
INTELLIGENT ASSISTANCE

Intelligent Assistance
for Software

Development and
Maintenance

Geil E. Kaiser, Columbia University
Peter H. Feiler, Software Engineering institute
Steven S. Popovich, Columbia University

Using relatively simple
technolo~, Marvel

understands the
user’s actions and

their consequences. In
many cases it will do
tasks automatically,

lightening the
woMoad.

I n a 1973 article, Terry Winograd wrote
of his dream of an intelligent assistant
for programmers.’ The fundamental

requirementforanintelligentassistant, he
wrote, is that it understand what it does.
That is, it should be based on an explicit
model of the programming world.

Winograd described an imaginary pro
gramming environment that would pro-
vide early error checking, answer ques-
tions about the program and the
interactions among program parts,
handle trivial programming problems,
and automate simple debugging tasks.

We have developed an environment that
handles the first two duties, early error
checking and answering questions about
programs. Our environment has a certain
understanding of the systems being devel-
oped and how to use tools to produce soft-
ware. It aids individual programmers and
helps coordinate programmer teams.

Our assistant’s knowledge is described
in a model and achieves intelligence byin-

terpreting the model. We have not yet ap
plied the model of this environment to
other project aspects, such as project man-
agement, which are handled by some inte-
grated project support environments.

Our model draws from research into
software engineering and artificial intel-
ligence. From software-engineering re-
search, we gained experience in building
and using particular tools and environ-
ments in specific development processes.
From artificial-intelligence research, we
discovered suitable structures to repre-
sent knowledge about software entities
and the role of tools in the development
process.

The result is Professor Marvel-Marvel
for short-an environment that supports
two aspects of an intelligent assistant: It
provides insi& into the system and it ac-
tively participates in development
through opportunistir procussing. Like its
fictional counterpart, the Kansas magi-
cian who turned out to be the wizard in 7%

40 0740-7459/88/0500/!3040/$01.00 01988 IEEE IEEE Software

Ilamcl’s roots and the protot!l,e iniplc-
mentalion is tlcscl-ibed in the box on p. 4.3.
;\ 11101-c‘ rlaborat~ implrmcntation that
will extend Mmcl’s concepts to nonpm
gl-amming activiti?F is under way.

Key components
To fulfill ~t’inograd’s fundamental re-

quirement, an intclligcnt assistant must
~~nderstands what it does. Ifowcver, thrrc
is a spectrlun of intelligent systems. Most
softbvarc tools are moronic assistants that
know bvhat to do but do not Luldcrstand
the p~~posc of the objects they manipulate
or-how lhcii- tasks fit into the devr~oprne~~t
p~n~ess. In othc1-M.ords, thrv know the 1zow
1,111 do no1 undei-ctand the 7041~.

;\dcvcloprricnt eii\.iroiiiIi(‘Iitcanliottiii-
derstand \vhy it pciforins an activi?. unless
it knwvs

l the propcrtica of.thc objects it manipu-
lates,

l thes~atcm’stoolsand~tcti~itics, and the
objects the! manipulate.

l the preconditions under Lvhich a tool
w~acti\ity can be activated, and

l the 1-esul~o1-postco1~ditionsof~cach ac-
ti\ilv (the state ofdevelopment after an ac-
li\it\ tei-minatcs),

Object base. .Ilar~el has two kc! cornptr
~lcnts. The first is a database that stores
data repi-csented m objects, as in object-
oriented lang~~ages. This object base
maintains all the entities that are part of
the evolving system, all the information
about the history and status of the pr-eject,
and all the tools used in development and
niaintenance.

The object base dcfincs the object
classes and the relationships among oh
.jects (such asoncobject isacornponentof
anorhcr and Tvhcn applied to another oh
ject uill PI-oducc a third). The object base

is active: ;\ccessing objects may triggri- ac-
tion.

Process model. The second key comptr
ilent is a model of the developmcllt
prcjcess that imposes a sti-ucture on pi-tr
gramming activities. The model is an ex-
ten5iblc collection of‘ rules that specify the
conditions that mubt exist for particulai-
tools to be applied to particular objects.
Some rules are relerdnt only uhen a user
imukes a tool, others appl! \vhcn the e11-
vironmcnt initiates tool processing, and
still others apply equally to both cases.

Interpretation through forward and
backward chaining lets the environment
perform activities automatically when it
knows the I-esults of these activities \\ill

MostsoBware tools are
moronic assistants that
know the how but do not

understand the why.

soon be required bp the user.
Rather than add intelligence to iI)-

dividual tools, the model encapsulates all
the intelligence in the en\iron1nent, so it is
not necessary to modify the too1.s. The box
on p, 47 illustrates the potential for intel-
ligent assistance b!,descr-ibing holy an ob
ject base and a development model en-
hance Tao well-known programming
tools.

Insight
Ma<1 has insight, which means it is

atvar-e of the user’s activities and can anti-
cipate the consequences of these activities
basedon an understandingofthedrvelop
ment process and the produced softwat-c.

Insight lets individual programmers be-
come informed more quickly about the

stI-ucttwc and rc~laliol1ship~ iii tt1c v)ftM.;t1 c
product, to be ‘iwa1-c of’tllc co11scqw’ll~ c’s
and side ef’fvc 1~ of tl1cir LISkS, ;mtl to 1,~’
gllided in the job 01 makitlg CVCI~ 1najol
change\ to a s~~lrni and gettiiig it bat-k
into ;I consistt~ilt btiltt’.

Insight also helps (oordinatc the activi-
ties of multiple programmcr~ So they can
accomplish tlltir-trL~kb\~itllollt intcl-fcring
Irith each othc1; knorzing that the 1~cslllt.~
of simultancot~\ \SOI-k \\,ill be co1i1bii~cd iii
a contr-olled \\;iF.

The t\vo key elcmcnt~ that support in-
sight arc a rich, \tl-iicturcd infol-mation Ie-
pository and ;I set of mechanisms that
make appl-opAate infor-marion ;l~Glablt
at appropi-iate times. The infoi-mdtioll rc-
pository is the object l)asc. The acccsb
~ncchanismsf’~~ll into [MY) catcgoi-icr, those
that supp01-t (Iii-ccl access 01 bI-ow3ing,
and those thar \LI~JXKI I-wic\al.

Object base. Mar~~el’~ object ba.s<’ is COII-
cepluallv r.clatc.d to object-or-icntcd pI-(F
gramming languages. in that each object
is an instance of’s class tlut tic4ines its t\pe.
The object baw contains a set of’objc.c.Ls
that represent both the wstcnl and its dc-
velopmcnt historY. Object t)pcs include
niodulr, pi-OC~~LII-c. tvpe, design dcscrip
tion, user manrial, aiid dcwlopmcnt step.
Typing lets Rlarvcl provide an ol?jcct-
oriented L~SVI- intcrfacc: ‘I‘hc cnvii-onment
makes axi1;11,1~ onI\ thcw ~~onlminds
that are relwa1lt to the object under ~OII-
sidcration, ~vithin thccontrx~ ofthc IIECI.‘S
recent actiCti0.

Howevc~-, kmlike mo$t ot?jec.t-ol-ieIltecl
languages, I\lar-vcl‘\ oI~jcct baw is peGi-
tent: It retainsiostate acrossin~ocationsof‘
the cn\ironmcnt. This ICLS Mancl provide
a file-less enwi-onment. Rlar~el exposes iLs
users onlv to the logical entities compris
ing the tar-get system, not to the physical
storage organization of directories and
tiles. Other knowledge-based environ-
ments offer similar capabilities in lhcir
database support.’

May 1988 41

Each class defines certain properties of
an object and inherits other properties
from its superclass or superclasses. Some
properties, called attributes, define the
contentsandstatusofobjects. Other prop
erties, called methods, define the develop
ment activities applicable to the objects of
a class. Attributes may be simple values (in-
tegers and strings) or they may represent
relationships with other objects.

Simple attribute values include object
names, object status (such as if it has been
analyzed for static semantic errors), and
string entities (such as piecesofsource text
or binary object code). Attributes that rep
resent relationships include the logical,
syntacticstructure (forexample, amodule
is composed of procedures, types, and vari-
ables) , semantic dependencies (such as in-
tended use - indicated by the import
clauses of modules-or actual use as dem-
onstrated by the invocation of a proce-
dure). Relationships are bidirectional by
default, which permits more flexible
querying. A user can ask for all uses of pro
cedure pas well as all uses of other proce-
dures by procedure p.

All information about objects is main-
tained in the object base, and inferred or
derived by Marvel where possible. Users
are spared the tedium of entering redun-
dant information.

Information access. Information in the
object base is accessed for two reasons: (1)
viewing and querying and (2) modifica-
tion. Both users and tools may access infor-
mation.

Users generally modify the structural
hierarchy, the names of objects, and
source-text attributes through aview ofthe
objectbase.Aviewisthesubsetofinforma-
tion in the object base that is currently rel-
evant. Other attributes (analysis status or
use relationships) aremaintained by tools
to reflect the current state of the target sys-
tem. Users can also browse and query this
auxiliary information.

Browsing. Browsing takes place accord-
ing to views. The default view is the logical
structure (the library-module-component
hierarchy) of the target system. For ex-
ample, the user sees program libraries
containing modules, which in turn con-
tain other modules or indivisible compe

nents (procedures, types, variables, and so
on).

The user navigates through this struc-
tural hierarchy just as he navigates
through directory structures in file sys
terns. However, limited bandwidth prohib
its exposing the user to the complete struc-
ture at once (unless we use very small
fonts!), which is generally all right in any
case because of information overload.

Views can be displayed and browsed
many ways. In Marvel, objects and their
parts have selectable textual repre-
sentations. By selecting such an entity, the
user specifies the current focus and by
doing so determines processing and com-
mand selection. Hence, Marvel has an ob
ject-oriented interface.

Marvel tries to balance the amount of in-
formation presented to the user. Oneview
displays a single level of the structural hier-
archy. If the user selects an object to edit, it
can be opened for viewing if the compo
nent represents a reference to another ob
ject. The newly opened object can be
viewed in the current window or in
another window.

Another view shows multiple levels of
the hierarchy at once. This lets Marvel re-
spond touserrequestsformorecontextin-
formation, reducing the need for re-
peated user queries or browsing
operations. For example, a view of a mod-
ule’s content contains the names of the
component objects and their type
(whether they are procedures or docu-
ments). Similarly, Marvel provides visual
feedback of values for certain essential at-
tributes (if a module contains an error, for
example), thus eliminating additional
queries while still avoiding information
overload.

Marvel also lets the user navigate by fol-
lowing crossreferences, such as opening
the specification of a module referenced
in the import list ofanother module. Such
cross-link browsing capabilities make it
easier for the user to get an impression of
the context of a piece of software.

In summary, the browsing capability lets
the user manually navigate through the
object base, changing the focus. This lets
Marvel track user actions, anticipate con-
sequences, and help the user copewith the
consequences. However, manual naviga-
tion is inadequate for general search tasks.

For example, if the user maintains a system
with 150 modules, trying to find the three
modules with outstanding errors can be a
tedious task if done by browsing. A general
querying capability combined with a
browsing capability solves this problem.

@K&S. A general answering capability
supports searches of the object base ac-
cording to conditions phrased in a stylized
command language: “Retrieve all software
objectswith proper name x,“for example,
or “Retrieve all modules that contain er-
rors.”

The search space can be constrained sev-
eral ways. One way is through particular
search conditions, such as by object type or
attribute value. Another way is to limit the
the search to a particular substructure,
such as searching a procedure in a partic-
ular library. Marvel also prunes the search
space by using dependency information,
such as import and actual procedure use.

Queries may be explicit or implicit. Ex-
plicit queries are initiated by the user. Mar-
vel has predefined, short forms of com-
mon queries, such as:

l What components use a particular
function?

l Are certain components not used at
all? (Useful during maintenance and
cleanup.)

*Which components (or modules) have
errors?

l Which components have a particular
error? and

l Is anybody else intending to or modify-
ing a particular component (or module)?

Such queries let the user get an impres
sion of the structure and connectivity of
the software to be modified or main-
tained.

Implicit queries are initiated by Marvel
for several reasons. It does so when it en-
counters an exceptional condition and
needs essential information to repair the
problem. For example, if the user wants to
edit procedure p, but procedure pis not in
the module currently in focus, Marvel que-
ries the object base for a procedure named
p. If the query returns a unique element,
Marvel can change the focus; if there are
many procedures named p, Marvel asks
the user to choose one.

A second reason for Marvel to generate
implicit queries is to present a query result

42 IEEE Software

Marvel: Past, present, and future
Marvel’s concepts are based on our experience with another en- Forward chaining, backward chaining, and the abillity to turn strate-

vironment that provided assistance to users. We extracted the proper- gies on and off are implemented through an interpreter that works
ties that made that environment an active assistant into Marvel’s directly with the structures produced by the rule compiler. This rule in-
model. terpreter takes a simple approach for processing rules rather than em-

The concepts of this model have been validated through a first pro- ploying a match network mechanism; the entire condition of every
totype implementation, based on the earlier environment, that sup- applicable rule is rechecked whenever a relevant predicate or relation
ports the rules and strategies. This prototype has been followed by an is asserted or negated. To support the rule interpretation, we added
implementation with full object base support and dynamicextension of some attributes and relations to Smile’s hard-coded object base.
the object base structure and the set of rules and strategies. The performance resulting from this simple-minded approach is un-

acceptable for large numbers of rules and large object bases, but was
Marvel’s ancestry. In the late 1970s and early 198Os, we and other satisfactory for processing the rules describing Smile’s behavior. For-

members of the Gandalf project developed a multiuser, software-engi- ward chaining proceeds breadth-first using a queue of rules whose
neering environment called Smile.’ Smile, which supports program- preconditions are satisfied. Backward chaining is depth-first, attempt-
ming in C and runs on Unix, has been used on the GandalP and ing to derive the desired postconditions of one candidate rule before
Gnome3 projects at Carnegie Mellon University and by the lnscape trying an alternative rule.
projecP at AT&T Bell Laboratories, and has been distributed to at least Once the object base and the rule compiler and interpreter were in
40 sites. place we were able to capture Smile’s knowledge about programming

Smile passes the crucial test of supporting its own maintenance. It activities and their automation in rules and strategies and replace the
hassupportedthesimultaneousactivitiesof sevento lOprogrammers. hard-coded knowledge. The working prototype provided us with feed-
The largest system developed and maintained in Smile has about back for improvement in a number of areas. These were taken into ac-
61,000 lines of source code. count in a second implementation of Marvel.

Smile is a relatively intelligent assistance. It supports insight and op-
portunistic processing. It provides a file-less environment to its users, Looking into the future. After the concept prototype of Marvel was
answers queries, coordinates the activities of multiple programmers, completed at SEI, an implementation of Marvel that is independent of
and automatically invokes tools. It hides the particulars of the Unix file the Smile implementations was begun.
system and utilities and presents its own model of the programming One version of this implementation is operational. It includes en-
world. Smile’sobject base is implemented through acombination of file hancement of the rule interpreter and an extensible object base. In this
system and in-core object structure that is kept persistent in a file. implementation, the rule interpreter supports consistency checking
Smile’s knowledge of software objects and the programming process and merging of strategies as they are loaded dynamically, as well as
is hard-coded into the environment, dynamicunloadingof strategies. The new object basesupportsobject-

class hierarchies and dynamic extensibility of structures stored in the
Marvel’s proof of concept. We chose first to validate Marvel’s con- object base. We have published details of this object-base imple-

cept of rules and strategies. We started with Smile forthe prototype im- mentation.5
plementation. This lets us concentrate on the implementation of the Our work is progressing in several areas. We are adding multiple-
rule-processing facility with minimal extensions to Smile’s simple ob- user support to the new object-base implementation. We are investi-
ject base, yet still gave us an operational environment prototype. It also gating concurrency and recovery supportthrough long transactions. To
let us compare the prototype with the original Smile system, which has support Smile’s capability of background processing, we areconsider-
been in use for several years. ing extending the rule interpreter to allow concurrent rule firing.

This implementation of Marvel replaced Smile’s hard-coded knowl-
edge about the software-development process with rules. Rules and
strategies are written using a text editor, and the text file is parsed by a References
rule compiler.

The rule compiler translates rule preconditions and postconditions

1. G.E. Kaiser and P.H. Feiler, “Intelligent Assistance without Artificial Intel-
ligence,” Pfoc. Compcon, CS Press, Los Alamitos, Calif., 1987, pp. 236.
241.

into(1)a”fast-1oad”syntax treeand (2) symbol-tablestructures that link
each occurrence of a predicate or a relation in a precondition with a

2. A. Nice Habermann, D. Notkin, “Gandalf: Software-Development En-
vironment,” /EEE Trans. Soffware Eng., May 1985

potentially satisfying postcondition and vice versa, and also link these
predicates and relations to each relevant rule.

A rule set and strategy can be loaded at start-up and additional
strategies can be loaded later, but there is no checking among simul-
taneously used strategies. Individual rules can be separately turned on
and off.

3. D.B. Garlan and P.L. Miller, “Gnome: An Introductory Programming En-
vironment Basedon a Family of Structure Editors.“SlGPlan Notices, May
1984, pp. 65-72.

4. D.E. Peny, “Software Interconnection Models,” Prcc. IntlConf. Software
Eng., CS Press, Los Alamitos, Calif., 1987, pp. 61-69.

5. G.E. Kaiseret al., “Database Support for Knowledge-Based Engineering
Environments,” /EEE Expel?, Summer 1988.

to the user automatically. For example, say been reserved by the user) for modifica-
a user gives the command to edit the speci- tion. The result of this query can again be

Opportunistic
fication of a module component that is presented to the user, or Marvel can at- processing
being exported. Marvel informs the user tempt to reserve and/or add new editing Marvel performs opportunistic pro-
of the expected extent of the con- tasks to the user’s agenda. cessing, which means it undertakes simple
sequences and requests confirmation to Implicit queries are made when the re- development activities so programmers
go ahead with the editing. Marvel can use suit of the query provides insight into ex- need not be bothered with them. In our
the same information to check if the af- petted activities, making the user aware of model only menial activities are auto-
fected components are accessible (have the potential consequences of his actions. mated, such as determining when the

May 1988 43

source code has changed, invoking the
compiler,andrecordingerrorsfounddur-
ing compilation.

Marvel performs an activitywhen the op
portunityarises, between the time a user’s
action causes additional processing and
the time the user requests the results ofthe
action. This form of assistance differs from
intelligent assistants such as the Program-
mer’s Apprentice (also known as
KBEmacs’), which focuses on automatic
program construction.

In addition to objects, the object base
maintains the process model that helps
Marvel decide when to apply tools on the
user’s behalf. The process model is an ex-
tensible collection of rules consisting of a
precondition, an activity, and many post-
conditions.

Marvel carries out its actions by inter-
preting the rules in different ways. For-
ward chaining lets Marvel invoke tools as
soon as their preconditions are satisfied;
backward chaining lets it find the tools
whose postconditions satisfy the precondi-
tions of other tools that have been acti-
vated.

The extent of this automation is control-
led through strategies. Each strategy speci-
fies a certain degree of assistance that isap
propriate for a type of user or law of
programming activity. For example, Mar-
vel automatically performs different func-
tions for an long-term user than it would
for a novice. Similarly, Marvel may report
on the use of undefined variables less fre-
quen tlywhen new code iswritten than dur-
ing test and debugging.

It is important to realize two facts about

the use of rules in Marvel. First, Marvel
consists of a generic kernel. An instance of
Marvel is created by supplying a descrip
tion of the object base structure and the
process model to the kernel. Second, only
systems managers need to write object
base descriptions, rules, and strategies.
Users select from strategies defined for
them to choose a desired behavior of Mar-
vel. They can extend the set of strategies if
desired.

Rules. Marvel rules are based on condi-
tion/action pairs. When the condition is
true or satisfied, the action is applied to
working memory (in this case, the object
base). However, these socalled produc-
tion rules are inadequate because they do
not separate the invocation of a tool from
the results produced by the tool, which we
must do to integrate existing toolswithout
modification. Therefore, we divide a rule
into three parts: a precondition, an activ-
ity, and a postcondition.

Figure 1 shows a compile rule that il-
lustrates the properties of these three
parts.

Preconditions. A precondition is a
Boolean expression that must be true
before an activity can be performed. The
operands of a precondition are objects
and their attributes.

In Figure 1, notcompiled(module) is a
precondition for the compile-module ac-
tivity. Assuming that static semantic analy-
sis and code generation are separate activi-
ties, the precondition also requires all
semantic analysis to have completed

notcompiled (module) and
for all components c such that in(module, component c):

analyzed (component c)
(compile module)

compiled (module) I
errors(module);

in(module, component c)
{edit component c)

notanalyzed(component) and
notcompiled(module);

Figure 1. Compile rule and edit rule.

44

successfully. This takes the form of “for all
components c such that in (module, com-
ponent c): analyzed(component c),”
where analyzed(c) is true only if the analy-
sis of component cdid not find any errors.

Activities. The activity part of a rule rep
resentsan integral development task, such
as compile module and edit procedure.
Activities are medium-grained: Low-level
editing commands applied during the
course of an edit-procedure activity are
not considered activities. Nor are high-
level commands, such as “fix bug,” be-
cause they involve many tasks and perhaps
many users.

In the object base, each activity is associ-
atedwithatool thatcarriesitout. Each tool
hasanatuibute thatdeterminesifitcan be
invoked by the environment without
human intervention. For example, the
compile-module activity is associated with
the compiler, which can be invoked auto
matically; the edit-procedure activity is as-
sociated with an editor, which requires
human interaction.

Postconditions. A postcondition is an
assertion that becomes true when an activ-
ity is completed. A postcondition can con-
sist of several alternative assertions. Each
alternative reflects a different result of the
activity. For example, the compile rule in
Figure 1 shows compiled (module) and er-
rors(module) as the two possible asser-
tions, capturing the fact that compilation
may succeed or fail. The postcondition al-
ternatives are mutually exclusive - only
one gets asserted, based on the result of
the activity. Both preconditions and post-
conditions are written as well-formed
formulas in first-order, predicate calculus.

Our rules are similar syntactically to
Hoare’s assertions,’ where a program-
ming language construct is associatedwith
its preconditions and postconditions. If
the preconditions are true before the lan-
guage construct is executed, the postcon-
ditions will be true afterward. However,
the semantics of Marvel’s postconditions
differ from Hoare’s in that the purpose of
the postcondition isnotverification, but to
update the object base.

Controlled automation. Forward and
backward chaining contribute to oppor-

IEEE Software

tunistic processing by letting Marvel use
rules to determine what needs to be done
and what can be done automatically.

Fomurd chaining. If the preconditions of
an activity are satisfied and the activity is
one that it can perform, Marvel does so
without human intervention. This be-
havior is similar to language-oriented edi-
tors, which automatically perform actions
like type checking and code generation
when a user makes a subtree replacement
in a program’s abstract syntax tree.

Marvel would interpret the rule in
Figure 1 to mean that the assistant may
compile all modules M if all the compe
nents of Mhave been analyzed successfully
andMhasnotyetbeencompi1ed. Ifamod-
ule was previously unsuccessful at compil-
ing, the postcondition errors(module)
will be true. The compile-module activity
will not be reported unnecessarilywhile er-
rors(module) is true, because the precon-
dition notcompiled (module) cannot be
satisfied. If the user edits a component to
fix the error, the edit activity will cause
notcompiled(module) to be true again,
and compilation can be attempted.

Forward chaining means Marvel can
perform this second attempt at compila-
tion when that precondition is satisfied. It
does not have to perform the activity as
soon as the preconditions are true or at
any particular time thereafter. However, it
may go ahead and apply the tool, and use
forward chaining to determine additional
activities whose preconditions are now
satisfied as new postconditions are
generated, using otherwise idle comput-
ing resources.

Backward chaining. If a user invokes an ac-
tivitywhose preconditions are not satisfied
(execute program, for example), Marvel
looks for activities it can perform to
generate postconditions that would satisfy
the preconditions. It uses backward chain-
ing to do so; this is similar to Make.

When a user requests regeneration of an
executable system after changes have been
made to its source code, Marvel uses de-
pendency information it maintains in the
object base to determine which modules
must be recompiled. Of course, it may not
be possible to satisfy all the preconditions,
and in this case the user is informed of the

May 1988

not reserved(modu1e) and saved (module)
(reserve module I

reserved(module,userid);

reserved(module, user-id)
(change component)

notanalyzed(component) and notcompiled(module);

for all components k such that in (module, component k)
and uses(component k, component c):

reserved(module, userid)
1 change component c)

Fore 2. Change rules and reserve rule.

problem. Marvel is not expected to find problem. Marvel is not expected to find
and repair bugs, for example. In general, and repair bugs, for example. In general,
Marvel will not automatically perform ac- Marvel will not automatically perform ac-
tivities that invoke tools requiring human tivities that invoke tools requiring human
intemention. intemention.

Consider the case of a large program- Consider the case of a large program-
ming team where multiple users are not ming team where multiple users are not
permitted to change the same module at permitted to change the same module at
the same time. This might be handled with the same time. This might be handled with
a rule like that in Figure 2, which requires a rule like that in Figure 2, which requires
each user to reserve a module before each user to reserve a module before
changing it. The preconditions for the re- changing it. The preconditions for the re-
serve-module activity are (1) the module serve-module activity are (1) the module
hasnot been reserved (not reserved(mod- hasnot been reserved (not reserved(mod-
ule)) and (2) the module has been saved ule)) and (2) the module has been saved
by the versioncontrol tool (saved(mod- by the versioncontrol tool (saved(mod-
ule)). ule)).

The second rule in Figure 2 states that The second rule in Figure 2 states that
the changecomponent activity cannot be the changecomponent activity cannot be
done unless the module that contains the done unless the module that contains the
component is reserved. The changecom- component is reserved. The changecom-
ponent activity lets the user modify the ponent activity lets the user modify the
specification of a component, as opposed specification of a component, as opposed
to edit component, which lets the user to edit component, which lets the user
modifji the component’s body only. modifji the component’s body only.

The third rule in Figure 2 states that not The third rule in Figure 2 states that not
only should the containing module be re- only should the containing module be re-
served, but the user must reserve any other served, but the user must reserve any other
modules whose components use the com- modules whose components use the com-
ponent that will be changed (c and k are ponent that will be changed (c and k are
two objects of the same type). Backward two objects of the same type). Backward
chaining lets Marvel automatically reserve chaining lets Marvel automatically reserve
any modules whose components may be any modules whose components may be
modified to remain consistent with the modified to remain consistent with the
changed component. It also prevents the changed component. It also prevents the
user from modifying the specification of a user from modifying the specification of a
component when other modules cannot component when other modules cannot
be reserved (according to the first rule), be reserved (according to the first rule),
which means that someone else is cur- which means that someone else is cur-
rently working on them. Thus, the user rently working on them. Thus, the user
does not start a job he may not be able to does not start a job he may not be able to
finish. finish.

Hints and strategies. When Marvel per-

forms opportunistic processing, it must
choose the degree ofautomation wisely. In
otherwords, it mustadapt to theuser’scur-
rentgoals.Todo this,Marvel selectsapprc+
priatepointson thespectrum between the
earliest and latest time an activity can be
performed automatically and disables au-
tomatic processing when it gets in the
user’s way. We have provided Marvel with
hints and strategies to help it make these
decisions.

A hint is a rule with no postconditions.
The preconditions of a hint are used to
help Marvel decide when to apply a tool
whose preconditions are satisfied.

For example, it makes sense that Marvel
should delay recompiling a module aute
matically even when preconditions are
satisfied if a user with modification rights
is browsing the module. The rationale is
that the user may decide to edit some com-
ponents, and the generation of code will
have been wasted. This is captured in a
hint shown in Figure 3, giving this precon-
dition for the compile-module activity.
When Marvel foollows a strategy that in-
cludes this hint, compilation is delayed
until the user changes his focus to another
module.

Of course, the user must be allowed to
invoke the compiler without changing
focus to another module. That is why this
precondition is stated as a hint, not as part
of a rule. Hints apply only to the oppor-
tunistic processing of the environment,
not to user-initiated activities. In other
words, hints are considered during for-
ward chaining; ignored during backward
chaining.

A strategy is a collection of hints and
rules that apply only when the strategy is in
force. Marvel employs strategies by com-
bining their rules and hints. One or more
strategies may be employed at the same

45

not reserved(module) or
< reserved(module, userid) and
not equals(module, focus
(user-id)) >

(compile module)

Figure 3.Compile hint.

time. When this results in more than one
rule for the same activity, all their precon-
ditions must he satisfied, hut only one
member of the set of postconditions may
be asserted.

Marvel cannot choose its own strategies.
Instead, the user selects appropriate
strategies by telling the environment
something about his intentions: for ex-
ample, that he is a manager versus a pro-
grammer, developing a new software sy”
tern versus maintaining an old software
system, or making major changes versus
making a minor revision. A strategy whose
rules and hints result in automatic type
checking immediately after each compo-
nent is edited would he appropriate for a
minor revision, hut not for a major change
involving many interrelated components.

Handling side effects
Using a tooloften causes side effects. For

example, the analysis tool invoked for the
analyze-component activity may change
the values of several component attri-
butes. Setting the value of an attribute is
considered an activity, resulting in a situa-
tion where one action of Marvel is
embedded inside another rather than
being a consequence of forward or hack-

ward chaining. This case demonstrates a
limitation of Manrel’s rules: Secondary ac-
tions whose arguments are not simple
derivatives of the arguments of the precon-
ditions or the activity cannot easily be ex-
pressed as postconditions.

Instead, potential side effects are indi-
cated by tool attributes. In such cases, the
secondary activities are often described by
their own rules, and these must he con-
sidered for further processing.

Figure 4 shows some rules related to a
component’s uses attribute. The uses attri-
bute lists the other components the com-
ponent depends on. The first rule gives
the obvious preconditions and postcondi-
tions for the analyze-component activity.
The second rule states that a component c
cannot use another component k unless
component k is in the same module or is
imported into the module. The third rule
states that a component cannot he im-
ported by a module Munless it is exported
by another module N. The fourth rule
states that a component cannot be ex-
ported by a module unless it is in that mod-
ule.

Consider what happens when the analy-
sis tool finds that procedure p (a compo-
nent) calls procedure q (another compo-
nent) and tries to set the uses attribute of
procedure p to include procedure q. If q is
in the same module asp, there is no proh-

notanalyzed(component)
{ analyze component)

analyzed(component) I
errors(component);

in(module, component c) and
< in(module, component k) or imports(module, component k) >
(component c uses component k)

uses(component c, component k);

exports(module N, component) and
not equal (module M, module N)
(import component)

imports(module M, component);

in(module, component)
{ export component)

exports(module, component);

Figure 4. Analyze rule, uses rule and import/export rules.

46

lem - the attribute is set and the analysis
continues.

If q is not in the same module, Marvel
checks if it is imported. If q is not already
imported, Marvel notes that im-
ports(module, component) is a postcon-
dition of the import-component activity
(the third rule) and further realizes it can
perform the importcomponent activity.

So it considers the preconditions of the
import-component activity. Marvel que-
ries its object base to find the module that
does contain q. If q is already exported
from this module, Marvel importsit. If not,
backward chaining lets Marvel follow the
preconditions of this activity given in the
fourth rule, add q to the exports of its mod-
ule, import qinto the original module, and
finally allow the analysis tool to set the uses
attribute of p.

This is only one possible strategy It ig-
nores the possibility that distinct proce-
dures named q might be found in more
than one module. Sometimes language-
specific typing information can narrow
the possibilities, hut Marvel usually must
interrupt the user to explain its dilemma
and ask which qis intended.

Another possibility is that there is no
component named qin the object base. If
so, Marvel considers the add-component-
q activity, whose postcondition is, of
course, the existence of q. If permitted by
the current strategy, Marvel could carry
out this activity on its own by creating a
stub for the procedure within the module
where the use occurs. Or Marvel could ask
the user to create the procedure (or its
stub) before continuing the analysis, but
this might he intrusive.

The preferred solution is to inform the
analysis tool of the problem and prevent it
from performing the procedure-puses-
procedure-qactivity. Thiscauses the analy-
sis tool to terminate unsuccessfully, gener-
ating the errors(p) predicate among its
postconditions

In the above discussion, import compo-
nent and export component do not re-
quire human interaction, so Marvel can
carry out the repairs. An alternative
strategy requires the assistant to take the
imports and exports as given. This might
be appropriate for languages such as Ada
that include their own module constructs,
where reference to an external compo-

IEEE Software

nent without the appropriate With clause
should he detected as an error. A second
alternative would require Marvel to ask the
programmer if q is a typographical error
before carrying out all the previously de-
scribed actions.

Over time the modular structure of sys-
terns degenerates. For systems written in
languages with explicit export/import
declarations, such as Ada, the number of
these declarations tends to increase, even
though some imported components are
no longer used.

Marvel can maintain such old code by
providing both rigid and flexible strategies
in the same environment. Flexible strate-
gies let it reflect the actual usage ofcompe
nents automatically in the export/import
lists, removing unnecessary exporh/im-
ports and adjusting exports/imports as
the code is being reorganized. Rigid strate-
gies provide stability during development
phases such as testing and integration by
taking the export/import declarations as
givens to he checked against.

In Figure 4, Marvel implicitly queried its
object base to locate procedure q. Implicit
queries are necessary to determine if pre-
conditions are satisfied and to find the
next rules to be applied in forward and
backward chaining. Implicit queries are
also used to anticipate the postconditions
ofactivities.ThisletsMarvelnotifytheuser
as soon as a user action is likely to lead to
adverse results.

Consider the two rules in Figure 5.
Through forward chaining, changing a
component will lead to semantic analysis,
which may result in errors. When a user in-
vokes the editor on a particular compc+
nent with the change-component com-
mand, he indicates to Marvel his intention
to modify the component specification.
Marvel notices that forward chaining after
the completion of the editing activity
would propagate to other components
based on the used-by attribute, whose re-
processing might result in error.

Instead of letting the user edit the com-
ponent specification blindly, Marvel can
query the object base and inform the user
of the potentially affected sites. This lets
the user abort his change-component
command if he was not aware of the poten-
tial damage caused by the intended
change.

May 1988

Adding knowledge to tools
Make’ has a simplistic world model consisting of files and command lines. A Make file de-

fines dependencies among files and gives the command lines for restoring consistency
among dependent files. Make’s notion of consistency is based entirely on files and time: If the
time stamp of an input file is later than the time stamp of an output file, then the indicated corn-
mand line is passed to the Unix shell. Make is widely used for generating a new executable
version of a system afler one or more source files have been modified.

However, Make’s knowledge is primitive. its object base consists of files that have a single
attribute, their time stamp. Make does not know anything about applying tools to files; it just
handles command lines as indivisible strings. Make does not have any understanding of
source versus object files, of modules versus systems, of programmers or of programming.

How can we add this knowledge to Make?
First, anotionof anobjectisdefined, whereeachobjectbelongstoaclass. Oneclass might

be system, while another might be module. Each class defines the attributes, or properties,
of its objects. For example, a module-object-code object might have a history attribute that
describes how it was generated and a derivation-of attribute that points to the object repre-
senting the corresponding source code.

Rules would then be added to model the part of the development process relevant to Make.
One rule might be that a programmer object can modify a module object; another might state
that after such a modification, the module object is no longer consistent with its derivation at-
tribute and there is an obligation to restore thisconsistency. Athird rule might state that a pre-
condition for a programmer to test a system is that all module object code objects that are
components of the corresponding executable system must be consistent with their module.

If Make were armed with this knowledge, then it would be more intelligent than it is now. It
would then be easier to integrate Make with other tools that support configuration manage-
ment, version control, and task management, assuming all these tools were similarly aug-
mented with knowledge of software objects and with understanding of their roles in the
development process.

The Cornell Program Synthesize6 also has a simplistic world model, consisting of nodes
in a parse tree. The nodes have types, such as program and identifier.

When an identifier node is inserted as a child of an expression in the parse tree, the Syn-
thesizer compares the identiiier’s name with the names defined in the symbol table. If not
found, the part of the display corresponding to the new node is highlighted; the highlighting is
removed when a matching identifier node is inserted as a chi!d of a declaration.

The immediate feedback provided by the Synthesizer makes it easy to correct static
semantic errors while the programmer is still in the context of editing a program.

The primitive knowledge of the Synthesizer has been somewhat improved in the Synthe-
sizer Generator.3 The Synthesizer Generator uses a knowledge base that defines classes
of nodes such as expression, attributes of nodes such as type, and equations that specify de-
pendencies among attributes.

The language-based editors produced by the Synthesizer Generator automatically reeval-
uate the attribute equations whose input attributes have changed in value. However, these
editorsdo not know that the purpose of updating attributes to provide immediate feedback to
programmers about static semantic errors and to incrementally generate the object code
needed to test the program. With this understanding, the editors could, for example, sepa-
rate error detection from error reporting according to whether the programmer is making
many changes or only one; in the first case, the programmer is unlikely to want to hear about
errors after every keystroke.

This knowledge could be added to the Synthesizer Generator and the language-based
editors it produces via rules that model the part of the development process relevant to pro-
gram editing. One rule might be that a programmer object can modify the parse tree repre-
sented byaprogramobject. Asecondrulemight state thattheeditor hasanobligation tonotify
the programmer of any errors in the program; another might say that a precondition for a pro-
grammer to resume execution of program is that no substantive changes have been made
to any procedure already on the runtime stack.

Adding this kind of knowledge to the Synthesizer Generator would make as editors rela-
tively intelligent. For example, they could then simulate attribute reevaluation at appropriate
points to obtain insight into the consequences of the programmer’s actions and warn the pro-
grammer about changes that invalidate the internal execution state of the debugger.

References
1. S.I. Feldman, “Make: A Program for Maintaining Computer Programs,” Sortware Practice and&-

prience. April 1979, pp. 255265.
2. T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer: A Syntax-Directed Programming

Environment,” Comm. ACM, Sept. 1981; reprinted in interactive Prcgramming Environments. D.R.
Barstow, HE. Shrobe, and E. Sandewall, eds., M&raw-Hill, NewYork, 1984.

3. T. Reps and T. Teitelbaum, “The Synthesizer Generator,” SlGPlan Notices. May 1984, pp. 41-48.

47

reserved(module, userid)
(change component)

notanalyzed (component) and notcompiled (module) ;

notanalyzed(component)
{ analyze component)

analyzed(component) I
errors(component);

Figure 5. Change and analyze rules.

A sample session
Figure 6 shows a snapshot of Marvel in

the middle ofaprocedure edit. The screen

favorite editor; in this case, Emacs. The
bottom of the screen shows icons that are
part of the X Windows system.

has two windows: In the large window is a The transcript in the largewindow shows
transcript of a session in which the user is interactions between the user and Marvel
interacting with the Marvel command in- that demonstrate some of Marvel’s be-
terpreter. The window is scrollable, so the havior. At the beginning of the session, the
complete transcript is accessible. In the user enters an existing workspace to mod-
small window Marvel presents an item in ify a system, in this case an interactive pro-
the object base for the user to edit using his gram for fractional arithmetic. This work-

space is a Marvel database that is private to
the user. It is connected to a public
database, where the baseline version of the
software resides.

One module has previously been re-
served from the public database and made
available for modification in the private
workspace. All other parts of the system
that physically reside in the public
database are accessible transparently for
reading.

The user’s attention is focused on the
object that represents the whole program,
which is indicated by the prompt showing
the system name - Fractions. First, the

crh

ad,ng data base /usr/users/phF/fractions.phf

terlng private database in wrrte mode

ract1ons1: pr,nt. modules

List of Modules:
:

BasicOps Tool.9 My10 TYP-
CommandInterp strrng Their10 MlSC

ractlonsl: module ElaslcOps
I

3;lCOpSl: print allmodule

~lodule BasrcOps:
List of procedures

add subtract
help quit

:.

multiply divide
rntroductlon

LlSt Of ObJeCts
operator

Exoorted ,temr
add
help

~s~cOps1: chance
at Cdrclarat~onl:
pm [add]: qu,t

subtract
quit

multiply

Module CmandInterp mports quit. and It IS not reser
Cannot capletc this convnand. introduction<):

ii1c0pr1: reserve CarmandInterp

Reserue from /utr/urerr/phf/Fractions? Cyenl
Reservlnp Module CommandInterp

3slcopsl: change dcclaratlon quit

Module CmandInterp mports quit
Continue? Cyesl:

Edltlng declaration of quit in BaslcOps

Update affects Module CanmandIntcrp procedure cl
quit(ttORMQL);

Comp,le’ Cyes1: no

lcOps1: edit cl

qutc):
return :

3

if (OP ==
‘h’ 88 useMenu)

help(1:
continue:

3
first = getfract(1;
second = cetfract();
switch (op)

E
case ‘a-:

cl 1s not an item in current module.
Move to module CmandInterp~ Cyesl:

answ;r(flrst,” + ” ,second,add(flrst,second)):
break; I

Editing ci in CmandIntcrp

Figure 6. A Marvel screen.

48 IEEE Software

user requests a view of the system, namely,
its list of modules. The user then focuses
on the BasicOps module, and the prompt
changes.

Now the user requests another view, in
this case a more detailed view of a particu-
lar module. Because the user did not
specify a module name, the system chose
the module in the current focus. The re-
sultisaviewshowingall thecomponentsof
the module (several procedures and an
object; the module does not contain data-
type definitions), and a list ofcomponents
that are available externally as part of the
module specification (exported items).

With the Change command, the user at-
tempts to modify the Quit procedure’s
specification. The system prompts for
missing command parameters, providing
defaults. Marvel first performs an implicit
query to determine the consequences of
the planned change. The user isinformed
that the Quit procedure is used by another
module for which the user does not have
modification rights. Under the default
strategy, chosen by the user, Manrel does
not reserve the module, but aborts the
command.

The user then explicitly reserves the
module. Marvel confirms that the module
is to be reserved from the public database,
and a second modification attempt
succeeds. The user is informed which
components are potentially affected
before the actual editing, and is asked after
the modification if the aRected compo

Acknowledgments
Dave Ackley, Naser Barghouti, Susan Dart,

MarkDowson, Bob Ellison, David Garlan, Dan
Miller, John Nestor, Gavin Oddy, Cecile Paris,
Colin Tully, Nelson Weiderman, Ursula Wolz,
and the anonymous referees reviewed drafts of
this article and made many useful criticisms
andsuggestions, PurvisJacksonassisteduswith
technical editing.

This work was started while Kaiser was a visit-
ing computer scientist at the SEI. The first pro-
totype implementation was done at the SEI.
Research on Marvel continues at Columbia
University, supported in part by Kaiser’s Digi-
tal Equipment Corp. faculty award, in part by a
grant from Siemens Research and Technology
Laboratories, and in part by the Defense Dept.

nents should be analyzed and compiled as
well. Because the user expects to correct
the affected procedure, he declines the
offer.

The modified component is analyzed
and compiled in the background, while
the user issues the Edit command to make
a local modification to the Ci procedure.
Marvel changes the focus to the appre
priate module, displays the procedure
specification, and presents the user with
the proc zdure body in the editor window.

T he model embodied in the Marvel
environment formalizes the con-
cepts of insight and opportunistic

processing by
l maintaining all knowledge about both

the specific development effort and the
generaldevelopmentprocessin theobject
base,

l making multiple views of the object
base available both to users and tools,

l modeling the development process as
rules that define the preconditions and
postconditions of development activities,
and

l gathering collections of rules into
strategies.

This lets Marvel provide software-engi-
neering environments that intelligently
assist development and maintenance ef-
forts by individuals and teams of users
through controlled automation, using
available development tools. .:.

References
T. Winograd, “Breaking the Complexity
Barrier (Again) ,” Proc. ACM SIGPlanSIGlR
Intqhac~ Meeting on Pmgramming Languages
- Infmtion Retrkual, ACM, New York,
1973, pp. 13-30; reprinted in Interactiu~t’ro
grummingEntironmen& D.R Barstow, H.E.
Shrobe, and E. Sandewall, eds., McGraw-
Hill, New York, 1984.
D.S. Wile and D.G. Allard, ‘Worlds: An Or-
ganizing Structure for Object-Bases,” SIG
Plan Notices, Jan. 1987, pp. 1626.
RC. Waters, “KBEmacs: Where’s the AI?”
AIMngazinr: Spring 1986, pp. 47-56.
C.A.R. Hoare, “‘An Axiomatic Approach to
Computer Programming,” Comm. ACM,
Oct. 1969, pp. 576580,583.

Gail E. Kaiser is an assistant profrssor of com-
puter science at Columbia Univcrsiv, where
she t-eceivrd a Digital Equipment <:orp. faculty
award. Her research interests include pro-
gramming environments, evolution of large
software systems, application ofartificial-intrl-
ligence tcchnolop to development and main-
tenance, I-rusahility, object-oriented late-
guages and databases, and distributed system‘+.

Kaiser received an MS and PhD in computeI-
science from Carnegie Mellon University,
where shewasa Herv fellow,a~~daBSfiom the
Massarhuset& institute ofTrchnolo~~.

Peter H. Feiler is a senior computer scientist at
the Software Engineer-ing Institute, where he
is a member of the team that is rvaluating Ada
environments. His research interests include
development support environments, interac-
tivedevelopmen t tools, application ofartificial
intelligence to software engineering, and sup
port for-concurrent applications.

Before joining SEl, he was a research sciell-
tist and group leader at Siemens Corporate Re-
search and Technology 1;aboratories. He re-
ceived a Vordiplom (BS) in rnathematics and
computer science from the Technical Lniver-
sity in Munich and a PhD in computer science
from Carnegie Mellon University. He isa mem-
ber of the ACM, AAAI, and the Computer
Society.

Steven S. Popovich is a graduate student at
Columbia University. His research interests in-
clude programming environments, dis-
tributed systems, and artificial intelligence.

Before beginning his graduate studies, he
worked for the Software Engineering Institute,
the Carnegie Group, MindBank, Siemens Re-
search andTechnology Laboratories, and Car-
negie Mellon University. He received a BS in
computer science from Carnegie Mellon Uni-
versity.

Questiorls about this article can be ad-
dressed to Kaiser at Computer Science Dept.,
450 Computer Science Bldg., Columbia Uni-
versity, New York, NY 10027.

May 19L1a 49

