model encapsulates all 
the intelligence in the en\iron1nent, so it is 
not necessary to modify the too1.s. The box 
on p, 47 illustrates the potential for intel- 
ligent assistance b!,descr-ibing holy an ob 
ject base and a development model en- 
hance Tao well-known programming 
tools. 

Insight 
Ma<1 has insight, which means it is 

atvar-e of the user’s activities and can anti- 
cipate the consequences of these activities 
basedon an understandingofthedrvelop 
ment process and the produced softwat-c. 

Insight lets individual programmers be- 
come informed more quickly about the 

stI-ucttwc and rc~laliol1ship~ iii tt1c v)ftM.;t1 c 
product, to be ‘iwa1-c of’tllc co11scqw’ll~ c’s 
and side ef’fvc 1~ of tl1cir LISkS, ;mtl to 1,~’ 
gllided in the job 01 makitlg CVCI~ 1najol 
change\ to a s~~lrni and gettiiig it bat-k 
into ;I consistt~ilt btiltt’. 

Insight also helps (oordinatc the activi- 
ties of multiple programmcr~ So they can 
accomplish tlltir-trL~kb\~itllollt intcl-fcring 
Irith each othc1; knorzing that the 1~cslllt.~ 
of simultancot~\ \SOI-k \\,ill be co1i1bii~cd iii 
a contr-olled \\;iF. 

The t\vo key elcmcnt~ that support in- 
sight arc a rich, \tl-iicturcd infol-mation Ie- 
pository and ;I set of mechanisms that 
make appl-opAate infor-marion ;l~Glablt 
at appropi-iate times. The infoi-mdtioll rc- 
pository is the object l)asc. The acccsb 
~ncchanismsf’~~ll into [MY) catcgoi-icr, those 
that supp01-t (Iii-ccl access 01 bI-ow3ing, 
and those thar \LI~JXKI I-wic\al. 

Object base. Mar~~el’~ object ba.s<’ is COII- 
cepluallv r.clatc.d to object-or-icntcd pI-(F 
gramming languages. in that each object 
is an instance of’s class tlut tic4ines its t\pe. 
The object baw contains a set of’objc.c.Ls 
that represent both the wstcnl and its dc- 
velopmcnt historY. Object t)pcs include 
niodulr, pi-OC~~LII-c. tvpe, design dcscrip 
tion, user manrial, aiid dcwlopmcnt step. 
Typing lets Rlarvcl provide an ol?jcct- 
oriented L~SVI- intcrfacc: ‘I‘hc cnvii-onment 
makes axi1;11,1~ onI\ thcw ~~onlminds 
that are relwa1lt to the object under ~OII- 
sidcration, ~vithin thccontrx~ ofthc IIECI.‘S 
recent actiCti0. 

Howevc~-, kmlike mo$t ot?jec.t-ol-ieIltecl 
languages, I\lar-vcl‘\ oI~jcct baw is peGi- 
tent: It retainsiostate acrossin~ocationsof‘ 
the cn\ironmcnt. This ICLS Mancl provide 
a file-less enwi-onment. Rlar~el exposes iLs 
users onlv to the logical entities compris 
ing the tar-get system, not to the physical 
storage organization of directories and 
tiles. Other knowledge-based environ- 
ments offer similar capabilities in lhcir 
database support.’ 
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Each class defines certain properties of 
an object and inherits other properties 
from its superclass or superclasses. Some 
properties, called attributes, define the 
contentsandstatusofobjects. Other prop 
erties, called methods, define the develop 
ment activities applicable to the objects of 
a class. Attributes may be simple values (in- 
tegers and strings) or they may represent 
relationships with other objects. 

Simple attribute values include object 
names, object status (such as if it has been 
analyzed for static semantic errors), and 
string entities (such as piecesofsource text 
or binary object code). Attributes that rep 
resent relationships include the logical, 
syntacticstructure (forexample, amodule 
is composed of procedures, types, and vari- 
ables) , semantic dependencies (such as in- 
tended use - indicated by the import 
clauses of modules-or actual use as dem- 
onstrated by the invocation of a proce- 
dure). Relationships are bidirectional by 
default, which permits more flexible 
querying. A user can ask for all uses of pro 
cedure pas well as all uses of other proce- 
dures by procedure p. 

All information about objects is main- 
tained in the object base, and inferred or 
derived by Marvel where possible. Users 
are spared the tedium of entering redun- 
dant information. 

Information access. Information in the 
object base is accessed for two reasons: (1) 
viewing and querying and (2) modifica- 
tion. Both users and tools may access infor- 
mation. 

Users generally modify the structural 
hierarchy, the names of objects, and 
source-text attributes through aview ofthe 
objectbase.Aviewisthesubsetofinforma- 
tion in the object base that is currently rel- 
evant. Other attributes (analysis status or 
use relationships) aremaintained by tools 
to reflect the current state of the target sys- 
tem. Users can also browse and query this 
auxiliary information. 

Browsing. Browsing takes place accord- 
ing to views. The default view is the logical 
structure (the library-module-component 
hierarchy) of the target system. For ex- 
ample, the user sees program libraries 
containing modules, which in turn con- 
tain other modules or indivisible compe 

nents (procedures, types, variables, and so 
on). 

The user navigates through this struc- 
tural hierarchy just as he navigates 
through directory structures in file sys 
terns. However, limited bandwidth prohib 
its exposing the user to the complete struc- 
ture at once (unless we use very small 
fonts!), which is generally all right in any 
case because of information overload. 

Views can be displayed and browsed 
many ways. In Marvel, objects and their 
parts have selectable textual repre- 
sentations. By selecting such an entity, the 
user specifies the current focus and by 
doing so determines processing and com- 
mand selection. Hence, Marvel has an ob 
ject-oriented interface. 

Marvel tries to balance the amount of in- 
formation presented to the user. Oneview 
displays a single level of the structural hier- 
archy. If the user selects an object to edit, it 
can be opened for viewing if the compo 
nent represents a reference to another ob 
ject. The newly opened object can be 
viewed in the current window or in 
another window. 

Another view shows multiple levels of 
the hierarchy at once. This lets Marvel re- 
spond touserrequestsformorecontextin- 
formation, reducing the need for re- 
peated user queries or browsing 
operations. For example, a view of a mod- 
ule’s content contains the names of the 
component objects and their type 
(whether they are procedures or docu- 
ments). Similarly, Marvel provides visual 
feedback of values for certain essential at- 
tributes (if a module contains an error, for 
example), thus eliminating additional 
queries while still avoiding information 
overload. 

Marvel also lets the user navigate by fol- 
lowing crossreferences, such as opening 
the specification of a module referenced 
in the import list ofanother module. Such 
cross-link browsing capabilities make it 
easier for the user to get an impression of 
the context of a piece of software. 

In summary, the browsing capability lets 
the user manually navigate through the 
object base, changing the focus. This lets 
Marvel track user actions, anticipate con- 
sequences, and help the user copewith the 
consequences. However, manual naviga- 
tion is inadequate for general search tasks. 

For example, if the user maintains a system 
with 150 modules, trying to find the three 
modules with outstanding errors can be a 
tedious task if done by browsing. A general 
querying capability combined with a 
browsing capability solves this problem. 

@K&S. A general answering capability 
supports searches of the object base ac- 
cording to conditions phrased in a stylized 
command language: “Retrieve all software 
objectswith proper name x,“for example, 
or “Retrieve all modules that contain er- 
rors.” 

The search space can be constrained sev- 
eral ways. One way is through particular 
search conditions, such as by object type or 
attribute value. Another way is to limit the 
the search to a particular substructure, 
such as searching a procedure in a partic- 
ular library. Marvel also prunes the search 
space by using dependency information, 
such as import and actual procedure use. 

Queries may be explicit or implicit. Ex- 
plicit queries are initiated by the user. Mar- 
vel has predefined, short forms of com- 
mon queries, such as: 

l What components use a particular 
function? 

l Are certain components not used at 
all? (Useful during maintenance and 
cleanup.) 

*Which components (or modules) have 
errors? 

l Which components have a particular 
error? and 

l Is anybody else intending to or modify- 
ing a particular component (or module)? 

Such queries let the user get an impres 
sion of the structure and connectivity of 
the software to be modified or main- 
tained. 

Implicit queries are initiated by Marvel 
for several reasons. It does so when it en- 
counters an exceptional condition and 
needs essential information to repair the 
problem. For example, if the user wants to 
edit procedure p, but procedure pis not in 
the module currently in focus, Marvel que- 
ries the object base for a procedure named 
p. If the query returns a unique element, 
Marvel can change the focus; if there are 
many procedures named p, Marvel asks 
the user to choose one. 

A second reason for Marvel to generate 
implicit queries is to present a query result 
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Marvel: Past, present, and future 
Marvel’s concepts are based on our experience with another en- Forward chaining, backward chaining, and the abillity to turn strate- 

vironment that provided assistance to users. We extracted the proper- gies on and off are implemented through an interpreter that works 
ties that made that environment an active assistant into Marvel’s directly with the structures produced by the rule compiler. This rule in- 
model. terpreter takes a simple approach for processing rules rather than em- 

The concepts of this model have been validated through a first pro- ploying a match network mechanism; the entire condition of every 
totype implementation, based on the earlier environment, that sup- applicable rule is rechecked whenever a relevant predicate or relation 
ports the rules and strategies. This prototype has been followed by an is asserted or negated. To support the rule interpretation, we added 
implementation with full object base support and dynamicextension of some attributes and relations to Smile’s hard-coded object base. 
the object base structure and the set of rules and strategies. The performance resulting from this simple-minded approach is un- 

acceptable for large numbers of rules and large object bases, but was 
Marvel’s ancestry. In the late 1970s and early 198Os, we and other satisfactory for processing the rules describing Smile’s behavior. For- 

members of the Gandalf project developed a multiuser, software-engi- ward chaining proceeds breadth-first using a queue of rules whose 
neering environment called Smile.’ Smile, which supports program- preconditions are satisfied. Backward chaining is depth-first, attempt- 
ming in C and runs on Unix, has been used on the GandalP and ing to derive the desired postconditions of one candidate rule before 
Gnome3 projects at Carnegie Mellon University and by the lnscape trying an alternative rule. 
projecP at AT&T Bell Laboratories, and has been distributed to at least Once the object base and the rule compiler and interpreter were in 
40 sites. place we were able to capture Smile’s knowledge about programming 

Smile passes the crucial test of supporting its own maintenance. It activities and their automation in rules and strategies and replace the 
hassupportedthesimultaneousactivitiesof sevento lOprogrammers. hard-coded knowledge. The working prototype provided us with feed- 
The largest system developed and maintained in Smile has about back for improvement in a number of areas. These were taken into ac- 
61,000 lines of source code. count in a second implementation of Marvel. 

Smile is a relatively intelligent assistance. It supports insight and op- 
portunistic processing. It provides a file-less environment to its users, Looking into the future. After the concept prototype of Marvel was 
answers queries, coordinates the activities of multiple programmers, completed at SEI, an implementation of Marvel that is independent of 
and automatically invokes tools. It hides the particulars of the Unix file the Smile implementations was begun. 
system and utilities and presents its own model of the programming One version of this implementation is operational. It includes en- 
world. Smile’sobject base is implemented through acombination of file hancement of the rule interpreter and an extensible object base. In this 
system and in-core object structure that is kept persistent in a file. implementation, the rule interpreter supports consistency checking 
Smile’s knowledge of software objects and the programming process and merging of strategies as they are loaded dynamically, as well as 
is hard-coded into the environment, dynamicunloadingof strategies. The new object basesupportsobject- 

class hierarchies and dynamic extensibility of structures stored in the 
Marvel’s proof of concept. We chose first to validate Marvel’s con- object base. We have published details of this object-base imple- 

cept of rules and strategies. We started with Smile forthe prototype im- mentation.5 
plementation. This lets us concentrate on the implementation of the Our work is progressing in several areas. We are adding multiple- 
rule-processing facility with minimal extensions to Smile’s simple ob- user support to the new object-base implementation. We are investi- 
ject base, yet still gave us an operational environment prototype. It also gating concurrency and recovery supportthrough long transactions. To 
let us compare the prototype with the original Smile system, which has support Smile’s capability of background processing, we areconsider- 
been in use for several years. ing extending the rule interpreter to allow concurrent rule firing. 

This implementation of Marvel replaced Smile’s hard-coded knowl- 
edge about the software-development process with rules. Rules and 
strategies are written using a text editor, and the text file is parsed by a References 
rule compiler. 

The rule compiler translates rule preconditions and postconditions 

1. G.E. Kaiser and P.H. Feiler, “Intelligent Assistance without Artificial Intel- 
ligence,” Pfoc. Compcon, CS Press, Los Alamitos, Calif., 1987, pp. 236. 
241. 

into( 1)a”fast-1oad”syntax treeand (2) symbol-tablestructures that link 
each occurrence of a predicate or a relation in a precondition with a 

2. A. Nice Habermann, D. Notkin, “Gandalf: Software-Development En- 
vironment,” /EEE Trans. Soffware Eng., May 1985 

potentially satisfying postcondition and vice versa, and also link these 
predicates and relations to each relevant rule. 

A rule set and strategy can be loaded at start-up and additional 
strategies can be loaded later, but there is no checking among simul- 
taneously used strategies. Individual rules can be separately turned on 
and off. 

3. D.B. Garlan and P.L. Miller, “Gnome: An Introductory Programming En- 
vironment Basedon a Family of Structure Editors.“SlGPlan Notices, May 
1984, pp. 65-72. 

4. D.E. Peny, “Software Interconnection Models,” Prcc. IntlConf. Software 
Eng., CS Press, Los Alamitos, Calif., 1987, pp. 61-69. 

5. G.E. Kaiseret al., “Database Support for Knowledge-Based Engineering 
Environments,” /EEE Expel?, Summer 1988. 

to the user automatically. For example, say been reserved by the user) for modifica- 
a user gives the command to edit the speci- tion. The result of this query can again be 

Opportunistic 
fication of a module component that is presented to the user, or Marvel can at- processing 
being exported. Marvel informs the user tempt to reserve and/or add new editing Marvel performs opportunistic pro- 
of the expected extent of the con- tasks to the user’s agenda. cessing, which means it undertakes simple 
sequences and requests confirmation to Implicit queries are made when the re- development activities so programmers 
go ahead with the editing. Marvel can use suit of the query provides insight into ex- need not be bothered with them. In our 
the same information to check if the af- petted activities, making the user aware of model only menial activities are auto- 
fected components are accessible (have the potential consequences of his actions. mated, such as determining when the 
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source code has changed, invoking the 
compiler,andrecordingerrorsfounddur- 
ing compilation. 

Marvel performs an activitywhen the op 
portunityarises, between the time a user’s 
action causes additional processing and 
the time the user requests the results ofthe 
action. This form of assistance differs from 
intelligent assistants such as the Program- 
mer’s Apprentice (also known as 
KBEmacs’), which focuses on automatic 
program construction. 

In addition to objects, the object base 
maintains the process model that helps 
Marvel decide when to apply tools on the 
user’s behalf. The process model is an ex- 
tensible collection of rules consisting of a 
precondition, an activity, and many post- 
conditions. 

Marvel carries out its actions by inter- 
preting the rules in different ways. For- 
ward chaining lets Marvel invoke tools as 
soon as their preconditions are satisfied; 
backward chaining lets it find the tools 
whose postconditions satisfy the precondi- 
tions of other tools that have been acti- 
vated. 

The extent of this automation is control- 
led through strategies. Each strategy speci- 
fies a certain degree of assistance that isap 
propriate for a type of user or law of 
programming activity. For example, Mar- 
vel automatically performs different func- 
tions for an long-term user than it would 
for a novice. Similarly, Marvel may report 
on the use of undefined variables less fre- 
quen tlywhen new code iswritten than dur- 
ing test and debugging. 

It is important to realize two facts about 

the use of rules in Marvel. First, Marvel 
consists of a generic kernel. An instance of 
Marvel is created by supplying a descrip 
tion of the object base structure and the 
process model to the kernel. Second, only 
systems managers need to write object 
base descriptions, rules, and strategies. 
Users select from strategies defined for 
them to choose a desired behavior of Mar- 
vel. They can extend the set of strategies if 
desired. 

Rules. Marvel rules are based on condi- 
tion/action pairs. When the condition is 
true or satisfied, the action is applied to 
working memory (in this case, the object 
base). However, these socalled produc- 
tion rules are inadequate because they do 
not separate the invocation of a tool from 
the results produced by the tool, which we 
must do to integrate existing toolswithout 
modification. Therefore, we divide a rule 
into three parts: a precondition, an activ- 
ity, and a postcondition. 

Figure 1 shows a compile rule that il- 
lustrates the properties of these three 
parts. 

Preconditions. A precondition is a 
Boolean expression that must be true 
before an activity can be performed. The 
operands of a precondition are objects 
and their attributes. 

In Figure 1, notcompiled(module) is a 
precondition for the compile-module ac- 
tivity. Assuming that static semantic analy- 
sis and code generation are separate activi- 
ties, the precondition also requires all 
semantic analysis to have completed 

notcompiled (module) and 
for all components c such that in(module, component c): 

analyzed (component c) 
( compile module ) 

compiled (module) I 
errors(module); 

in(module, component c) 
{edit component c) 

notanalyzed(component) and 
notcompiled(module); 

Figure 1. Compile rule and edit rule. 
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successfully. This takes the form of “for all 
components c such that in (module, com- 
ponent c): analyzed(component c),” 
where analyzed(c) is true only if the analy- 
sis of component cdid not find any errors. 

Activities. The activity part of a rule rep 
resentsan integral development task, such 
as compile module and edit procedure. 
Activities are medium-grained: Low-level 
editing commands applied during the 
course of an edit-procedure activity are 
not considered activities. Nor are high- 
level commands, such as “fix bug,” be- 
cause they involve many tasks and perhaps 
many users. 

In the object base, each activity is associ- 
atedwithatool thatcarriesitout. Each tool 
hasanatuibute thatdeterminesifitcan be 
invoked by the environment without 
human intervention. For example, the 
compile-module activity is associated with 
the compiler, which can be invoked auto 
matically; the edit-procedure activity is as- 
sociated with an editor, which requires 
human interaction. 

Postconditions. A postcondition is an 
assertion that becomes true when an activ- 
ity is completed. A postcondition can con- 
sist of several alternative assertions. Each 
alternative reflects a different result of the 
activity. For example, the compile rule in 
Figure 1 shows compiled (module) and er- 
rors(module) as the two possible asser- 
tions, capturing the fact that compilation 
may succeed or fail. The postcondition al- 
ternatives are mutually exclusive - only 
one gets asserted, based on the result of 
the activity. Both preconditions and post- 
conditions are written as well-formed 
formulas in first-order, predicate calculus. 

Our rules are similar syntactically to 
Hoare’s assertions,’ where a program- 
ming language construct is associatedwith 
its preconditions and postconditions. If 
the preconditions are true before the lan- 
guage construct is executed, the postcon- 
ditions will be true afterward. However, 
the semantics of Marvel’s postconditions 
differ from Hoare’s in that the purpose of 
the postcondition isnotverification, but to 
update the object base. 

Controlled automation. Forward and 
backward chaining contribute to oppor- 
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tunistic processing by letting Marvel use 
rules to determine what needs to be done 
and what can be done automatically. 

Fomurd chaining. If the preconditions of 
an activity are satisfied and the activity is 
one that it can perform, Marvel does so 
without human intervention. This be- 
havior is similar to language-oriented edi- 
tors, which automatically perform actions 
like type checking and code generation 
when a user makes a subtree replacement 
in a program’s abstract syntax tree. 

Marvel would interpret the rule in 
Figure 1 to mean that the assistant may 
compile all modules M if all the compe 
nents of Mhave been analyzed successfully 
andMhasnotyetbeencompi1ed. Ifamod- 
ule was previously unsuccessful at compil- 
ing, the postcondition errors(module) 
will be true. The compile-module activity 
will not be reported unnecessarilywhile er- 
rors(module) is true, because the precon- 
dition notcompiled (module) cannot be 
satisfied. If the user edits a component to 
fix the error, the edit activity will cause 
notcompiled(module) to be true again, 
and compilation can be attempted. 

Forward chaining means Marvel can 
perform this second attempt at compila- 
tion when that precondition is satisfied. It 
does not have to perform the activity as 
soon as the preconditions are true or at 
any particular time thereafter. However, it 
may go ahead and apply the tool, and use 
forward chaining to determine additional 
activities whose preconditions are now 
satisfied as new postconditions are 
generated, using otherwise idle comput- 
ing resources. 

Backward chaining. If a user invokes an ac- 
tivitywhose preconditions are not satisfied 
(execute program, for example), Marvel 
looks for activities it can perform to 
generate postconditions that would satisfy 
the preconditions. It uses backward chain- 
ing to do so; this is similar to Make. 

When a user requests regeneration of an 
executable system after changes have been 
made to its source code, Marvel uses de- 
pendency information it maintains in the 
object base to determine which modules 
must be recompiled. Of course, it may not 
be possible to satisfy all the preconditions, 
and in this case the user is informed of the 
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not reserved(modu1e) and saved (module) 
( reserve module I 

reserved(module,userid); 

reserved(module, user-id) 
( change component ) 

notanalyzed(component) and notcompiled(module); 

for all components k such that in (module, component k) 
and uses(component k, component c): 

reserved(module, userid) 
1 change component c ) 

Fore 2. Change rules and reserve rule. 

problem. Marvel is not expected to find problem. Marvel is not expected to find 
and repair bugs, for example. In general, and repair bugs, for example. In general, 
Marvel will not automatically perform ac- Marvel will not automatically perform ac- 
tivities that invoke tools requiring human tivities that invoke tools requiring human 
intemention. intemention. 

Consider the case of a large program- Consider the case of a large program- 
ming team where multiple users are not ming team where multiple users are not 
permitted to change the same module at permitted to change the same module at 
the same time. This might be handled with the same time. This might be handled with 
a rule like that in Figure 2, which requires a rule like that in Figure 2, which requires 
each user to reserve a module before each user to reserve a module before 
changing it. The preconditions for the re- changing it. The preconditions for the re- 
serve-module activity are (1) the module serve-module activity are (1) the module 
hasnot been reserved (not reserved(mod- hasnot been reserved (not reserved(mod- 
ule)) and (2) the module has been saved ule)) and (2) the module has been saved 
by the versioncontrol tool (saved(mod- by the versioncontrol tool (saved(mod- 
ule)). ule)). 

The second rule in Figure 2 states that The second rule in Figure 2 states that 
the changecomponent activity cannot be the changecomponent activity cannot be 
done unless the module that contains the done unless the module that contains the 
component is reserved. The changecom- component is reserved. The changecom- 
ponent activity lets the user modify the ponent activity lets the user modify the 
specification of a component, as opposed specification of a component, as opposed 
to edit component, which lets the user to edit component, which lets the user 
modifji the component’s body only. modifji the component’s body only. 

The third rule in Figure 2 states that not The third rule in Figure 2 states that not 
only should the containing module be re- only should the containing module be re- 
served, but the user must reserve any other served, but the user must reserve any other 
modules whose components use the com- modules whose components use the com- 
ponent that will be changed (c and k are ponent that will be changed (c and k are 
two objects of the same type). Backward two objects of the same type). Backward 
chaining lets Marvel automatically reserve chaining lets Marvel automatically reserve 
any modules whose components may be any modules whose components may be 
modified to remain consistent with the modified to remain consistent with the 
changed component. It also prevents the changed component. It also prevents the 
user from modifying the specification of a user from modifying the specification of a 
component when other modules cannot component when other modules cannot 
be reserved (according to the first rule), be reserved (according to the first rule), 
which means that someone else is cur- which means that someone else is cur- 
rently working on them. Thus, the user rently working on them. Thus, the user 
does not start a job he may not be able to does not start a job he may not be able to 
finish. finish. 

Hints and strategies. When Marvel per- 

forms opportunistic processing, it must 
choose the degree ofautomation wisely. In 
otherwords, it mustadapt to theuser’scur- 
rentgoals.Todo this,Marvel selectsapprc+ 
priatepointson thespectrum between the 
earliest and latest time an activity can be 
performed automatically and disables au- 
tomatic processing when it gets in the 
user’s way. We have provided Marvel with 
hints and strategies to help it make these 
decisions. 

A hint is a rule with no postconditions. 
The preconditions of a hint are used to 
help Marvel decide when to apply a tool 
whose preconditions are satisfied. 

For example, it makes sense that Marvel 
should delay recompiling a module aute 
matically even when preconditions are 
satisfied if a user with modification rights 
is browsing the module. The rationale is 
that the user may decide to edit some com- 
ponents, and the generation of code will 
have been wasted. This is captured in a 
hint shown in Figure 3, giving this precon- 
dition for the compile-module activity. 
When Marvel foollows a strategy that in- 
cludes this hint, compilation is delayed 
until the user changes his focus to another 
module. 

Of course, the user must be allowed to 
invoke the compiler without changing 
focus to another module. That is why this 
precondition is stated as a hint, not as part 
of a rule. Hints apply only to the oppor- 
tunistic processing of the environment, 
not to user-initiated activities. In other 
words, hints are considered during for- 
ward chaining; ignored during backward 
chaining. 

A strategy is a collection of hints and 
rules that apply only when the strategy is in 
force. Marvel employs strategies by com- 
bining their rules and hints. One or more 
strategies may be employed at the same 
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not reserved(module) or 
< reserved(module, userid) and 
not equals(module, focus 
(user-id) ) > 

( compile module ) 

Figure 3.Compile hint. 

time. When this results in more than one 
rule for the same activity, all their precon- 
ditions must he satisfied, hut only one 
member of the set of postconditions may 
be asserted. 

Marvel cannot choose its own strategies. 
Instead, the user selects appropriate 
strategies by telling the environment 
something about his intentions: for ex- 
ample, that he is a manager versus a pro- 
grammer, developing a new software sy” 
tern versus maintaining an old software 
system, or making major changes versus 
making a minor revision. A strategy whose 
rules and hints result in automatic type 
checking immediately after each compo- 
nent is edited would he appropriate for a 
minor revision, hut not for a major change 
involving many interrelated components. 

Handling side effects 
Using a tooloften causes side effects. For 

example, the analysis tool invoked for the 
analyze-component activity may change 
the values of several component attri- 
butes. Setting the value of an attribute is 
considered an activity, resulting in a situa- 
tion where one action of Marvel is 
embedded inside another rather than 
being a consequence of forward or hack- 

ward chaining. This case demonstrates a 
limitation of Manrel’s rules: Secondary ac- 
tions whose arguments are not simple 
derivatives of the arguments of the precon- 
ditions or the activity cannot easily be ex- 
pressed as postconditions. 

Instead, potential side effects are indi- 
cated by tool attributes. In such cases, the 
secondary activities are often described by 
their own rules, and these must he con- 
sidered for further processing. 

Figure 4 shows some rules related to a 
component’s uses attribute. The uses attri- 
bute lists the other components the com- 
ponent depends on. The first rule gives 
the obvious preconditions and postcondi- 
tions for the analyze-component activity. 
The second rule states that a component c 
cannot use another component k unless 
component k is in the same module or is 
imported into the module. The third rule 
states that a component cannot he im- 
ported by a module Munless it is exported 
by another module N. The fourth rule 
states that a component cannot be ex- 
ported by a module unless it is in that mod- 
ule. 

Consider what happens when the analy- 
sis tool finds that procedure p (a compo- 
nent) calls procedure q (another compo- 
nent) and tries to set the uses attribute of 
procedure p to include procedure q. If q is 
in the same module asp, there is no proh- 

notanalyzed(component) 
{ analyze component ) 

analyzed(component) I 
errors(component); 

in(module, component c) and 
< in(module, component k) or imports(module, component k) > 
( component c uses component k ) 

uses(component c, component k); 

exports(module N, component) and 
not equal (module M, module N) 
( import component ) 

imports(module M, component); 

in(module, component) 
{ export component ) 

exports(module, component); 

Figure 4. Analyze rule, uses rule and import/export rules. 
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lem - the attribute is set and the analysis 
continues. 

If q is not in the same module, Marvel 
checks if it is imported. If q is not already 
imported, Marvel notes that im- 
ports(module, component) is a postcon- 
dition of the import-component activity 
(the third rule) and further realizes it can 
perform the importcomponent activity. 

So it considers the preconditions of the 
import-component activity. Marvel que- 
ries its object base to find the module that 
does contain q. If q is already exported 
from this module, Marvel importsit. If not, 
backward chaining lets Marvel follow the 
preconditions of this activity given in the 
fourth rule, add q to the exports of its mod- 
ule, import qinto the original module, and 
finally allow the analysis tool to set the uses 
attribute of p. 

This is only one possible strategy It ig- 
nores the possibility that distinct proce- 
dures named q might be found in more 
than one module. Sometimes language- 
specific typing information can narrow 
the possibilities, hut Marvel usually must 
interrupt the user to explain its dilemma 
and ask which qis intended. 

Another possibility is that there is no 
component named qin the object base. If 
so, Marvel considers the add-component- 
q activity, whose postcondition is, of 
course, the existence of q. If permitted by 
the current strategy, Marvel could carry 
out this activity on its own by creating a 
stub for the procedure within the module 
where the use occurs. Or Marvel could ask 
the user to create the procedure (or its 
stub) before continuing the analysis, but 
this might he intrusive. 

The preferred solution is to inform the 
analysis tool of the problem and prevent it 
from performing the procedure-puses- 
procedure-qactivity. Thiscauses the analy- 
sis tool to terminate unsuccessfully, gener- 
ating the errors(p) predicate among its 
postconditions 

In the above discussion, import compo- 
nent and export component do not re- 
quire human interaction, so Marvel can 
carry out the repairs. An alternative 
strategy requires the assistant to take the 
imports and exports as given. This might 
be appropriate for languages such as Ada 
that include their own module constructs, 
where reference to an external compo- 
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nent without the appropriate With clause 
should he detected as an error. A second 
alternative would require Marvel to ask the 
programmer if q is a typographical error 
before carrying out all the previously de- 
scribed actions. 

Over time the modular structure of sys- 
terns degenerates. For systems written in 
languages with explicit export/import 
declarations, such as Ada, the number of 
these declarations tends to increase, even 
though some imported components are 
no longer used. 

Marvel can maintain such old code by 
providing both rigid and flexible strategies 
in the same environment. Flexible strate- 
gies let it reflect the actual usage ofcompe 
nents automatically in the export/import 
lists, removing unnecessary exporh/im- 
ports and adjusting exports/imports as 
the code is being reorganized. Rigid strate- 
gies provide stability during development 
phases such as testing and integration by 
taking the export/import declarations as 
givens to he checked against. 

In Figure 4, Marvel implicitly queried its 
object base to locate procedure q. Implicit 
queries are necessary to determine if pre- 
conditions are satisfied and to find the 
next rules to be applied in forward and 
backward chaining. Implicit queries are 
also used to anticipate the postconditions 
ofactivities.ThisletsMarvelnotifytheuser 
as soon as a user action is likely to lead to 
adverse results. 

Consider the two rules in Figure 5. 
Through forward chaining, changing a 
component will lead to semantic analysis, 
which may result in errors. When a user in- 
vokes the editor on a particular compc+ 
nent with the change-component com- 
mand, he indicates to Marvel his intention 
to modify the component specification. 
Marvel notices that forward chaining after 
the completion of the editing activity 
would propagate to other components 
based on the used-by attribute, whose re- 
processing might result in error. 

Instead of letting the user edit the com- 
ponent specification blindly, Marvel can 
query the object base and inform the user 
of the potentially affected sites. This lets 
the user abort his change-component 
command if he was not aware of the poten- 
tial damage caused by the intended 
change. 
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Adding knowledge to tools 
Make’ has a simplistic world model consisting of files and command lines. A Make file de- 

fines dependencies among files and gives the command lines for restoring consistency 
among dependent files. Make’s notion of consistency is based entirely on files and time: If the 
time stamp of an input file is later than the time stamp of an output file, then the indicated corn- 
mand line is passed to the Unix shell. Make is widely used for generating a new executable 
version of a system afler one or more source files have been modified. 

However, Make’s knowledge is primitive. its object base consists of files that have a single 
attribute, their time stamp. Make does not know anything about applying tools to files; it just 
handles command lines as indivisible strings. Make does not have any understanding of 
source versus object files, of modules versus systems, of programmers or of programming. 

How can we add this knowledge to Make? 
First, anotionof anobjectisdefined, whereeachobjectbelongstoaclass. Oneclass might 

be system, while another might be module. Each class defines the attributes, or properties, 
of its objects. For example, a module-object-code object might have a history attribute that 
describes how it was generated and a derivation-of attribute that points to the object repre- 
senting the corresponding source code. 

Rules would then be added to model the part of the development process relevant to Make. 
One rule might be that a programmer object can modify a module object; another might state 
that after such a modification, the module object is no longer consistent with its derivation at- 
tribute and there is an obligation to restore thisconsistency. Athird rule might state that a pre- 
condition for a programmer to test a system is that all module object code objects that are 
components of the corresponding executable system must be consistent with their module. 

If Make were armed with this knowledge, then it would be more intelligent than it is now. It 
would then be easier to integrate Make with other tools that support configuration manage- 
ment, version control, and task management, assuming all these tools were similarly aug- 
mented with knowledge of software objects and with understanding of their roles in the 
development process. 

The Cornell Program Synthesize6 also has a simplistic world model, consisting of nodes 
in a parse tree. The nodes have types, such as program and identifier. 

When an identifier node is inserted as a child of an expression in the parse tree, the Syn- 
thesizer compares the identiiier’s name with the names defined in the symbol table. If not 
found, the part of the display corresponding to the new node is highlighted; the highlighting is 
removed when a matching identifier node is inserted as a chi!d of a declaration. 

The immediate feedback provided by the Synthesizer makes it easy to correct static 
semantic errors while the programmer is still in the context of editing a program. 

The primitive knowledge of the Synthesizer has been somewhat improved in the Synthe- 
sizer Generator.3 The Synthesizer Generator uses a knowledge base that defines classes 
of nodes such as expression, attributes of nodes such as type, and equations that specify de- 
pendencies among attributes. 

The language-based editors produced by the Synthesizer Generator automatically reeval- 
uate the attribute equations whose input attributes have changed in value. However, these 
editorsdo not know that the purpose of updating attributes to provide immediate feedback to 
programmers about static semantic errors and to incrementally generate the object code 
needed to test the program. With this understanding, the editors could, for example, sepa- 
rate error detection from error reporting according to whether the programmer is making 
many changes or only one; in the first case, the programmer is unlikely to want to hear about 
errors after every keystroke. 

This knowledge could be added to the Synthesizer Generator and the language-based 
editors it produces via rules that model the part of the development process relevant to pro- 
gram editing. One rule might be that a programmer object can modify the parse tree repre- 
sented byaprogramobject. Asecondrulemight state thattheeditor hasanobligation tonotify 
the programmer of any errors in the program; another might say that a precondition for a pro- 
grammer to resume execution of program is that no substantive changes have been made 
to any procedure already on the runtime stack. 

Adding this kind of knowledge to the Synthesizer Generator would make as editors rela- 
tively intelligent. For example, they could then simulate attribute reevaluation at appropriate 
points to obtain insight into the consequences of the programmer’s actions and warn the pro- 
grammer about changes that invalidate the internal execution state of the debugger. 
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reserved(module, userid) 
( change component ) 

notanalyzed (component) and notcompiled (module) ; 

notanalyzed(component) 
{ analyze component ) 

analyzed(component) I 
errors(component); 

Figure 5. Change and analyze rules. 

A sample session 
Figure 6 shows a snapshot of Marvel in 

the middle ofaprocedure edit. The screen 

favorite editor; in this case, Emacs. The 
bottom of the screen shows icons that are 
part of the X Windows system. 

has two windows: In the large window is a The transcript in the largewindow shows 
transcript of a session in which the user is interactions between the user and Marvel 
interacting with the Marvel command in- that demonstrate some of Marvel’s be- 
terpreter. The window is scrollable, so the havior. At the beginning of the session, the 
complete transcript is accessible. In the user enters an existing workspace to mod- 
small window Marvel presents an item in ify a system, in this case an interactive pro- 
the object base for the user to edit using his gram for fractional arithmetic. This work- 

space is a Marvel database that is private to 
the user. It is connected to a public 
database, where the baseline version of the 
software resides. 

One module has previously been re- 
served from the public database and made 
available for modification in the private 
workspace. All other parts of the system 
that physically reside in the public 
database are accessible transparently for 
reading. 

The user’s attention is focused on the 
object that represents the whole program, 
which is indicated by the prompt showing 
the system name - Fractions. First, the 

crh 

ad,ng data base /usr/users/phF/fractions.phf 

terlng private database in wrrte mode 

ract1ons1: pr,nt. modules 

List of Modules: 
: 

BasicOps Tool.9 My10 TYP- 
CommandInterp strrng Their10 MlSC 

ractlonsl: module ElaslcOps 
I 

3;lCOpSl: print allmodule 

~lodule BasrcOps: 
List of procedures 

add subtract 
help quit 

:. 

multiply divide 
rntroductlon 

LlSt Of ObJeCts 
operator 

Exoorted ,temr 
add 
help 

~s~cOps1: chance 
at Cdrclarat~onl: 
pm [add]: qu,t 

subtract 
quit 

multiply 

Module CmandInterp mports quit. and It IS not reser 
Cannot capletc this convnand. introduction< ): 

ii1c0pr1: reserve CarmandInterp 

Reserue from /utr/urerr/phf/Fractions? Cyenl 
Reservlnp Module CommandInterp 

3slcopsl: change dcclaratlon quit 

Module CmandInterp mports quit 
Continue? Cyesl: 

Edltlng declaration of quit in BaslcOps 

Update affects Module CanmandIntcrp procedure cl 
quit(ttORMQL); 

Comp,le’ Cyes1: no 

lcOps1: edit cl 

qutc ): 
return : 

3 

if (OP == 
‘h’ 88 useMenu) 

help( 1: 
continue: 

3 
first = getfract( 1; 
second = cetfract( ); 
switch ( op ) 

E 
case ‘a-: 

cl 1s not an item in current module. 
Move to module CmandInterp~ Cyesl: 

answ;r(flrst,” + ” ,second,add(flrst,second)): 
break; I 

Editing ci in CmandIntcrp 

Figure 6. A Marvel screen. 
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user requests a view of the system, namely, 
its list of modules. The user then focuses 
on the BasicOps module, and the prompt 
changes. 

Now the user requests another view, in 
this case a more detailed view of a particu- 
lar module. Because the user did not 
specify a module name, the system chose 
the module in the current focus. The re- 
sultisaviewshowingall thecomponentsof 
the module (several procedures and an 
object; the module does not contain data- 
type definitions), and a list ofcomponents 
that are available externally as part of the 
module specification (exported items). 

With the Change command, the user at- 
tempts to modify the Quit procedure’s 
specification. The system prompts for 
missing command parameters, providing 
defaults. Marvel first performs an implicit 
query to determine the consequences of 
the planned change. The user isinformed 
that the Quit procedure is used by another 
module for which the user does not have 
modification rights. Under the default 
strategy, chosen by the user, Manrel does 
not reserve the module, but aborts the 
command. 

The user then explicitly reserves the 
module. Marvel confirms that the module 
is to be reserved from the public database, 
and a second modification attempt 
succeeds. The user is informed which 
components are potentially affected 
before the actual editing, and is asked after 
the modification if the aRected compo 
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nents should be analyzed and compiled as 
well. Because the user expects to correct 
the affected procedure, he declines the 
offer. 

The modified component is analyzed 
and compiled in the background, while 
the user issues the Edit command to make 
a local modification to the Ci procedure. 
Marvel changes the focus to the appre 
priate module, displays the procedure 
specification, and presents the user with 
the proc zdure body in the editor window. 

T he model embodied in the Marvel 
environment formalizes the con- 
cepts of insight and opportunistic 

processing by 
l maintaining all knowledge about both 

the specific development effort and the 
generaldevelopmentprocessin theobject 
base, 

l making multiple views of the object 
base available both to users and tools, 

l modeling the development process as 
rules that define the preconditions and 
postconditions of development activities, 
and 

l gathering collections of rules into 
strategies. 

This lets Marvel provide software-engi- 
neering environments that intelligently 
assist development and maintenance ef- 
forts by individuals and teams of users 
through controlled automation, using 
available development tools. .:. 
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