|EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996 841

Supporting Cooperation
in the SPADE-1 Environment

Sergio Bandinelli, Member, IEEE Computer Society, Elisabetta Di Nitto, Student Member,
IEEE, Computer Society, and Alfonso Fuggetta, Member, IEEE

Abstract—Software development is a cooperative activity that heavily relies on the quality and effectiveness of the communication
channels established within the development team and with the end-user. In the software engineering field, several Software
Engineering Environments (SEE) have been developed to support and facilitate software development. The most recent generation
of these environments, called Process-Centered SEE (PSEE), supports the definition and the execution of various phases of the
software process. This is achieved by explicitly defining cooperation procedures, and by supporting synchronization and data '

sharing among its users.

Actually, cooperation support is a theme of general interest and applies to all domams where computers can be exploited to
support human-intensive activities. This has generated a variety of research initiatives and support technology that is usually
denoted by the acronym CSCW (Computer Supported Cooperative Work).

_ PSEE and CSCW technologies have been developed rather independently from each other, leading to a large amount of
research results, tools and environments, and practical experiences. We argue that we have reached a stage in technology
development where it is necessary to assess and evaluate the effectiveness of the research efforts carned out so far. Moreover, it is
important to understand how to integrate and exploit the results of these different efforts.

The goal of the paper is to understand which kind of basic functionalities PSEE can and should offer, and how these
environments can be integrated with other tools to effectively support cooperation in software development. In particular, the paper
introduces a process model we have built to support a cooperative activity related to anomaly management in an industrial software
factory. The core of the paper is then constituted by the presentation and discussion of the experiences and results that we have
derived from this modeling activity, and how they related to the general problem of supporting cooperation in software develgpment.
The project was carried out using the SPADE PSEE and the ImagineDesk CSCW toolkit, both developed at Politecnico di Milano

and CEFRIEL during the past four years.

Index Terms—Cooperative activities, CSCW, PSEE, software development environments, software processes.

1 INTRODUCTION

T HE development of nontrivial software applications is
rarely carried out by a single programmer. Rather, it
demands for the participation of (even large) teams of peo-
ple. The interaction and exchange of information among
team members is a key factor that determines the success or
failure of any development initiative. Indeed, social and
interpersonal aspects play a fundamental role in software
development [19], [41]. Besides software development,
there are many other examples of human activities where
cooperation is a key issue. For this reason, a variety of re-
search initiatives have been started with the goal of pro-
viding a general support to cooperative activities. This re-
search field is traditionally called CSCW (Computer Sup-
ported Cooperative Work) [16] and has generated a large
amount of method ological and technological results. In
partlcular, several tools and environments have been de-

o S. Bandinelli is with the European Software Institute, Parque Tecnologico
de Zamudio 204, E-48170 Bizkaia, Spain. E-mail: sergio.bandinelli@esi.es.

e E. Di Nitto is with Politecnico di Milano and CEFRIEL, Via Emanueli 15,
20126 Milano, Italy. E-mail: dinitto@elet polimi.it.

o A. Fuggetta is with Politecnico di Milano and CEFRIEL, P.zza Leonardo
da Vinci, 32 20133 Milano, Italy. E-mail: fuggetta@elet polimi.it.

Manuscript received Apr. 14, 1995.

Recommended for acceptance by D.E. Perry.

For information on obtaining reprints of this article, please send e-mail to:
transse@computer.org, and reference IEEECS Log Number S95756.

veloped, that make it possible to effectively support differ-
ent kinds of cooperative activities. These activities can be
classified in two broad categories, depending on temporal
considerations [24]:

o Asynchronous cooperation: users work at different times
on the same information; or, also, users exchange
messages and data to coordinate their own work. For
instance, the organization of meetings require users to
exchange information on their preferred time sched-
ules, and to share some documents to provide the
background for the discussion. '

e Synchronous cooperation: users “are and work” in the
same (virtual) workspace at the same time. For in-
stance, review meetings demand for on-line commu-
nication and discussion among people, who may be
playing different roles, and may be located at dis-
persed sites. They need to share different types of in-
formation (e.g., documents and informal notes), and
also to interact on-line, using a variety of media (e.g.,
video, audio, and shared boards).

An orthogonal tentative taxonomy of the main facets of
cooperation is presented by Yang in [53]. He cites three
main concepts: '
e Coordination: (semi-)automatic sequencing of process
steps.

0098-5589/96$05.00 ©1996 IEEE

842 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996

e Communication: exchange of information among users.
o Collaboration: creation and: management of shared in-
formation.

Coordination is an activity typically sui)ported using -

asynchronous facilities (e.g., meeting schedulers), even if
multiusers games (e.g., multiusers doom) manage c¢oordi-
nation in a synchronous way. Collaboration and communi-
cation are often supported through both synchronous and
asynchronous products (e.g., co-authoring systems, telecon-
ference systems, e-mail, and bulletin boards). Table 1 com-
bines both classifications and indicates some tools that sup-
port these activities. For example, asynchronous collabora-
tion is supported by tools like Oval [42] and gIBIS [17]; co-
ordination by Workflow Management Systems (WEMS)
such as Regatta [51]; synchronous communication by real-
time conferences and shared boards such as GroupKit [48]
and ClearBoard [37]. In the reminder of the paper, we will
mainly refer to the distinction between synchronous vs.
asynchronous cooperation, since we believe this is the key
factor to identify the relevant and critical design choices at
the environment architectural level.

In the software engineering domain there has been an
‘increasing interest in conceiving and developing SER
(Software Engineering Environments) that make it possible
to explicitly specify the process that software developers
are expected to follow. Support to cooperation is crucial for
these environments (called PSEE or Process-Centered SEE)
since software development is basically a team effort. For
instance, the process to be followed to test a software sys-
tem may require the testers and the developers to asyn-
chronously share the same source code, and synchronously
interact to solve an anomaly.

TABLE 1
FUNCTIONAL ASPECTS OF COOPERATION

Asynchronous
cooperation

traditional DBMS

Synchronous
cooperation

Collaboration on-line

co-authoring

Communication e-mail teleconferencing
Coordination agendas, multiuser
meeting schedulers games

A PSEE [27] is centered around an explicit process de-
scription, often called process model, that is defined using
Process Modeling Languages (PML). These languages offer
powerful capabilities to describe roles, manual and auto-
mated procedures, interaction among users, process artifacts,
and constraints. The execution (enactment) of the process
model within a PSEE provides support to process agents1 in
the execution of their work, for example, by offering guid-
ance to them or by automating some parts of the process.

A PSEE can be seen as composed of three main parts
[29]:

1. In the paper we will use the following expressions:

* Process agents (or users): people involved in software development
activities (l.e., “users” of the Software Engineering Environment).

¢ Process engineer: process expert who is charge of building the
model of the process.

¢ End-users: users of the applications developed by process agents.

» an enactment environment for executing the process
model;

e a user interaction environment {composed of tools such
as compilers, editors, and control panel shells) for
supporting the user’s work and his interaction with
the PSEE;

* a repository for storing process artifacts and process
models as well.

The enactment environment executes the process model. Tt
operates on the artifacts stored in the repository and coordi-
nates the operations to be accomplished in the process. It can
also invoke operations affecting the user interaction envi-
ronment (see later on), stuch as launching tools, changing the

state of active tools, and terminate their execution. The user

interaction environment is the set of tools and interfaces that
are visible to process agents. The process-relevant actions
performed by process agents through the tools in the user
interaction environment are captured by the enactment envi-
ronment, that operates according to the defined process
model. The repository stores and manages all the artifacts
produced and manipulated during software development. It
can be a dedicated database (e.g., an object-oriented data-
base), the file system of the hosting environment, or even a
combination of a database and the file system.

The problem of supporting cooperation in software de-
velopment can be therefore tackled using different kinds of
technologies. CSCW has produced a variety of tools that are
supposed to support cooperation in different domains and
contexts. PSEE are environments specifically conceived to
support software development. From this initial discussion
it is quite clear that these technologies share some com-
monalities, but present also significant differences. This
paper tries to identify possible synergies between technol-
ogy developed in the PSEE and CSCW fields, by addressing
the following questions:

1) To what extent can a PSEE be used for supporting co-
operative activities? '

2) What kind of basic mechanisms should a PSEE offer to
build different process-specific cooperation policies?

3) What are the differences and analogies between PSEE
and CSCW environments?

4) Is it possible to identify reasonable strategies for inte-
grating PSEE and CSCW environments?

To answer these questions, the paper retrospectively con-
siders the work carried out by the authors in recent years.
In particular, the paper reports on the experiences gained in
building and using the SPADE-1 PSEE [7]. SPADE-1 pro-
vides a PML called SLANG, that is an extension of Petri
nets, integrated with object-oriented data modeling facili-
ties. To assess the effectiveness of SPADE-1 in supporting
cooperative processes, we have modeled a significant frag-
ment of an industrial software process, dealing with the
evaluation and management of anomaly reports in a soft-
ware factory. Based on this test-bed, we show how SPADE-
1 can be used for supporting asynchronous cooperation.
Finally, we address the issue of supporting synchronous
cooperation in SPADE-1, and we outline the advantages
and drawbacks of the approaches we have explored.
In particular, we discuss and present three integration

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT

strategies between SPADE-1 and the ImagineDesk toolkit

for CSCW applications [45]. We believe that most com-

ments and observations that have emerged from this expe-
rience are general enough to be applicable in other contexts.
" The paper is organized as follows:

e Section 2 briefly outlines the characteristics of the
SPADE-1 environment, by introducing its architecture
and the SLANG PML. ;

e Section 3 describes the process we have used as a test-
bed.

» Section 4 presents the SPADE-1 solution to support
this process. - ,

» Section 5 discusses the results of our experience.

e Section 6 points out the main characteristics and
properties of CSCW environments and of the Imag-
ineDesk toolkit, and presents the work we have ac-
complished to extend SPADE-1 in order to support
_synchronous cooperation.

¢ Finally, Sections 7 and 8 present the related work and
draw some conclusions, respectively.

2 THeE SPADE-1 ENVIRONMENT

The goal of the SPADE project ([3], [6], and [7]) is to pro-
vide a software engineering environment for supporting
Software Process Analysis, Design, and Enactment. The
project has been carried out at CEFRIEL and Politecnico di
Milano. The environment we developed, SPADE-1, is based
on a process modeling language, called: SLANG (SPADE
Language), which is a high-level Petri net-based formalism.
SLANG offers features for process modeling, enactment,
and evolution. In addition, it provides suitable constructs
for describing in a uniform style the interaction with tools
and process agents.

The main features of the SLANG PML can be summa-
rized as follows: .

e Process models can be statically structured in a
modular way using the activity construct. Activities
(ie., process model fragments) can be dynamically
instantiated.

o Activities can be manipulated as data by other activi-
ties, i.e., SLANG supports computational reflection.
This is an essential feature to support process evolu-
tion [29]. : :

o Process artifacts, including process models, are mod-
eled as tokens of a Petri net and are implemented as
objects in an object-oriented database.

e Interaction between the PSEE and tools in the user
interaction environment is modeled by using specific
SLANG constructs supporting delegation of opera-
tions and detecting of external events.

In the remainder of this section we will detail the key con-
cepts of SPADE-1 and SLANG. In particular, Section 2.1
presents the SPADE-1 architecture and describes the
mechanisms offered for tools integration, while Section 2.2
provides a quick introduction to SLANG. A more detailed
discussion of the SPADE-1 architecture and of SLANG can
be found in [49].

843

2.1 SPADE-1 Architecture

SPADE-1 is the first implementation of the SPADE concepts.
SPADE-1 architecture is based on the principle of separation
of concerns between process model enactment and user in-
teraction environment. It is structured in three different lay-
ers (Fig. 1): the Repository, the Enactment Environment (EE),
and the User Interaction Environment (UIE) that includes the
SPADE Communication Interface (SCD).

’V Service-based tool J ‘ Service-based tool ‘

T~

FUSE Msg Server
Service-based tool
Black-box tool)
) FUSE Bridge
SPADE Monitor
SPADE Communication Interface J
User Interaction Envikpnment 1
Process Engine
5 8 85 8 8
2 8 B 8 = '
s 5 & & &
v L Qo Qv
4 zZ
$ %% %2 %
[
@w @» W B ! R
Enactment Environment
Repository

Fig. 1. SPADE-1 architecture.

The Repository stores both process model fragments and
process artifacts. A process artifact can be any document or
unit of information created during the software develop-
ment process. The Repository is implemented on top of the
object-oriented database management system O, [20]. The
EE includes facilities for executing a SLANG specification,
possibly creating and modifying process artifacts. Process
model fragments and artifacts are represented in the proc-
ess model as tokens. A SLANG process model is composed
of different activities. During enactment, activities can be
instantiated and executed. An activity instance is called
active copy. It is possible to create many active copies, even
from the same activity. Active copies are concurrently exe-
cuted by different SLANG Interpreters, that are imple-
mented as separate threads of a Process Engine. Finally,
SPADE Monitor provides the users with a view of the exe-
cution state of the process model. ‘

The UIE is the front-end of the PSEE to its users. It is
composed of the tools used by the process agents involved
in the development activities. SPADE-1 supplies well de-
fined mechanisms to integrate tools from two different
viewpoints:

844 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996

* Data integration. SPADE-1 and a UIE tool are able to
exchange process artifacts.
_ @ Control integration. SPADE-1 is able to invoke and
control functionalities (or services) provided by UIE
tools. :

The granularity of integration can vary depending on the
characteristics of the tools and the process model being en-
acted. The different levels of granularity that are supported
by SPADE-1 can be classified by considering the following
classes of tools:

= Black-box tools. They are seen by the EE as single func-
tions that receive some input and produce some out-
put. From the control integration viewpoint, the envi-
ronment manages only the invocation and the termi-
nation of these tools. From the data integration view-
point, these tools use their own repository, typically
the file system, for storing data. This means that proc-
ess data stored in the O, database have to be explicitly
converted and mirrored in the file system (or in an-
other database) to make it possible for tools to operate
on them. Black-box tools can be integrated in SPADE-1
without any modification of the source code. The inte-
gration is performed during the process model defi-
nition phase by exploiting the primitives of the
SPADE PML to start a tool and detect its termination.

e Oj-based black-box tools. They achieve a higher level of
data integration since they are ableto manipulate O,
objects directly, without any conversion. SPADE-1
can exchange data with these tools by exploiting an
inter-O, client communication mechanism called
ICCM [13].

e Service-based tools, They offer a programmatic inter-
face through which it is possible to separately invoke
the services they provide. Tools can invoke external
services offered by other tools, or notify the environ-
ment of specific events or tool state changes. This
kind of tools is highly integrated from the control
viewpoint since it is possible to interleave and coor-
dinate the execution of different tool services by
properly managing the messages sent and received
to/from tools. Service-based tools are basically those
conceived in the FIELD environment [46] and in its
commercial spin-offs DEC FUSE, Sun Tooltalk, and
HP BMS.” Service-based tools can be integrated in
SPADE-1 in two- different ways: directly, using the
SPADE Integration Protocol (offered by SCI, see later
on}, or by using COTS (Commercial-Off-The-Shelf)
products, such as FUSE or Tooltalk. In the latter case,
messages are managed and distributed by the mes-
sage broadcasting server of the tool integration envi-
ronment. All of these messages are also received by a
specific SPADE component (called Bridge), which
converts messages to the SPADE Integration Protocol
and forwards them to SCI. SPADE-1 provides bridges
for DEC FUSE, Tooltalk, DDE, and OLE2.

* O, service-based tools. They supply the highest level
of control and data integration, since they support

2. We will refer to these products with the expression “tool integration
environments.”

both the direct exchange of complex O, objects and a
programmatic interface to support service-based
integration. -

Table 2 lists some tools offered by or integrated in SPADE-1,
and classifies them according to the categories presented
above:

1) SPADEShell is the interface through which process
agents can send commands to the EE.

2) Agenda displays the list of tasks assigned to a user. It
interacts with the EE to manage the list of tasks ac-
cording to the policies specified in the process model.

3) ObjectEditor allows the user to edit any process arti-
fact stored in the SPADE-1 Repository.

4) SLANG editor supports the editing and compilation
of SLANG process models.

5) FUSE Editor is a service-based text editor.

6) FUSE Builder is an integrated C compiler and make
utility.

7) Emacs and cc are an editor and a C compiler of the
Unix environment.

TABLE 2
EXAMPLES OF SPADE TooOLS, TOGETHER WITH THEIR TYPES
02 : 02 '
black- black- service- | service-
box box . ‘based based
SPADEShell .
Agenda .
ObjectEditor ° L
SLANGEditor ®
FUSEEditor °
FUSEBuilder °
Emacs, cc ®

SCI manages the communication between service-based
tools and the EE, through the SPADE Integration Protocol.
SCI is connected to all service-based tools based on the
SPADE Integration Protocol, to the Bridges, and to the Proc-
ess Engine executing the different SLANG Interpreters. SCl is
able to redirect messages from the UIE to the enacting active
copies. SCI can be dynamically configured by the EE as speci-
fied in the underlying process model (see next section).

2.2 SLANG

A SLANG process model is composed of two parts, the first
one, called Process Types, defines a set of abstract data
types (ADT) describing process data. The second one,
called Process Activities, defines a set of activities:

SLANGModel = (Process Types, Process Activities)

Process Types are specified as O, classes and have a unique
name, a type structure, and a set of operations (methods).
SLANG provides the predefined type hierarchy shown in
Fig. 2. The root of the hierarchy is type Token. Its instances
are the tokens stored in SLANG nets. Process model-
specific types can be created as subtypes in the subtree
rooted at ModelType. The other subtrees contain process
model independent types. In particular, the instances of
type Activity represent activity definitions (e.g., each of
them describe a specific activity); the instances of type
ActiveCopy represent the state of the activity instances

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT 845

/ A
Message Activity ActiveCopy MetaType ModelType
Process specific ADTs

Fig. 2. Predefined SLANG type hierarchy.

being executed; the instances of MetaType contain type

definitions; finally, instances of type Message are tokens
modeling events occurring in the UIE. Tokens of type
Message appear in special places, called user places, and
are not produced by normal transition firings (see later on).
Activities and types defining a process model can be seen
and manipulated as tokens in the process model itself. It is,
therefore, possible to support process evolution, by devel-
oping a process model fragment able to change the tokens
representing the process model (types and activities).

Process Activities are specified as high-level Petri nets.
Each activity specification is composed of an interface and
an implementation. The implementation part may contain
the invocation of other activities. The invocation relation-
ship defines a hierarchical structure among activities. The
root. of this hierarchy is called root activity. Fig. 3a and 3b il-
lustrate the interface and the implementation of a SLANG
activity, respectively. The dashed box in Fig. 3b delimits the
interface of the activity. In the example, places P1, P2, P4,
p5, P9, and P10 belong to the interface of the activity. P1,
p2, P9, and P10 are similar to the formal parameters de-
fined for a procedure: when the activity is invoked, some of
the places of the calling activity (the actual parameters)
have to be bound to them. Transition t1 is a starting event.
Its firing causes the invocation of activity A. Transitions t6,
and t7 are ending events. Whenever one of them fires, the
execution of the activity is terminated. Places P4 and P5 are
called shared places for activity A. They behave as global
variables, since their contents may be accessed by activity A
and by the invoking activity. P4 and P5 are connected to
the interface of the activity A through links. The imple-
mentation of activity A contains an invocation of activity B.
When transition £3 or t4 fires, an instance of the activity B
is invoked. In this case, P3, P4, P5, P7, P8, and P12 are the
actual parameters of the new instance of B, and P6 is shared
between A and B.

Transitions represent events. We distinguish between
white transitions, that influence the internal state of the
process model, and black transitions (in Fig. 3 transitions t2
and t9 are black transitions), that induce some changes in
the UIE. Both types of transitions have a guard and an ac-
tion. The guard is a boolean expression and must be veri-
fied by the tuple of tokens enabling the transition firing.
The firing of the transition causes the correspondmg action
to be executed. The action is an O;C code’ fragment and it

3. 0,C is a-C dialect embedding constructs to manipulate O, objects.

is implemented as a traditional ACID transaction. An action
operates on the tokens of the enabling tuple, and produces
tokens in the output places of the transition. A black transi-
tions can be used to directly invoke the execution of a
black-box tool, or to send a service request to a service-
based tool. Black transition execution is asynchronous with
respect to the execution of the active copy which the black
transition belongs to. This means that other transitions in
the activity can fire before a black transition terminates its
execution, provided that they are enabled and their guard
is satisfied. Tokens are placed in the output places of a
black transition by a trigger that detects the termination of
the tool spawned by the black transition.

In SLANG two kinds of places are defined: normal places
(represented by single circles) and user places (represented
by double circles). The content of a normal place may
change only because of a transition firing. The content of a
user place, instead, changes as a consequence of events oc-
curring in the user interaction environment. An event in the
UIE corresponds to the arrival of a message from a tool to
SCI. SCI reifies external events by creating one token for
each incoming message. The correspondence between user
places and external events has to be explicitly specified as
part of the process model. For example, black transition t9
of Fig. 3 executes the following code fragment:

“ServiceRequest 0 ConfigSCI +
* TL,oadFile P12”;

extAction =

extAction is a SLANG predefined variable. Its value is a
string, which is considered by the SLANG interpreter as a
command to be executed. In the example, the interpreter
sends to SCI (identifier 0) a request for configuring its
routing table in such a way that place P12 of the current
active copy is associated with the arrival of message
“LoadFile” from any tool in the UIE. Character “*” in the
string stands for “any tool.” In case place P12 has to be con-
figured to receive messages from a specific tool, “*” should
be replaced by the identifier of that tool. In the rest of the
paper we discuss how SPADE-1/SLANG features may be
exploited to support cooperative software development.

(@ .
Fig. 3. SLANG activity definition.

846 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996

3 THE PROCESS EXAMPLE

The process example discussed in this paper is a subset of a
real process adopted by a telecommunication company. In
[8], this process has been formally studied. The goal of that
paper was to produce a formal specification of the quality
manual of the company, in order to verify its soundness
and consistency. In this paper, even if we use the same sce-
nario, the goal is different. In particular, we aim at defining
an enactable process model, able to support the company in
the development process. As we outline in Section 5, the
main modeling effort, in this case, has concerned the man-
agement of the interaction among the users and the tools
used to guide or enforce the process, rather than the defini-
tion of the process itself.

The process we focus on deals with the management of
anomalies reported during software testing and operation.
When an anomaly is found, an Anomaly Report document
is prepared and submitted to the manager responsible for
the specific project. The manager is in charge of directing
the procedures for anomaly analysis, error detection, and
bug fixing. All these procedures are human-intensive. They
require the project manager, the designers, and the pro-
grammers to intensively cooperate to effectively accomplish
the above tasks.

In this kind of human-intensive process many of the
tasks to be executed cannot be automated, but require pro-
cess agents’ creative work [30].

3.1 Roles in the Process

People working in the process can be associated with the
following roles:

* Project Manager (PM): is responsible for the project.

s System Administrator (SA): is responsible for the man-
agement of the computing facilities used in the proj-
ect.

® Designer (DE): is responsible for the design and im-
plementation of software modules.

o Programmer (PR): is in charge of the coding activity.

3.2 Workspaces

Each user registered in the environment has a local work-
space. This workspace is private and is not accessible by
other process agents. Shared data is maintained in a global
workspace, which is under configuration management.
Process artifacts stored in the global workspace are parti-
tioned in a hierarchy of folders. For each project, a different
folder is defined, which, in turn, contains a folder for each
product module (containing all the files related with the
module, such as, design documents, source code files, in-
clude files, makefiles, object code files, modification reports,
etc), and other folders containing design documents,
anomaly reports, modification reports, and any other
document related with the project as a whole.

All of the above configuration items are identified by a
name and a version number. The name determines the
item position into the folders hierarchy. For example,
switchboard.callController.switch.cis the name of
the C source code of function switch, which is part of the
callController module of product switchboard. The
corresponding file is stored in folder callController lo-

cated in folder switchboard. The version number has the
form release.level. The version creator, the ‘date of
creation, and some textual comments are recorded together
with each configuration item.

Users can perform operations on the global workspace
according to their roles. PM may create the folder corre-
sponding to a project, and, may specify the names of DE
enabled to add new module folders. In turn, DE may spec-
ify the names of the PR who can access and modify the
items of a module.

Configuration items can be checked out from the global
workspace. When this operation is performed, the item is
locked, and a copy of it is stored in the local workspace of
the user. When an item is checked in, a new version is cre-
ated in the global workspace.

3.3 The Process Steps

Anomalies are usually detected during system test and op-
eration. Fach anomaly is described by an anomaly report
(AR) stored under configuration management. When an AR
is created, its initial state is “originated.” PM considers AR
and decides how to handle them. Three alternatives are
possible:

¢ The reported anomaly is considered not to be a real
anomaly {(é.g., it was erroneously signaled by the end-
user). The AR state is set to “rejected.”

* The anomaly is recognized as relevant. The appropri-
ate corrective actions have to be taken immediately.
The AR state becomes “approved.”

¢ The decision is delayed and the AR state becomes
“postponed.”

Each approved AR is passed to DE to be analyzed. Fach
DE considers the module(s) she/he is responsible for and
determines the necessary modifications that should be im-
plemented (if any). For each proposed module modification
she/he generates a modification report (MR) with initial

_state “originated.” When all DE have analyzed the AR, PM

schedules a Configuration Control Board (CCB) meeting in
order to decide which MRs have to be considered for the
next release of the product. Each MR may be either
“approved,” Le., the modifications have to be implemented
for the next release; “postponed,” i.e., the MR has to be re-
considered in the future; or “rejected,” ie., the proposed
MR is not accepted. Once all MRs of an AR have been con-
sidered, the AR state is set to “defined.” The modification
proposed in a MR may be directly performed by the DE or
it may be delegated to a PR. Upon termination, the MR
state is set to “done.” When all MRs associated with an AR
are done, the AR state is set to “solved.”

Note that the distribution of the AR to DE represents a de-
composition of the original task (“Analyze AR”) in multiple
subtasks delegated to DE. In this case, PM and DE cooperate
to accomplish the original “Analyze AR” task, by sharing a
comimon resource, i.e;, the AR. The task decomposition and
delegation activity does not necessarily require the face-to-
face interaction between PM and DE, and it is accomplished
asynchronously through e-mail or internal memos. In this
process, task delegation is an asynchronous coordination
activity. Conversely, some of the steps in the AR manage-

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT 847

ment process require face-to-face (synchronous) cooperation.
For instance, during CCB meeting PM and DE interact to
decide the release strategy. Interaction is among all the
meeting participants, and it is less formal. The shared re-
sources are the AR and the MR.

4 THeE SPADE SOLUTION

The SPADE solution for the process described in the previ-
ous section is articulated in two steps:

1) Definition of the UIE, i.e., selection, development, and
integration of the users’ tools.

2) Design and implementation of the SLANG process
model that will be enacted by the EE. In turn, this ac-
tivity can be decomposed in the definition of the
process types and of the process activities.

Clearly, these two steps are strongly related. For instance,
the selection of a specific tool has an impact on the structure
of the information to be stored in the Repository, and on the
process model fragment in charge of controlling it.

In the remainder of this section we first present the tools,
the general architecture of the solution, the process types,
and, finally, the process activities.

The proposed solution does not take into account the is-
sues related to synchronous cooperation. In fact, the version
of SPADE-1 that we used for this experiment did not in-
clude components to support this kind of cooperation.
Support to synchronous cooperation in SPADE-1 is dis-
cussed in Section 6.

4.1 Tools

The tools we use in the example are a subset of those listed
in Table 2. They are: SPADEShell, ObjectEditor, and
Agenda. As discussed in Section 2.1, SPADEShell is a serv-
ice-based tool. It simply accepts sequences of characters
typed by the users. SPADEShell is totally unaware of the
semantics of the character sequences it receives. They are
delivered as messages to SCI that reifies them as tokens in
some enacting active copy. The SLANG interpreter in
charge of the active copy execution manipulates these to-
kens according to the process model being enacted. In this
way, a request issued by the user through SPADEShell is
eventually addressed by some process model fragment. In
the process example, process agents use SPADEShell to
perform all the operations related to access control and con-
figuration management. Fig. 4 shows SPADEShell user in-
- terface. Table 3 shows the list of commands that can be is-
sued through the SPADEShell and that are recognized by
the process model.

ObjectEditor is an O, black-box tool. It allows users to
access and modify O, objects (ie., all the entities manipu-
lated by the process and stored in the O, database). In the
example, ObjectEditor is used to manipulate several proc-
ess artifacts such as AR and MR. Agenda is a service-based
tool that is used to manage the list of tasks belonging to a
specific user. A task is a unit of work described by a set of
structured data, called task attributes. This information can
be updated either by the user or by the EE, depending on
the process model, its state, and users’ decisions and pref-
erences. Each task is also associated with a set of states.

States represent properties of a task. State transitions may
be determined by the enacted process model or by an ex-
plicit action of the user.

Fig. 4. SPADEShell user interface.

TABLE 3
COMMANDS ISSUED THROUGH SPADESHELL
Command Parameter
PlayRole role
Logout
Register user role
UnRegistered
ListLogged
AddProject Proj.
AddDEsigner proj. user role
OpenProject proj.
CloseProject proj.
NewRelease proj.
AddModule proj. module
AddProgrammer proj. module user role
OpenModule proj. module
CloseModule proj. module
NewRelease proj. module
Submit proj. module doc.
CheckQut proj. module doc. [ver.] [ReadOnly]
Checkin proj. module doc. [ver.]
UnLock proj. module doc. -
ListProjects
ListModules proj. [ver.]
ListElements proj. module {ver.]
CreateFile proj. module doc. [ver.]
CreateAR proj. module doc. [ver.]
CreateMR proj. module doc. {ver.]
Edit proj. module doc. [ver.]
Delete proj. module doc. [ver.]
ListlLocal
Shutdown

In general, states and all the other attributes related to a
task depend-on the process being supported, on its social
context, and on the roles of participating process agents.
Therefore, this information cannot be statically hard-coded
in Agenda. Rather, the process engineer must be able to
flexibly define this information according to process char-
acteristics and requirements. For these reasons, Agenda can
be dynamically tailored through a configuration file, that
includes the definitions of task attributes, states, state tran-
sitions, and other minor features. The configuration file is
loaded by Agenda at start-up, or even during Agenda exe-
cution, if explicitly required.

848

The predefined operations offered by Agenda are basi-
cally the insertion and deletion of tasks, and the modifica-
tion of task states and attributes. These operations can be
invoked by the user through the iconic buttons in the
Agenda interface, or by the process model, through mes-
sages sent to Agenda via black transitions. '

As discussed in Section 3.3, in the process example some
tasks may be delegated to other users. For instance, a DE
may request a PR to modify a module according to the cor-
responding MR. To support delegation, the Agenda con-
figuration file defines three task states: ToDo, Delegated,
and Done. A task assigned to a user is initially in state
ToDo. The task can be delegated to another team member,
either explicitly by its owner, or by the EE as a consequence
of an operation specified in the process model. In both
cases, the procedure used to manage delegation is coded in
the process model. According to this procedure, the state of
the delegated task in the delegator’s agenda is set to Dele-
gated. The same task is also sent to the delegatee’s agenda.
In this agenda its state is set to ToDo.

As soon as the delegatee sets the state of the task to
Done, his/her Agenda sends a message to the process en-
gine to signal the state transition. The token representing
this message enables the execution of some transition in the
process model, that eventually sends a message to the dele-
gator’s Agenda. This message requests the transition of the
task state from Delegated to Done. Clearly, being this pro-
cedure completely specified in SLANG, it can be enriched
or modified according to specific process needs and re-
.quirements. For instance, it is possible to write a SLANG
net that, as soon as a delegated task is completed, sends a
message to the project manager and creates a record on a
log file.

Fig. 5 shows the user interface of the'Agenda used in the
process example. A fragment of the configuration file de-
fining the Agenda behavior is shown in Fig. 6. In particular,
the [states] section specifies task states. Task state transi-
tions are defined by their initial and final states (specified in
the first and the second column of the [UserTransitions]
section, respectively). Finally, the task attributes are speci-
fied in the [Structure] section. Each attribute is described
by its length (expressed in number of characters), its type,
and its control mode. The control mode indicates whether a
change in the value of an attribute or of a task state has to
be authorized by the process model (WAITREPLY), or can be
accomplished autonomously by the users (STMPLENOT).

o]

File Task Fiiter : Help
First Nane Lest. Hene fole
o

NEENEEER N
Task Text Fiolds: fsends Text Fields:

State MNumber Type. Deseription ;:::et:n Evidence Deadline DelegatedTo’ TDelegatedFron
S IS I e [P =y YT e L | T 1
B [e (ewu] [1 i 1
Delegated =] [3_|[saluze & |[mg o ur {[wit [{[EX [[3745 HEtioatetta |[Loonarto 1
= aiegmied &1 [|[otsme e [[memur i |[w2 J[z438 " {[serste I
= eleated =[5 |[molee & |[Buo mnui [[oRd |3 |78 [ounien J[oonnde |
Add task sucesss. .

Fig. 5. Agenda user interface.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996

[States]
ToDo Delegated Done

[UserTransitions]

ToDo Delegated WAITREPLY
Delegated Done WAITREPLY

ToDo Done WATTREPLY
[Structure]

Number 3 STRING WAITREPLY
Type 12 STRING WATLTREPLY
Description 12 STRING WAITREPLY
Subject 12 STRING WAITREPLY
Evidence 12 STRING WATTREPLY
Deadline 8 DATE WAITREPLY
DelegatedTo 15 STRING WAITREPLY
DelegatedFrom 15 STRING WAITREPLY
Annotations 10 TEXT SIMPLENOT
Info_ask 10 TEXT WAITREPLY

Fig. 6. A fragment of Agenda configuration file used in the process
example.

4.2 Architecture of the Solution

The general architecture of the solution is summarized in
Fig. 7. Each user is logged on its workstation and runs a
copy of SPADEShell and SPADE Agenda. Through Agenda
a user is enabled to check the list of tasks she/he is as-
signed to, to start them, or delegate them to other users.
These actions are notified to the EE that reacts to them ac-
cording to the process model being enacted. Users may also
invoke commands through SPADEShell. Again, these
commands are reified as tokens in the Petri net, and are

. manipulated in the process model.

User 1’s workstation User 2’s workstation

SPADEAgenda

SPADEShell SPADEShell

SPADEAgenda

Server SPADEAgenda

(Process Engine SCI)

SPADEShell

User 3’s workstation

Fig. 7. Architecture of the solution.

Thus, cooperation is achieved by providing users with
tools that enable them to send and receive information, and
to issue requests fo the PSEE. All these requests are re-
ceived by the EE that acts as system coordinator and dis-
patcher of information among the different users. '

4.3 Process Model Types
Fig. 8 shows the main types defined for our example:

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT

o User defines the information about the users. They

are the name of the user, his/her role (PM, DE or PR),
the workstation she/he is working on.

‘e Ttem and its subtypes define the structure of the ob-
jects under configuration management. They are proj-
ects, modules, and documents (e.g., AR and MR).

s Tagk defines the task data exchanged between the
process model and the users. It reflects the task
structure specified in Agenda configuration file. The
type definition is the following:

class Task inherit ModelType

public type

tuple (
owner User,
state string,
taskId integer,
type string,
description string,
subject string,
evidence string,
deadline string,
delegatedTo : User,
delegatedFrom : User) end;

» owner is the user who is in charge of executing the
task; state is the task state; type indicates the type
of the current task; admissible values are “Consider

AR,” “Analyze AR,” and ”Implement MR.” These
values represent the steps discussed in Section 3.3.
description contains an informal description of the
task. subject is the name of the document provided
as input to the task. evidence contains the name of
the artifact produced as output of the task. evidence
is filled in by the user when she/he terminates the
execution of the task. delegatedTo and delegated-
From contain the reference to delegator and delegatee,
respectively.

e Workspace defines the data related to the private
workspace of each user. Basically a workspace con-
tains the items the user is working on and the de-
scription of the tasks she/heis in charge of.

ModelType
User Workspace Item Task
- CMltem
Document Module . Project
File MR AR

Fig. 8. The main types used in the process example.

4.4 Process Model Activities

The process model root activity is shown in Fig. 9 The root
activity contains some initialization actions and the invoca-
tion of three other activities. The initialization involves the
registration of the user place LoginMsg to receive a token

849

each time a SPADEShell is launched. This registration is
performed in the black transition ConfigUserPlace,
which sends a registration request to SCL. The invoked ac-
tivities are the following ones: ‘

e AccessControl. It controls users’ access, and allows
new users to be registered by the PM or the SA.

* configurationManagement. It implements the global
workspace in which process data is stored, and the
configuration management policy applied to items in
‘this workspace. '

¢ SessionManager. It supports the interaction of users
with the environment.

ConfigUserPlace

AceesControl .
Configuration
Management

EndCm

ConfManagEnd

Fig. 9. The root activity used in the example.

After the registration of the user place, one active copy for
each of the activities AccessControl and Configuration-
Management is created. These two active copies remain ac-
tive for all the duration of the process. When SPADEShell is
started, it sends a LoginMsg to the EE. The process model we
have defined reacts by creating an active copy of activity
SessionManager. Thus, the number of active copies of Ses-
sionManager activity at a given time depends on the copies
of SPADEShells that are presently running (typically one
SPADEShell per user session). Each of these active copies of
SessionManager is in charge of controlling the interaction
with one of the process agents. Activity SessionManager
receives and interprets user commands issued through
SPADEShell. These commands may require the execution of
local actions on the private workspace of the user, or global
actions on either the global workspace or the local work--
spaces of other users. Local actions are directly managed by
SessionManager. Global actions require the execution of
transitions defined in other activities.

In particular, shared places CMRequest and ACRequest
(Fig. 9) control the enabling of transitions in Configura-
tionManagement and AccessControl activities, respec-

850 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996

tively. For example, if a user wants to check in a document
in the global workspace, a token is inserted in CMRequest
to request the corresponding CheckIn operation to the
ConfigurationManagement activity. Shared places
CMAnswer and ACAnswer collect the results of the
required operations. Shared place GlobalAgendaReq
supports communication among different instances of
SessionManager. For example, a token is inserted in this
place if a user requests a task delegation.

When a user logs in (ie., a token is created in place
LoginMsg), an active copy of activity SessionManager is
instantiated. At this point, the user may declare his/her
role using the SPADEShell command “PlayRole.” If
his/her role has been correctly registered, SessionMan-
ager invokes activity AgendaManager, which is in charge
of managing the interaction of the user with the Agenda
(see Fig. 10). Once initiated, AgendaManager starts the
Agenda tool on the user’s workstation. Information about
the address of the user’s workstation is retrieved by transi-
tion StartaM from place Owner of type User. Agenda is
initialized with the user’s task list. The list is read from
place Localws (i.e., the user’s local workspace), and each
single task in the list is stored in place TasksToBeAdded as
a distinct token. Tokens in TasksToBeAdded are then con-
sumed by InitaddTaskReq, that generates tokens of type
AgendaMessages (the definition of this type has not been
provided for the sake of simplicity). They, in turn, are used
to compose the “AddTask” requests sent to Agenda
through black transition SendagRequest. Tasks are also
stored in place Tasks, which maintains data about tasks
until the current working session terminates.

Sl ConrigUserPlace

| Locat Workspace
I

é UpdatedTaskList

Fig. 10. AgendaManager activity definition.

The execution of transition ConfigUserPlace registers
user places addTaskReq, FieldChangeNot, State-
ChangeReq, and EndNot1if to receive the messages coming
from Agenda as tokens. In particular, AddTaskReq receives

’

a token when the user adds a new task in his Agenda.
FieldChangeNot receives a token when the user changes
the contents of a task attribute. StateChangeReq receives a
token each time a user tries to change the state of a task
appearing in his/her Agenda. Finally, EndNotif receives a
token when Agenda terminates its execution. Upon com-
pletion of the start-up operations discussed above, activity
AgendaManager behaves as a reactive system, being ready
to receive requésts or notifications from the Agenda, or
from other active copies through place ¢lobalagendaReq.

Let us analyze the sequence of actions accomplished by
the EE to react to a task state change request issued by a
user. A user can request a task state change, depending on
his role. Table 4 summarizes the state transitions allowed
for each type of task. It also indicates the entity that can
invoke them. Some state transitions, in. fact, cannot be re-
quested by users, but can be enforced only by the process
model, as a consequence of some events.

TABLE 4
STATE TRANSITIONS AND TASK TYPES

ToDo — ToDo — Delegated
Done Delegated — Done
Consider AR PM nobody nobody
Analyze AR DE the process the process
model model
Implement AR DE, PR DE the process
model

When a user requests a task state transition from ToDo to
Done, a token appears in place StateChangeReq. This to-
ken triggers the evaluation of the guards of transitions
having StateChangeReq as input. In particular, transition
ToDo-Done in AgendaManager activity is enabled only if
all of the following conditions hold: '

¢ The user has a role that enables him/her to terminate
the current task (according to what is specified in
Table 4). : ‘

* The artifact to be produced as output of the task
(specified by field evidence of the token extracted from
place Tasks) is in the local workspace of the user.

e The task name is not “Consider AR.” The case
“Consider AR” is managed by transition CARToDo-
Done.

As a result of transition execution, the produced artifact
is checked in the global workspace (a token representing
the corresponding check in request is stored in place CMRe-
quest), the state of the current task is changed to Done, and
a confirmation message is sent to Agenda (through transi-
tion SendAgReply). Finally, if the task has been delegated
to the user by some other team member, the delegator is
notified of the termination of the task and of the name of
the produced artifact (a token is stored in place Globala-
gendaReq through transition ToGlobalReq). When a user
requests a state transition from ToDo to Delegated, the
transition ToDo-Deleg fires only if the delegator is enabled
to delegate a task to another user, and if the delegatee be-
longs to the team member the delegator is responsible
for (i.e., a token describing the delegatee is contained in

_ ControlledUsers place).

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT 851

Task delegation is managed in the following way:

1) The data related to the task is cloned and sent to the
delegatee’s local workspace by transition ToGlobal-
Req that stores a token in shared place GlobalAgen-
daRedq.

2) The state of the task in place Tasks is changed to
Delegated.

3) The input artifacts needed to execute the task are
moved from the local to the global workspace (a to-
ken containing them is put into place CMRequest). In
this way, these artifacts can be checked out by the
delegatee later on.

4) A confirmation message is sent to the users’s Agenda
to authorize the requested state transition.

Notice that any change in the task state in the delegatee’s
Agenda is mirrored in the delegator’s Agenda as well. For
example, as explained above, when the delegatee’s task is
set to state Done, the same applies to the corresponding
delegator’s task. The delegator, therefore, is kept informed
of the task progress. When a user requests state transition
from ToDo to Done for task “Consider AR,” transition
CARToDo-Done fires if the following guard holds:

guard
StateChangeReg->name == “Consider AR” &&
. StateChangeReg->parameter == “Done” &&

*“ToDo” &&
“ProjManager” &&
Tasks->subject &&

Tasks->state ==
OwnerCopy->role ==
LocalWorkspace->element ==

(LocalWorkspace->element->state == “Rejected” ||
LocalWorkspace->element->state == “Postponed” ||
LocalWorkspace->element->state == “Approved”)

end_guard

The guard checks if the role of the requesting user is PM,
and allows the “Consider AR” task to be terminated only if
the user has properly modified the AR. When transition
CARToDo-Done fires, the following actions are performed:

1) The state of the task is set to Done.

2) The anomaly report (LocalWorkspace->element) is
put under configuration management.

3) A message is sent to Agenda, to authorize the re-
quested task state transition.

4) If the state of the AR has been set to “Accepted,” a
task of type “Analyze AR” is generated. It is inserted
in place TaskToDelegate. It is then delegated to all
DEs by transition Delegate.

Step 2 guarantees that the AR is available in the global
workspace and can be used as input document for the
“Analyze AR” task. Step 4 allows PM to send to other team
members the data related to the delegated tasks. '

Transition Delegate generates a token representing a task
delegation request for each token in ControlledUsers. It
also forwards (enabling transition gendAgRequest) the
“AddTask” requests to the local Agenda. In this way, a
delegated task appears in the delegatee’s Agenda with state
ToDo, and in the local user’s Agenda with state Delegated.
Therefore, transitions CARToDo-Done and Delegate im-
plement task decomposition and delegation.

Transition ~ ExtTaskChange / manages requests
“getTaskState” and “SetTaskField” coming as tokens
in place GlobalAgendaReq from the other instances of
AgendaManager. Transition ExtTaskChange updates the
task list stored in place Tasks. Moreover, it has the request
forwarded to Agenda tool through a token stored in place -
RequestsToAG. Transition ExtAddTask manages request
“AddTask” in a similar way.

ConfigurationManagement activity (see Fig. 11) im-
plements a policy for asynchronous data sharing among the
users. The activity interface is composed of two shared
places, CMRequest and CManswer, ome input place,
ConfManagStart, and one output place, ConfManagEnd.
The implementation of the activity contains only one place,
CMTtemDB, storing all the items under configuration man-
agement. The policy implemented by the activity is quite
simple. It guarantees that when an item is checked out in
read-write mode, exclusive access is granted by locking the
item; there are no restrictions for an item checked out in
read-only mode. In addition, the policy determines that the
only authorized persons that may check out items in read-
write mode are the PM, the DE responsible for the module
which the item belongs to, and the PR working on the
module.

Within ConfigurationManagement activity, transition
Checkout checks out an element from the global work-
space. The following fragment of transition body looks in
the global workspace for a document to be checked out in
read-write mode. It verifies that the user who requested the
operation is enabled to accomplish it, and that the docu-
ment has not been locked.

for (p in in_CMItemDB where p->id->name ==
CMRequest->projId->name && p->opened)
for m in p->modules where m->id->name ==
CMReguest->modId->name && m->opened)
if (!CMRequest->readOnly)
(u in m->programmers where u->name ==
CMRequest->from->name && u->role ==
CMRequest->from->role)
for (e in m->elements where
CMRequest->elementId && e->lastVersion)
if (le->locked)
{ .
CMAnswer->answer = “CheckOut”;
CMAnswér—>projName = CMRequest->projId->name;
CMAnswer->modName = CMRequest->modId->name;
CMAnswer->element = (02 Element)e->deep_copy;
e->locked = true; ’
e->1lockedBy =
(02 User)CMRequest- >from >deep_copy;

for

(e—>id ==

5 EVALUATION

In this section, we provide our evaluation of the experience
we have conducted with SPADE-1. We strongly believe that

the issues we discuss here, even if based on our own expe- .-

rience, have a significant relevance at a general level.

852 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996 \

I ClosoProject

Fig. 11. ConfigurationManagement activity.

We argue that supporting cooperation in software proc-
esses is a critical task that has many facets and implications.
A feasible and effective solution can be built only if a vari-
ety of aspects are properly evaluated and taken into ac-
count. In particular, we want to stress the relevance of the
interplay among three factors:

1) Architecture of the PSEE.

2) Characteristics/features of the PML and of the tools
being used. '

3) Methodology and “style” [31] used in building tools

and process models.

5.1 PML/PSEE Features and Tool Integration

Cooperation is perceived by the users of a PSEE through
the tools they use. Namely, the quality and effectiveness of
the PSEE heavily depend on the “quality” of the tools that
compose its UIE. In particular, an essential quality factor
that make it possible to support the cooperation of tools
(and hence of the users behind them) is their degree of
“control integration.” In this context, control integration has
two complementary meanings:

1) integration among tools and
2) integration between tools and the PSEE.

O ConfigurationManagementEnd

The adoption of FUSE, or similar environments such as
Tooltalk or BMS derived from the FIELD project [46],
makes it possible for a tool to invoke services offered by
other tools. This feature is extremely useful to support dif-
ferent kinds of cooperative activities. In particular, it is pos-
sible to follow up an operation accomplished by a user us-
ing a tool, by sending a message to other tools. For instance,
the activation of task “teleconference on product X” in the
product manager’s Agenda might trigger the invocation of
a teleconference application involving different software
engineers located at dispersed sites.

In order to support process integration (i.e., the ability to
control tools according to a. defined process [28)), it is also
mandatory that tools properly interact with the PSEE. This
means that the messages exchanged by tools must be explic-
itly controlled and managed by the PSEE. In FUSE, for ex-
ample, if during the compilation of a file an error is discov-
ered, the normal behavior is that an “openfile” and a
“highlightText” messages are forwarded to the FUSE editor
to highlight the corresponding source code fragment. If we
want to enforce some process-specific access control policy,
we might want to specify in the process model how to check
whether the file can be edited by the user who invoked the
compiler. This means that the “openfile” message generated -

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT ’ 853

by the compiler has to be captured by the PSEE and then
forwarded to the FUSE editor only if the requested operation
is consistent with the process model.

We argue that, to effectively integrate a tool into tool in-
tegration environments, it is necessary to conceive the tool
as a collection of services since the very beginning (a priori

tool integration). A posteriori tool integration (eig., by

means of wrappers) could be less effective since a tool is
still seen as a monolithic “operator.” :
Besides usage of integration features, our experience has
also indicated that there are specific requirements for the
PML/PSEE. In particular, PML must provide specific con-
struicts to model and control the messages exchanged
* among tools, and the architecture of the PSEE must be de-
signed accordingly. In SPADE these issues have been ad-
dressed as follows:

e PML. SLANG provides two constructs for tool con-
trol: the black transition and the user place (see Sec-
tion 2). The black transition is the basic construct to

- request the execution of an operation to the hosting
environment. In particular, it can be used to send a
message to some tool, thus solving one aspect of the
problem, i.e., the communication between the EE and
the “external world.” The user place makes it possible
to reify any information generated in the “external

world” as a process model datum (i.e., as a token)..

These two SLANG constructs support. the basic ac-
tions of “delegating” an operation to tools outside the
EE and “detecting” an event occurring in the UIE, re-
spectively. These constructs have been designed in a
way that is consistent and orthogonal to the rest of the
language.

e PSEE. It is necessary to provide means to “map” the
firing of black transitions with the execution of serv-
ices offered by tools in the UIE, and, conversely, mes-
sages coming from the UIE with the appearance of
tokens in some user place. In SPADE-1, this is
achieved by SCI, which acts as the interface between
the EE and the UIE. If we consider the tool integration
facility (e.g., Tooltalk) as a “software bus” to support
intertool communication, then SCI is the “interface
board” to connect the EE to this bus.

We want to stress that these basic mechanisms and features
are essential ingredients to enable the creation of highly
integrated environments that effectively support the coop-
eration among multiple users.

5.2 Interaction Paradigms and Characteristics of the
PML/PSEE ’

The UIE can be built by exploiting different “interaction
paradigms.” An interaction paradigm specifies the main
metaphors and concepts that are visible to the users of the
environment. In particular, these metaphors and concepts
allow users to specify commands and invoke environment
services. They are also used to provide feedback and indi-
cations to the user after some significant event has oc-
curred. A particular type of interaction paradigm is pro-
vided by the agendas offered by many PSEE (e.g., SPADE-
1, HP Synervision [36], and Leu [22]). An agenda manages
the list of tasks that are relevant for a specific user.

Other PSEE offer a different interaction paradigm. For
instance, in Merlin the interaction between the users and
the environment is based on the concept of “workcontext”
[38]. A workcontext displays on a graphical interface the
documents to be manipulated by each user (each document
is represented by a box). Each document is associated with
a menu that provides the list of actions that can be invoked
on the selected document. Moreover, dependencies among
documents are displayed in a graphical form. The execution
of an action on a document can have effects on documents
belonging to the same or to other workcontexts. These ef-
fects may vary from the creation of a new document in a
workcontext to the modification of the state of other docu-
ments. In this latter case, a flag in the workcontext affected
by the change indicates that an update has been accom-
plished. When explicitly requested by the user, the update
is actually propagated to the workcontext.

In Marvel [15], the UIE is mainly centered on the visuali-

. zation of the set of rules a user can invoke. These rules rep-

resent the goals to be accomplished. The activation of a rule
can trigger backward or forward chaining, depending on
the state of the Marvel objectbase. This kind of paradigm is
also adopted. or advocated by several other PSEE (e.g.,
PEACE [1]). In Marvel, it is also possible to see the structure
of the artifacts that are currently manipulated by the PSEE.

An interaction paradigm suggests or even imposes a
specific view of the process. For instance, agendas offer a
“task-oriented view” of the process; workcontexts provide
a “document-oriented view”; rule sets define “a goal-
oriented view.” In addition, it is possible to identify inter-
mediate approaches. For instance, Process WEAVER
Agenda [26] displays workcontexts, composed of both task
descriptions and documents to be used or produced. The
interaction paradigm implicitly defines also the metaphors
used by users to interact and cooperate among each other.
For instance, in task-oriented approaches, the main means
to support cooperation is the creation and delegation/ dis-
tribution of tasks.

Therefore, the interaction paradigm is essential in de-
fining the quality and style of the support to cooperation
provided by the PSEE. We argue that none of the afore-
mentioned paradigms should be considered as the general
and universal solution for building UIEs. Rather, different
interaction paradigms should be used to support different
categories of users in different classes of processes or even
in different stages of the same process. For instance, a soft-
ware developer might be interested in seeing the goals of
his work, more than the specific steps to be accomplished.
Conversely, the project manager might be interested in un-
derstanding the sequence of tasks still to be completed. Fi-
nally, these needs can change over time even for the same
class of users. Thus, UlEs should be changeable and cus-
tomizable according to the specific requirements of the
process being supported, and should make it possible for
different paradigms to coexist.

Actually, the real challenge of PML/PSEEs is to be able
to consistently create and manage different views of the
state of the enacted process. For this reason, we have tried
to understand, from an architectural and conceptual view-
point, the relationship between the user interaction para-

854 ' |IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996

digm(s) and the underlying PML/PSEE. We have identified
two extreme approaches [4]:

* Coupled UIE. The UIE is coupled with the PML/FSEE.
Namely, the user interaction paradigm is derived
from the PML/PSEE semantics: it is not explicitly de-
scribed as part of the process model. Marvel is an ex-
ample of a PSEE based on the coupled approach. In
Marvel a process model is described as a set of rules
operating on a set of artifacts. As we said, its user in-
teraction environment is based on a rule menu that
shows all the visible rules and the network of artifacts
that are created or manipulated in the process.4 When
the user selects a rule, it is executed (backward and
forward chaining is applied). The execution yields a
new state in the objectbase. Notice that it is not neces-
sary to specify this behavior in the Marvel process
model. The interaction environment is automatically
managed so that it remains consistent with the en-

acted process model. The user interaction paradigm is

not defined as part of the process model, but it is di-
rectly based on the PML/PSEE.

s Decoupled UIE. The UIE is completely decoupled from
the PML/PSEE. In this case, the interaction paradigm
is implemented as part of the process model. An ex-
ample of PSEE that adopts the decoupled approach is
Process WEAVER. As we said, in Process WEAVER
user interaction is supported through the Process
WEAVER Agenda. Each user has an instance of this
tool that contains a set of workcontexts assigned to
that user. From the process engineer viewpoint, a
workcontext is a datum that can be manipulated as
any other process artifact. For example, one possible
policy implemented in Process WEAVER could be:
when a task is assigned to a process agent, a work-
context is created and inserted in his/her Process
WEAVER Agenda. Conversely, when the task is fin-
ished, the workcontext is removed from this tool.
These operations must be specified in the process
model. The PSEE does not have any understanding of
the Process WEAVER Agenda semantics. This means
that the process model must explicitly include all the
operations to ensure the consistency between the state
of the enacted process model (e.g., the Petri net
marking, in Process WEAVER) and the state of user
interaction environment (e.g., the contents of the
Process WEAVER Agenda).

In summary, in the coupled approach the user interac-
tion environment is bound, to a large extent, to the PML
paradigm and to the supporting environment. This forces

the process agents to follow a predetermined user interac-,

tion paradigm that is implicit in the language semantics,
but frees the process engineer from explicitly managing the
consistency between the state of the enacted process model
and the state of the user interaction environment. The de-
coupled approach allows the process engineer and the
PSEE designer to design the appropriate interaction para-
digm in a way that is fairly independent of the paradigm

4. While the Marvel administrator’s menu shows all the rules, process
agents’ menus do not show rules marked as “hidden.”

supported by the PML. Indeed, by using a decoupled ap-
proach, it is possible to define different interaction styles
(goal-oriented, task-oriented, document-oriented, or hy-
brid) for different classes of users. However, the drawback
of this approach is that the process model must include
operations to explicitly guarantee the consistency between
the state of the enacted process model and the information
offered to users. '

Two main decisions characterize SPADE 1 and the proc-
ess example discussed in Section 4 with respect to interac-
tion paradigms. First, SPADE-1 adopts a decoupled ap-
proach, which has an impact on the PSEE at the architec-
tural level (e.g., in SPADE-1, EE, and UIE are distinct ar-
chitectural elements and the interface managing communi-
cation between the two environments is precisely defined).
Second, the example provides a task-oriented view of the
process, which has an impact in the structure of the process
model. For instance, in a Petri net-based notation, process
stéps might be represented by sequences of transitions. Had
we chosen a coupled approach,.a task in the SPADE-1
Agenda could have corresponded to the firing of some
transitions in the model. In a decoupled approach, tasks in
SPADE-1 Agenda are explicitly represented by tokens of
type Task stored in some places of the net and manipulated
as prescribed by the model in order to achieve the required
behavior in the UIE. This solution is not specific to Petri
nets. Basically, in a decoupled approach the metaphors and
concepts used in the UIE are reified as data in the process
model, and explicitly managed in order to keep the state of
the UIE consistent with the state of the EE. v

We would like to stress that by adopting a decoupled ap-
proach, the paradigm of the SPADE UIE is mainly deter-
mined by the tools of the UIE itself and the process model
fragments controlling them. For instance, SPADEShell and
SPADE-1 Agenda implement a specific interaction paradigm.
By building different tools and process models, based on
different metaphor and concepts, we would have obtained a
different interaction paradigm, without changing the seman-
tics and architecture of SPADE-1/SLANG.

5.3 Process Modeling and Enforcement Modeling

A relevant problem that is very frequently discussed
among researchers is the degree of enforcement and guid-
ance that should be provided. to the user. For instance, [23]
mentions four different levels of process support:

* Passive guidance. Basically, it consists of passive sup-
* port offered upon user’s request only.

» Active guidance. The system is able to solicit the user
intervention when required.

e Process enforcement. The user is forced to do what is
specified in the process model.

e Process automation. The system performs actions with
no user intervention.

A similar classification is proposed in [35]:

* Process mornitoring. The system does not influence
what it is going on, but keeps track of the actions be-
ing carried out.

¢ Process guidance. The system inspects and controls the
outcomes of process enactment.

BANDINELL! ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT 855

e Loose process enforcement. the system controls some of
the activities being enacted.

e Strict process enforcement. The system controls all the
activities being enacted.

Even if the above classifications may be somewhat vague,
the issue is clearly important. Specific activities may de-
mand for weak control, while other more critical ones may
require strict enforcement. This issue is fairly orthogonal to
the interaction paradigm. For example, in a task-oriented
paradigm users may be allowed to choose the more con-
venient sequence of task execution, or may be constrained
to follow a predefined sequence. Or also, in a goal-oriented
paradigm, the goals to be achieved can be indicated by the
system or autonomously chosen by the user. In [44] this
concept is investigated as far as the “locus of control” is
concerned. In particular, it is underlined how in the Inter-
mediate/Interact approach three entities (the process
model, the humans, and the PSEE) control and direct the
process enactment.

As far as cooperation support is concerned, this issue is
Clearly related to the degree of control and enforcement that
is-adopted to coordinate the operations of several users. For
instance, when a user completes some operation (say the
release of a document), this event may immediately trigger
a mandatory follow-up request to another user or, con-
versely, may just imply a notification of the event.

According to our experience, there is no single approach
that can be used in any situation. Actually, we select the
level of enforcement case by case, depending on the specific
requirements of the process fragment being modeled.

Consistently, the level of enforcement determines the way
tools are built and, more important, the way they are man-
aged by the controlling process model. For instance, in the

process example we discuss in Section 4, Agenda leaves the '

user free to decide what to do (e.g., which task has to be acti-
vated or delegated), without forcing any specific behavior.
The process model simply prohibits the execution of those
operations that violate some process constraint. In this case,
the level of enforcement is very low, and we therefore obtain
a nonintrusive behavior. Notice that this behavior is solely
determined by the way we have specified the process model
controlling Agenda, and it is not imposed by the seman-
tics/architecture of the PML/PSEE and of Agenda itself.

We argue, therefore, that, like the interaction paradigm,
the level of enforcement should be designed and specified
as part the process model. It does change from process to
process, or even within the same process depending on the
role of the user and other context-specific constraints.

It is, therefore, essential to realize that enforcement mod-
eling is an important part of process modeling. Clearly, a
complete enforcement of human behavior can never be
achieved. This is ethically unacceptable and technically im-
possible. The issue here is to provide enough flexibility to
‘tune the behavior of the PSEE depending on the specific
process fragment being modeled.

5.4 Reactive vs. Proactive Process Execution

- It has been extensively argued that PSEEs must offer both
proactive and réactive process execution styles (see for exam-

ple [2]).

o Proactive control means that the PSEE initiates and
controls the operations to be carried out by a user. Ba-
sically, the PSEE notifies the user that something has
to be done, and makes it sure that the operation is
eventually completed.

¢ Reactive control means that it is the user who starts
the operation, by issuing a request to the PSEE. In this
case, the PSEE “reacts” to some user-generated event.

The process execution style is related to cooperation sup-
port, since it can influence the view that users have of their
shared workplace. In general, a cooperative process is a
combination of reactive and proactive operations. For in-
stance, a user might initiate an operation that requires co-
ordination with other people. The PSEE might react by pro-
viding specific information about the persons who should
be involved in the cooperative activity. In addition, it could
pro-actively contact these other users to define the terms
and modality for accomplishing the cooperative activity.

We, therefore, argue that it is not suitable to fix the proc-
ess execution style in the PSEE. This must be definable at
the process model level or, in an even more dynamic fash-
ion, as an input parameter or pragma when the specific
operation is started.

The process execution style can be considered fairly or-
thogonal to the level of enforcement. For instance, an opera-
tion started by the PSEE (e.g., proactively) can either provide
just some guidance or even force a specific behavior.

In SPADE-1, the basic mechanisms for tool integration
and control (discussed in Section 5.1) make it possible to
“specify” at the process model level the process execution
style. For instance, a user can be enabled to send messages
to the PSEE via SPADEShell, and the process model can be
built in such a way to just react to these messages. This
would implement a “pure” reactive behavior. Conversely,
the process model can include the invocation of tool serv-
ices. Or also, it can embed operations that are started when
significant events occur, independently of users’ actions or
requests. For instance, when too many activities related to
the testing of a module are late, it is desirable that the PSEE
starts some notification and control activity to inform the
project manager of what it is going on. This can be easily
implemented by an activity that sends a message to the
project manager’s SPADEShell when the number of tokens
representing modules being tested is greater than the ac-
ceptable threshold. Thus, it is also possible to achieve a pro-
active behavior. Even more, by properly composing
SPADE-1 basic mechanisms, it is possible to identify the
best combination of reactive and proactive control for each
specific process. ‘

5.5 Support for Cooperation Policies

A cooperative process (i.e., a set of cooperative activities) is
carried out by process agents who, in general, play different
roles and behave according to procedures and rules that
depend-on the specific process they are involved in. For
instance, in a software inspection process there is a coordi-
nator, several reviewers, and a recorder. They interact to
discover and report defects in a software product. Different
individuals have responsibilities and expectations that de-
pend on their specific role, and on the characteristics of the

856 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996

software inspection process. The policy used to support and
control a cooperative process depends on the specific do-
main for which the process has been defined, the roles be-
ing used, the procedures that manage cooperation, and
many other domain-dependent factors. It is our opinion
that, at this stage of technology development, it is quite
difficult to identify general high-level cooperation policies
and concepts that can be used in any cooperative process.
For instance, the policy for delegating tasks we discussed in
Section 4 is reasonable for the process we have considered,
but might be inadequate or even not applicable in other
contexts.)]

To effectively support cooperation, therefore, an envi-
ronment must-be built in such a way that any cooperative
tool can be built and/or integrated, and any potential coop-
eration policy can be modeled and used. Even more, coop-
eration policies do change to take into account new process
requirements or changes in the market or in the organiza-
tion itself. Therefore, cooperation processes must be evolv-
able to take these changes into account.

To achieve these goals, it is essential to identify the gen-
eral and process independent mechanisms and features that
have to be provided by the PML/PSEE. In building
SPADE-1, we realized that the basic mechanisms and lin-
guistic features discussed in Section 2 are general enough to
achieve the aforementioned goal. Actually, cooperation is
supported in SPADE-1 by 1) building/integrating specific
tools and 2) developing process models that are able to
properly control these tools according to the desired coop-
eration policy. As for this issue, an important aspect to be
dealt with is concurrency control. In advanced domains
such as software processes, it is often claimed that it is nec-
essary to offer advanced transactions that extend traditional
ACID semantics. These approaches exploit specific mecha-
nisms to share and make it visible intermediate results of
the computation [9]. In SLANG, advanced cooperative
transactions can be modeled by properly composing differ-
ent Petri net transitions (i.e., ACID transactions). Although
this approach is less expressive than other advanced coop-
erative transaction systems, it makes it possible to flexibly
define at the process model level the desired concurrency
control policy.

In the example we have shown in Section 4, the coop-
eration support (i.e., the roles and the procedures used to
support the cooperative process) is implemented by two
tools (Agenda and SPADEShell) and by some SLANG ac-
tivities, that properly implement a cooperation-policy, and
control the different instances of Agenda and SPADEShell.
It basically defines a concurrency control policy among the
different users.

Changes in a cooperation policy can be accomplished
exploiting SLANG reflective capabilities. In turn, this might
even request the modification of some tool. Notice that in
our example, we decided-to build a customizable Agenda
to flexibly modify its structure and organization, in order to
easily reflect at the tool level the changes in the cooperation
policy (e.g., how task delegation is accomplished).

5. A discussion of how different advanced cooperative transactions can
be implemented as a Petri net is presented in [5].

5.6 Remarks

The implementation of an enactable process model must be
accomplished by taking into account a variety of aspects
and problems. For instance, an appropriate interaction
paradigm must be selected, and the level of enforcement
has to be identified. Thus, such a process model specifies
how the process should be supported by the PSEE. This is
what the SLANG model we presented. in Section 4 does.

These aspects are not relevant when the goal of the mod-
eling activity is just to produce a description of a process,
with the purpose of facilitating its understanding and
communication. In this latter case, one should focus on the
procedures to be executed, the precedence among them, the
flow of data among the activities, and the godls to be
eventually accomplished [8].

We argue, therefore, that we can distinguish between (at
least) two types of modeling activities: modeling to enact and
modeling to describe. In [50], the former has been called pro-
cess programming to emphasize this difference, In our expe-
rience, even when the same language is used (in our case
SLANG), the models that can be derived by accomplishing
these modeling activities are different, because their pur-
pose radically changes. This is quite evident when com-
paring the process model described in [8] and the one pre-
sented in this paper. As we mentioned in Section 4, they
model the same process, but the former is an high-level
specification, while the latter is an enactable model.

6 INTEGRATING SPADE-1 AND CSCW
TECHNOLOGY

The evaluation summarized in the previous section shows
how SPADE-1 can be exploited to support different kinds
of asynchronous cooperative processes. Even more, the
mechanisms and linguistics constructs that SPADE-1 offers
to integrate tools and to build process models make it pos-
sible to flexibly define many different types of cooperative
processes, possibly exploiting different interaction, en-
forcement, and process execution styles. These features
provide a level of flexibility that is very often missing in
existing CSCW environments, where the cooperation poli-
cies and the interaction paradigms can be modified or cus-
tomized in a very limited way (see Section.7). However,
some features offered by CSCW environments are still
missing in the SPADE-1 version described so far. It, in fact,
does not offer support for synchronous cooperation.

As Ellis and Wainer state in [25], the main vehicle for
problem solving are meetings. Clearly, this observation
applies also to software processes, where meetings are ac-
tuated to analyze and discuss alternative solutions and
produce results that impact on the whole development
process. For instarice, in the process example discussed in
this paper, CCB meeting is performed to prepare the plan
for the next release of the software product.

These considerations suggested that we should explore
the possibility of introducing synchronous cooperation sup-
port in SPADE-1. Following the underlining idea that tool
integration is the main way to add new features to-a simple
kernel, we have explored the possibility of adding new syn-
chronous cooperation features to SPADE-1 by integrating it

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT) : 857

~with a CSCW toolkit. As we will discuss in the reminder of
this section, this approach presents several advantages for
both SPADE-1 and the CSCW toolkit. ‘

6.1 Supporting Synchronous Cooperation

Synchronous cooperation has been widely addressed in the
CSCW field, and has led to the development of many pro-
totypes supporting video conferences, cooperative writing,
and other classes of cooperative applications [24]. These
applications are, often but not solely, based on the shared
workspace metaphor: each participant may perform actions
in this workspace that are made visible to all the other
users.

In general, the application defines a set of roles, often
partially customizable, that embody the actions that can be
performed on the shared workspace. Moreover, a policy of
cooperation is given in terms of join and leave operations
associated with each role. For example, given the listener
and the speaker roles in a video conferencing system, the

listener role may be joined and left by anybody at any time.

Conversely, the speaker role may be left at any time, but
joined only if the role is currently vacant.

. This simple way of expressing cooperation policies is not
suitable to express flow of activities and synchronization
among them, as it is typical in software development proc-
esses, but it is powerful enough to model simple constraints
for specific synchronous activities. '

Synchronous cooperation requires an organization phase
in which all the actions (scheduling, invitations, material
preparation) needed to start up the cooperation are per-
formed. This organization phase is itself a process that can
be more or less complex depending on the specific activity
to be prepared. Several synchronous cooperative applica-
tions ignore this phase. In some cases, it is assumed that
users are all ready to start cooperating at application start-
up; i.e., they previously reached an agreement about the
time and topic of the activity. In other cases, a user may
activate the cooperative application and wait for the other
participants to join in. .

In order to support the development of CSCW applica-
tions, some toolkits have been implemented to support the
architectural design and/or the implementation phases of
the application life-cycle [18], [48]. Usually they provide a
common infrastructure that is in charge of managing the
communication and the control aspects of the cooperation.
This infrastructure is then tailored and plugged in the de-
sign of the final cooperative application.

We argue that the integration of a CSCW application or
of a toolkit in a PSEE can solve some limitations of both
CSCW and PSEE environments. In particular, on one side,
the process modeling features offered by PSEE can be prof-
itably used to model the organization of a synchronous co-
operation and the cooperation policy that is adopted during
the execution of the activity. On the other side, the capa-
bilities of CSCW applications/toolkits to manage synchro-
nous communication and information exchange can be ex-
ploited by PSEE to enhance its capability of supporting
software processes. To experiment this integration, we used
SPADE-1 and a toolkit called ImagineDesk [45]. The ad-
vantage of integrating a toolkit in SPADE-1 is that this en-

ables the interaction between SPADE-1 and an entire class
of applications (all those that can be built using the toolkit).

6.2 A Quick Overview of ImagineDesk

ImagineDesk supports the development and operation of
synchronous, distributed, and multimedia cooperative ap-
plications. The architecture of an ImagineDesk cooperative
application is illustrated in Fig. 12. In the figure, boxes rep-
resent processes, while arrows are used to specify commu-
nication channels; “c” and “d” labels indicate whether the
channel is used for control or data transmission, respec-
tively. Each process composing the architecture is devoted
to a specific task:

e Tools implement the user interface of the cooperative
application. New instances of Tools are created for
each user who is involved in the cooperative activity.
Tools provide users with a view of the shared work-
space. They also allow users to operate on the shared
workspace and to join or leave a role in the coopera-
tive activity.

e Communication -Coordinators are devoted to control
data flows among Tools. If the application manages
different types of media (e.g., images and text), differ-
ent Communication Coordinators, one for each type
of media, are used. They are connected to all the tools
through bidirectional data communication channels,
and are controlled by a Conversation Coordinator.

e Conversation Coordinators are devoted to control the
cooperation. They manage the roles that can be cov-
ered by the users of the application, and implement
one or more policies of cooperation that are followed
during the execution of the application. A Conversa-
tion Coordinator receives the requests of role change
from Tools through a bidirectional control channel,
and manages them according to the policy of coop-
eration that is currently in place. It also controls
Communication Coordinators by sending them,
through unidirectional control channels, information
about user access rights to the shared workspace. In
particular, whenever a user changes his/her role,
his/her new access rights are communicated to the
Communication Coordinators through a control mes-
sage. The hierarchy of Coordinators that has to be
executed to control the cooperative application is de-
fined at start-up. This means that, for example, it is
possible to develop a catalogue of Conversation Co-
ordinators supporting different cooperation policies,
and to choose the more appropriate one at start-up
time. . i

e Supervisor provides services to start and manage a co-
operative application. Supervisor maintains a list of
all the cooperations to be started, and offers services
to add a new cooperation to the list and to specify its
participants, its scheduling, and the cooperative ap-
plication to be used. Supervisor starts cooperative ap-
plications according to their schedule, managing their
initialization phase.

ImagineDesk provides, as parts of the toolkit, the Supervi-

sor and the skeleton of Coordinators. They are supposed to
be specialized according to the application to be built, the

858

roles involved in the cooperation, and the cooperation pol-
icy to be adopted

. t
~
~ ! 4
A 2

’

Communication Communication

Communication

Coordinator 1 Coordinator m Coordinator i

c g) c
| 7/

z

Conversation Conversation

Coordinator 1 Coordinator k

C v C
Vo
AN

Supervisor

Fig. 12. The ImagineDesk application architecture.

6.3 Integration Strategies
SPADE-1 and ImagineDesk offer complementary function-
alities that can be jointly exploited to provide more effective
support to software developers. In particular, SPADE-1
offers explicit process modeling and enactment, tool inte-
gration, and product modeling and management facilities.
ImagineDesk offers support for building and executing
multimedia, synchronous applications, but does not sup-
port flexible and dynamic definition of cooperation policies.
As in the case of traditional tools, different integration
strategies can be envisaged that provide the PSEE with less
or more control over the CSCW application. We have iden-
tified and implemented three levels of integration, that are
currently being evaluated [21]. We believe that they are
rather general, since both SPADE-1 and ImagineDesk pres-
ent most typical characteristics of state-of-the-art PSEE and
CSCW technologies.

6.8.1 Simple Integration

The management of the cooperation is entirely delegated to
ImagineDesk: SPADE-1 manages only the activation of
ImagineDesk (through the services offered by the SCI). Thus,
ImagineDesk manages both the organization and the execu-
tion of the cooperative activity in a way that is fully inde-
pendent of SPADE. At this level of integration the CSCW tool
is seen as black-box (see Section 2.1). Thus, the implementa-
tion of simple integration does not require any Change in the
source code of ImagineDesk.

6.3.2 Intermediate Integration

The organization of the cooperative activity is managed by
SPADE-1. The control of the synchronous cooperation is
demanded to ImagineDesk and it is performed according to
the cooperation policies ImagineDesk implements. The goal
of the cooperative activity, the number of participants, the
schedule, the presentation material, and the technological
support are chosen according to the information held in the
state of the enacted process model. -

tEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996

In the example of Section 4, the organization of the CCB
meeting would be started by the Project Manager as soon as
the “Analyze AR” tasks she/he has delegated to Designers
are done (when this happen, the task in his Agenda are set
to done). She/he would then directly contact the user who
notified the occurrence of the anomaly in order to identify a

_set of possible dates for the meeting. Finally, she/he would

request the design team to select a date, based on the
workload of each component of the team. Alternatively,
this activity might be automatically performed by SPADE-1
on the basis of the information of the team members’
Agendas.

The architecture resulting from intermediate integration
is shown in Fig. 13. From the technical viewpoint this solu-
tion has required the reengineering of the Supervisor; it is
the ImagineDesk tool in charge of managing the start up of
the cooperative applications. In particular, the Supervisor
has been interfaced with the SCI, in order to make the EE
able to request the start up of a cooperative application. A
tool, called spadeCEI (SPADE Conference Environment
Interface) has been developed in order to support users in
the organization phase. This tool is integrated in SPADE-1
according to the service-based paradigm, and it is con-
trolled by a process model fragment that implements the
policy adopted in the organization phase. Fig. 14 shows the
user interface of the spadeCEIL This tool has been imple-
mented as a Java applet [34].

The advantage of the intermediate integration is sim-

plicity. Integration is achieved by simply modeling in
SLANG the conference start-up process (possibly, exploit-
ing the facilities offered by the spadeCEI) and by invoking
the service StartCooperation provided by the Supervi-
sor. This request carries the information on the number and

the identity of the participants to’the cooperation and on -

the cooperation policy to be used.

% Tool 1 l [Tool 2 ‘ Tooln je
TN e
d A d 1
. ;
N .,
S| i
Communication Communication Communication
Coordinator 1 Coordinator m Coordinator i
1 . e
e Conversation Conversation
; c
Coordinator 1 Coordinator k

Supetvisor

spadeCEl T SCI

PEE

Fig. 13. Intermediate integration between SPADE-1 and ImagineDesk,

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT 859

Netscape: spade CEI

Fig. 14. spadéCEI user interface.

On the other hand, in the intermediate integration it is
impossible to integrate the cooperation and the process
policies since they are independently described in the
ImagineDesk Conversation Coordinators and the SLANG
process model. Actually, a Conversation Coordinator im-
plements a simple process, whose semantics is hard-coded
and defined by its implementation. In many cases, it would
be important to “blend” and integrate the two processes in
order to reduce redundancy, avoid inconsistencies, and
increase effectiveness. For instance, a Conversation Coordi-
nator includes information on users and their roles. Similar
information is usually stored in the software process model.
Decisions related to the invocation of specific conversation
operations might depend on the state of the software proc-
ess being executed (and vice versa). Moreover, if the poli-
cies of cooperation are kept into ImagineDesk Conversation
Coordinators, it is not possible to take advantages of
SLANG reflective features to dynamically change them.

6.3.3 Process Integration

Process integration supports the organization and the exe-
cution of the cooperative activity under the full control of
SPADE-1. In this case, the ImagineDesk Coordinator at the
highest-level of the hierarchy is controlled by SPADE-1 as
any other service-based tool.

From the technical viewpoint, getting the Coordinator hi-
. erarchy integrated with SPADE-1 is not a complex task. In
fact, the Coordinators have been originally conceived ac-
cording to a service-request approach. That is, they receive
and execute service requests coming from the upper levels of
the hierarchy (if any). Thus, integration can be accomplished
developing a bridge that manages the problems related with
protocol conversion between the two environments. The re-
sulting architecture is shown in Fig. 15. The component
named spade2ID provides both the functionalities of a bridge
and of the Supervisor, thus managing both format conver-
sions and the start-up of ImagineDesk components.

This solution basically extracts all the cooperation poli-
cies from ImagineDesk and makes them explicit as SLANG
process model fragments. These model fragments describe
the following entities:

1) the policy used to organize and to start up the coop-
eration; .

2) the policy of cooperation and the management of role
change requests coming from the Tools; /

3) the way the roles defined at the process model level
are mapped on the roles defined in the controlled
Coordinator.

This means that the CSCW components are devoted to the
management -of specific issues related to media manage-
ment and real-time distribution of information (i.e., man-
aging the flow of data in a video-conference). All the poli-
cies are moved to the PSEE, where they can be integrated
with software development policies.

%‘ Tool 1 ‘

‘ Tooln

‘ Tool 2 ‘

\ [’
AY i /
di { d 1
- .
N
A | V4
Communication Communication Communication
Coordinator 1 Coordinator m Coordinator i

\i/ ¢
1 . //

Conversation

Conversation

Coordinator 1 Coordinator k

<
u

c SPADE2ID

spadeCEI ’<—>‘ SCI J

PEE

Fig. 15. Process integration between SPADE-1 and ImagineDesk.

6.3.4 Remark

All the integration strategies described above have been
implemented and tested. Currently, the CCB meeting men-
tioned in Section 3 is being modeled in SPADE-1 using the
three integration strategies. Early results show advantages
of both the intermediate and process integration in terms
of flexibility in the resulting environment over the simple
integration. ‘ ' :

7 REeLATED WORK

In this paper we discussed how to support cooperative ac-
tivities in software development. There are three classes of
products/technologies that address this issue:

1) Process-Centered Software Engineering Environments
(PSEE),

2) Workflow Management Systems (WFMS) [32], and

3) Computer Supported Cooperative Work (CSCW) tech-
nology.

860 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996 -

Actually, the distinction between these categories of prod-
ucts i8 not sharp. For instance, very often a WFMS is con-
sidered a subset of CSCW technology (we followed this
approach in Section 1). At the same time, the features of-
tered by WEMS are very similar to those provided by PSEE.
In this section we present significant examples of systems
from these three categories, in order to better understand
differences and similarities and to put our work into a
proper broad context.

7.1 PSEE

Most PSEE support (at least partially) asynchronous coop-
eration. Few systems, however, deal with synchronous co-
operation. A significant ongoing project where this issue
has been tackled is Oz.

Oz [10], developed. at Columbia University as a succes-
sor of Marvel {39], supports asynchronous and synchro-
nous cooperation. To address these issues, pre-defined
policies are provided as basic modeling constructs at the
PML level. In particular, Oz provides predefined linguistic
constructs to describe and manage tasks (which correspond
to- Marvel rules). Also delegation and synchronous and
asynchronous interaction have their corresponding con-
structs, with a pre-defined semantics. This approach is dif-
ferent from the one adopted in SPADE-1. It results in a
strict coupling between the PML and the UIE interaction
paradigm.

Fig. 16 shows an Oz process model fragment describing
a rule whose execution is delegated to a user. Rule
anelyze_bug starts the process of software module testing.
The rule is executed if the rule precondition is satisfied G.e.,
the file belongs to a module of the system being developed

and it is contained in a workspace). When enabled, the exe-
* cution of the task is delegated to the owner of the file. Dy-
namic binding is used to associate tasks to the users. If
many users may be selected by the rule, only one of them is
chosen. This choice may be performed by the PML inter-
preter randomly, or with human assistance. In conclusion,
the delegate command is part of the PML: Its semantics is
predefined.

analyzebug[?tr:TEST _RUN,
(and
(forall MODULE ?m suchthat
(member [?m.cfiles ?c¢]))
(exists WORKSPACE ?w suchthat
(likto [?w.module ?m])))

?c:CFILE];

delegate[?w.owner] :

Fig. 16. A fragment of Oz rule.

As far as synchronous cooperation is concerned, Oz
supplies a language construct to specify its participants.
The execution environment supports the initialization
phase of the cooperation, making.each callee aware that the
cooperation is about to start. Again, the policy used to
manage this phase is embedded in the semantics of the cor-
responding Oz constructs:

To interface the synchronous cooperative application, Oz
adopts the simple integration approach we discuss in Sec-
tion 6.3. No control over the cooperation policy is therefore
possible in the referenced version of Oz [10]:

In general, Oz offers different levels of tool integration
strategies. With respect to our approach, Oz does not ex-
ploit the service-based interface provided by the tools be-
longing to integration environments. It, instead, provides
some “wrappers” to instrument and provide inputs to the
tools [52]. :

Another system which is relevant in the context of this
paper is the Desert Software Development Environment
[47]. It represents a significant extension of the FIELD sys-
tem since it provides advanced tool integration facilities. In
Desert it is possible to specify simple rules that control the
routing of messages. However, these rules cannot be con-
sidered a general process modeling technique since their
scope and applicability is just limited to control tool be-
havior. Thus, Desert does not provide the same modeling
policies offered by SPADE-1.

7.2 WFMS ’

WEMS grew up in the CSCW area and have been often con-
sidered as a subset of CSCW technology. At least from a
market viewpoint, however, they are assuming an autono-
mous visibility and presence [32]. In general, workflow
management consists of three areas: process modeling,
process reengineering, and workflow implementation, and
automation [32]. These expressions identify the same prob-
lems addressed in software processes, namely process
modeling, improvement, and automation. WEMS is, there-
fore, very close to PSEE. We will further explore this anal-
ogy by considering a couple of significant examples.

Action Workflow is a notable example of a WFMS [43].
In this system, a workflow is defined in term of Action
Workflow loops (see Fig. 17). A loop corresponds to the
execution of an activity up to obtain customer satisfaction.
The agents involved in the Action Workflow loop are a
customer and a performer.

Proposal/—* \greemﬂm

Customer " Performer

Satlsfacuon\, e/erformance

Fig. 17. Action workflow loop.

A workflow is composed of many loops related each
other in three possible ways:

» Subordinate workflow loops. They need to be started and
completed before completion of the main loop.

» Independent triggered workflow loops. They are triggered
by some actions in another workflow, and procéed
independently. /

* Resolving workflow loops. Their result determines the
acceptance or the rejection of another loop.

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT 861

The conceptual architecture of Action Workflow has many
different implementations. The architectural core is the
workflow management server, that stores and interprets a
workflow. Different applications may be integrated in the
environment, and used and controlled as UIE tools. Some
STF (Standard Transaction Format) processors act as
bridges between the applications and the workflow man-
agement server.

Regatta is another interesting project in this area [51]. It
provides end-users with support for defining their personal
processes to accomplish tasks. In Regatta a workflow is
called colloquy, and it is composed of a shared data space
and a collection of plans. In turn, a plan is composed of a
net of tasks. A task is a request from a person to another
person (the assignee). It may be declined or accepted
(notice that this approach is similar to Action’ Workflow
loops). In this last case, the assignee can choose among
three different ways of accomplishing the task: to perform it
manually, to instantiate a plan template, or to create a new
plan from scratch. After task completion, the terminating
event is sent to the plan that generated the task execution
request. Synchronization is thus achieved between the re-
quester and the assignee.

7.3 CSCW Technology

Ellis classifies CSCW environments in four categories [25]:

keepers: manage shared data;
synchronizers: enforce action sequencing;
communicators: enable people to communicate with
each other;

o ggents: perform specialized actions within a group
setting.

In this section, we will consider significant examples from
some of these classes. ' :
ConversationBuilder (CB) [40], [11] is classified as a
CSCW system, but presents many features typical of PSEE
and of WFMS. CB activities are called conversations, and
may involve one or more users. Each action in an activity is
seen as an “utterance” in the corresponding conversation.
CB architecture is shown in Fig. 18. UIE tools are inte-
grated from the control view point through a message bus.

The Conversation Engine controls the cooperative activities

progress and supports data integration among tools. The
Conversation Engine is basically composed of a kernel, that
supplies some primitive objects and services. The objects may
be connected by hypertextual links. Examples of objects are
process artifacts. They may be located in shared or individual
conversation spaces. Protocols define an arrangement of ac-
tions (their semantics, their temporal relationship ...). Their
instances are the conversations. Obligations graphically define
a process structure, in term tasks assigned to users and of
dependencies among these tasks. The internal structure of an
obligation defines the network of actions to be accomplished
in order to complete the obligation.

According to Ellis classification, CB is a keeper (user data
may be stored in shared and individual workspaces), a syn-
chronizer (protocols may define task sequences), and a com-
municator (Display and Conversation Managers are in charge

of propagating users’ actions to other users). These concepts .

are being further exploited in the wOrlds project [12].

Tools ...

N

l Message Bus l

!

Kernel Services

Kernel Objects

Dispatcher

Conversation Manager Shared/Individual Conversation Spaces

Hypertext Manager Obligation Space

Persistent Storage Manager MetaSpace: protocol description and meta-information

Capability Manager Hypertext Space: nodes, anchors & links
Capability Space

User/Role Data

MetaSpace Manager

Display Manager

User/Role Manager

Conversation Engine Kernel

Fig. 18. ConversationBuilder architecture.

Oval [42] is a “radically tailorable” tool that allows end
users to build asynchronous cooperative applications in a
straightforward way. The basic constructs offered by Oval
to build applications are the following ones:

o Objects. They represent people, tasks, messages ...

e Views. They are means to visualize and manipulate
collections of objects.

o Agents. They are similar to active rules in database
world. They are activated by events, and can modify,
add, delete, and mail objects.

e Links. They represent relationship among objects.

Object sharing is performed through shared files or
through e-mail. Each user involved in a cooperative activity
has his/her own copy of the shared objects. The copies are
updated in an asynchronous way. Basically, Oval belongs to
the category of keepers. The possibility of defining links be-
tween different objects can effectively help in maintaining
connections between related artifacts (e.g., a specification and
its implementations). Some simple cooperation and synchro-
nization policies may be described in term of agents.

CSDL [18] is a language for specifying and designing
communicators. Some basic terminology in CSDL is similar
to the one used in ImagineDesk. Both projects, in fact,
started from the same ideas and background. The basic unit
of CSDL is the Coordinator. More Coordinators may be
composed in a hierarchy. Each Coordinator is composed of
a specification, a body, and a context. The specification de-
fines the roles and the policies of role change. The body
deals with data communication. The context defines, when-
ever a coordinator hierarchy is specified, the relationships
between the Coordinator and its descendants: The body is
specified only for the Coordinators that are leaves of the
hierarchy (the Communication Coordinators). In CSDL the
cooperation policies express the conditions to be satisfied in.
order to accept changing role requests coming from the
users. The language does not provide support to specifying
more complex procedures and process steps.

ClearBoard [37] is a cooperative drawing tool designed
to support the interaction between two remote users. Each
user sees the other as she/he were on the other side of a
glass that is used as a drawing surface. This way, the inter-
action is not just limited to the shared drawings, instead, it

862 , IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996

is also supported by the gestures and the eyes movements
of the two participants. The last version of ClearBoard pro-
vides users with “TeamPaint,” a multiuser computer-based
paint editor. Users draw with a digital pen. Their gestures
are registered by a camera and are displayed as back-
ground of the paint editor. A mirroring system is used to
solve reversing problems. According to Ellis classification,
ClearBoard is basically a communicator. It focuses on the
interaction metaphor in order to provide the most familiar
and natural way to allow people to shift between the inter-
personal space and the shared workspace. ClearBoard does not
provide support for definition and enactment of coopera-
tion policies.

7.4 A Final Remark

CSCW, PSEE, and WEMS are three technologies that address
the same basic issue, i.e., how to support cooperative activi-
ties in human-centered processes. We argue that most differ-
ences in goals and objectives are mainly related to different
terminology and background of the domains where these
technology have been-originated. For instance, PSEEs em-
Pphasize the importance of “supporting process change” .and
“tolerating deviations,” while in the CSCW and WEFMS do-
mains there is a strong interest in “supporting process excep-
tions.” Basically, these goals are related to the same basic
- issue of accommodating and supporting human creativity
and unexpected situations.

We argue that WEMS and PSEE are very closely related.
HEven more, we believe that they have the same basic char-
acteristics. The main difference is the application domain
for these tools, i.e., software development for PSEE, and
Information Systems/Business Processes for WFMS. This
difference, however, tends to disappear. Many PSEE have
been used to support business processes as well, taking
advantage of their flexible modeling and tool integration
facilities. Even more, they are often classified as WFMS. For
instance, [32] mentions at least three PSEE as WFMS
(Process Weaver, Process Wise, and Synervision). In gen-
eral, both PSEE and WEMS are oriented towards support-
ing asynchronous cooperation. A similar view is advocated
in [14].

In general, CSCW. technology tends to have a wide ap-
plication domain and comprises many different types of
tools. We argue that, in general, the support they offer to
policy definition tends to be weaker than in WFMS and
PSEE. Conversely, CSCW -environments emphasize syn-
chronous cooperation support and advanced interaction
metaphors. This observation cannot be considered general
and universal. However, it indicates a relevant and realistic
trend.

The approach presented in this paper aims at blending
and jointly exploiting the main advantages and features
that originated in the CSCW and PSEE domains. We believe
that SPADE-1, being focused on openness and high tailor-
ability, may support general processes and act as a general

shell in which specialized CSCW environments, devoted to-

support specific activities (e.g., shared editors or real-time
conferencing systems), may be integrated and controlled

according to well defined and modifiable policies written in
SLANG.

8 CONCLUSIONS

Software development is a critical activity in which many
process agents cooperate according to different interaction
styles. In different phases of the development process, co-
operation may be either asynchronous or synchronous: In
this paper we discussed how SPADE-1 supports coopera-
tion in software development, and we derived some gen-
eral results from our experience. We argue that there are
technical and methodological factors that enhance the abil-
ity of SPADE-1 to support different cooperative activities.
We identified the following technical factors:

e A decoupled UIE, ie., a UlE independent from the
PML paradigm. This approach ensures a higher level
of UIE customization, depending on specific users”
needs. Decoupling may be obtained by strictly sepa-
rating the UIE from the EE. In SPADE-1 this issue has
been addressed by introducing the SPADE Commu--
nication Interface that acts as an interface between EE
and UIE.) ,

° An open architecture, i.e., the possibility of adding new
tools to the environment, to support specific software
development activities. PSEE, in fact, do not have to
provide software developers with a wide predefined
set of facilities. Rather, they have to offer well-defined
mechanisms to build new tools and integrate existing
ones. The SPADE-1 solution to this problem is a well-
defined interface between UIE and EE, and bridges to
guarantee process integration with standard tool in-
tegration environments. '

* A PML which provides linguistic construets to de-
scribe interaction with the UIE tools and cooperation
policies. In SLANG the constructs addressing these is-
sues are user places and transitions. User places de-
tect events.in the user interaction environment. Black
transitions invoke operations in the user interaction
environment. By using user places and black transi-
tions, it is possible, for example, to coordinate single-
user tools in such a way that the actions performed by
one user on a tool (for example a task state change
operation on an Agenda instance) may affect the state
of other users’ tools. In the same way, white transi-
tions may be composed by the process engineer to
implement different concurrency control policies.

Notice that the basic design choice in designing SLANG has
been to provide elementary and orthogonal constructs to
build different process-specific policies. This choice has been
motivated by the observation that there is still little consensus
on a set of process-specific policies that can be reasonably
frozen as PML constructs. Process models and tools sup-
porting specific processes have to be developed exploiting
the above infrastructure. Besides basic process modeling as-
pects (e.g., activities, roles, products), their design (in par-
ticular process model design) must be based on the evalua-
tion of four additional important dimensions (see Fig. 19):

* the interaction paradigm, i.e., the metaphors and con-
cepts used by the PSEE to interact with users;
+ the level of enforcement, i.e., the approach used by
the PSEE to guide and/or constrain users during:
. process execution;

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT 863

o the process execution style, i.e., the proper combina-
tion of reactive and proactive behavior;

¢ the cooperation policy, i.e., the procedures and steps
through which people interact with the PSEE and
among each other.

Basic process entities (activities, roles, products, ...)

Cooperation policy Level of enforcement

Process execution style Interaction paradigm

Fig. 19. Dimensions in software process modeling.

We assessed these concepts through the application of
SPADE-1 to a real software process. In particular, we have
shown how SPADE-1 can be used to support a significant
and general cooperative process dealing with anomaly
management. The process model we proposed is based on a
task-oriented interaction paradigm. Users see the process to
be carried out in terms of tasks. The provided level of en-
forcement is low. According to the classification proposed
in [35] and mentioned in Section 5.3, the process model
provides process guidance, i.e., it offers a fairly reactive
behavior. The policy of cooperation indicates how to per-
form delegation, who can delegate, and the result of the
termination of a delegated task. No support to synchronous
cooperation was originally provided.

SPADE-1. original features did not offer any metaphor
and related mechanism for synchronous cooperation. For
this reason, we have evaluated CSCW environments offer-
ing this kind of functionality. In particular, we selected the
ImagineDesk toolkit to exploit its ability of managing syn-
chronous multimedia data flows. On the other side,
SPADE-1 can enhance ImagineDesk by offering flexible and
evolvable cooperation policies.

We identified three different integration strategies. In the
simple integration strategy, the cooperative application is
launched by SPADE-1, but its operation and cooperation
policies are kept distinct from the SLANG process model.
In the intermediate integration strategy, the start-up of the
cooperative activity is accomplished by SPADE, but the
actual management of the cooperation is delegated to the
CSCW environment. Finally, in the process integration ap-
- proach, there is a single process model implementing the
software process policies and the synchronous cooperation
policies. :

We argue that the results and experiences of our work
can be generalized and reused in a wider context. In par-
ticular, our answers to the questions raised in Section 1 can
be summarized as follows:

1) To what extent can a PSEE be used to support cooperative
activities? In general, PSEEs effectively support asyn-
chronous cooperation. Process models, in fact, may

define cooperation policies and describe interaction
among UIE tools. The example discussed in Sections 3
and 4 illustrates SPADE-1 ability to deal with this
problem. ,

2) What kind of basic mechanisms should a PSEE offer to
build different process-specific cooperation policies? PSEE
should supply flexible mechanisms for tool integra-
tion and control. A decoupled approach makes it pos-
sible to explicitly define and control the interaction
with tools at the process model level. In turn, this en-
ables a flexible and evolvable specification of the in-
teraction paradigm, of the level of enforcement, and
of the process execution style.

3) What are the differences and analogies between PSEE and
CSCW environments? PSEE may be considered as par-
ticular CSCW environments. PSEE and CSCW envi-
ronments, however, grew in separate fields, and focus
on different aspects. PSEE technology mainly focuses
on explicit process modeling. CSCW environments
provide advanced metaphors and concepts to support
users interaction and synchronous cooperation.

4) Is it possible to identify reasonable strategies to integrate
PSEE and CSCW environments? Both PSEE and CSCW
environments may gain advantage from this integra-
tion. In fact, PSEE can exploit the sophisticated inter-
action metaphors provided by CSCW environments.
In turn, CSCW environments can benefit from the
definition of flexible cooperation policies.

ACKNOWLEDGMENTS

SPADE-1 has been developed at CEFRIEL and Politecnico
di Milano with the contribution of many friends and col-
leagues. We wish to thank Gianluca Bassini, Antonio Car-
zaniga, Cesare Colombo, Leonardo Galimberti, Luigi
Lavazza, Marco Ranalletti, and Giovanni Vigna. Their en-
thusiasm, technical competence, and commitment have
been an invaluable ingredient for the accomplishment of
the work discussed in this paper. Moreover, we thank Carlo
Ghezzi who gave us many useful comments on a prelimi-
nary version of the paper.

REFERENCES

[1]1 S. Rabbi and F. Oquendo, “PEACE: Goal-Oriented Logic-Based
Formalism for Process Nodeling,” Software Process Modelling and
Technology, Research Studies Press Ltd, 1994,

[2] S. Bandinelli, “Report on the Workshop on Software Process Ar-
chitectures,” Software Process: Improvement and Practice, vol. 2, no.
1, pp. 54-72. John Wiley & Sons Ltd, Mar. 1996.

[3] S.Bandinelli, M. Braga, A. Fuggetta, and L. Lavazza, “The Axrchi-
tecture of the SPADE-1 Process-Centered SEE,” Proc. Third. Euro-
pean Workshop Software Process Technology, Lecture Notes in Com-
puter Science 772, Springer-Verlag, 1994.

[4] S. Bandinelli, E. Di Nitto, A. Fuggetta, and L. Lavazza, “Coupled
vs. Decoupled User Interaction Environments in PSEEs,” Proc.
Ninth Int'l Workshop Software Process ISPW9), Oct. 1994.

[5] . S. Bandinelli, S. Ceri, and M. Felder, “TANGO: A Notation for
Describing Advanced Transaction Models,” Proc. Int’l Conf. Infor-
mation Systems Analysis and Synthesis, July 1996.

[6] S.Bandinelli, A. Fuggetta, and C. Ghezzi, “Process Model Evolu-
tion in the SPADE Environment,” IEEE Trans. Software Eng.,
vol. 19, no. 12, pp. 1,128-1,144, Dec. 1993.

[71 S. Bandinelli, A. Fuggetta, C. Ghezzi, and L. Lavazza, “SPADE:
An Environment for Software Process Analysis, Design and

864

191

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22

[}

[23]

[24]
[25]
[26]

—
nN
~

—

[28]

[29]

{30}

[31]

{321

[33]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996

Enactment,” Software Process Modelling and Technology, Research
Studies Press Ltd, 1994.

S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and G.P. Picco,
“Modeling and Improving an Industrial Software Process,” IEEE
Trans. Software Eng, vol. 21, no. 5, pp. 440-454, May 1995.

N. Barghouti and G. Kaiser, “Concurrency Control in Advanced
Database Applications,” ACM Computing Surveys, vol. 23, no. 3,
Pp- 269-317. Sept. 1991.

I Ben-Shaul and G.E. Kaiser, “Process Support for Synchronous
Groupware Activities,” Technical Report CUCS-002-95, Columbia
Univ., New York, 1995.

D.P. Bogia, W.]J. Tolone, SM. Kaplan, and E. de la Tribouille,
“Support Dynamic Interdependencies Among Collaborative Ac-
tivities,” Proc. Conf. Organizational Computing Systems, Nov. 1993.
D.P. Bogia and S.M. Kaplan, “Flexibility and Control for Dynamic
Workflow in the wOrlds Environment,” Proc. Conf. Organizational
Computing Systems, Nov. 1995,

A. Carzaniga, G.P. Picco, and G. Vigna, “Designing and Imple-
menting Inter-client Communication in the O, Object Oriented
Data Base Management System,” Proc. Object-Oriented Methodolo-
gles and Systems (ISOOMS’94), Lecture Notes in Computer Science
858, Springer-Verlag, 1994.

G. Chroust, “Interpretable Process Models for Software Devel-
opment and Workflow,” Proc. Fourth European Workshop Software
Process Technology, Lecture Notes in Computer Science 913,
Springer-Verlag, Apr. 1995.

Programming Systems Laboratory, Marvel 3.1.1 Manuals. Colum-
bia Univ., New York, 1995.

“Special Number on Collaborative Computing,” Comm. ACM, vol
34, no. 12. Dec. 1991.

J. Conklin and M. Begeman, “gIBIS; A Hypertext Tool for Ex-
ploratory Policy Discussion,” Proc. ACM Conf. Computer Supported
Cooperative Work ‘88, Sept. 1988.

F. De Paoli and. F. Tisato, “CSDL: A Language for Cooperative
Systems Design,” IEEE Trans, Software Eng., vol. 20, no. 8, Aug.
1994.

P. Dewan and B. Krishnamurthy, “Relations Between CSCW and
Software Process Research: A Position Statement,” Proc. Ninth
Int’l Workshop Software Process (ISPW9), Oct. 1994.

O. Deux, “The O, System,” Comm. ACM, vol. 34, no. 10, Oct. 1991.
E. Di Nitto and A. Fuggetta, “Integrating Process Technology and
CSCW,” Proc. Fourth European Workshop Software Process Technol-
ogy, Lecture Notes in Computer Science 913, Springer-Verlag,
Apr. 1995.

G. Dinkhoff, V. Gruhn, A. Saalmann, and M. Z1e10nl<a, “Business
Process Modeling in the Workflow-Management Environment
Leu,” Proc. Entity Relationship Conf., Dec. 1994.

M. Dowson and C. Fernstrdm, “Towards Requirements for En-
actment Mechanisms,” Proc. Third European Workshop Software
Process Technology, Lecture Notes in Computer Science 772,
Springer-Verlag, 1994.

C.A. Ellis, SJ. Gibbs, and G.L. Rein, “Groupware: Some Issues
and Experiences,” Comm. ACM, vol. 34, no. 1, Jan. 1991.

C.A. Ellis and J. Wainer, “Goal-Based Models of Collaboration,”
Collaborative Computing, vol. 1, pp. 61-86, Mar. 1994.

C. Pernstrdm, “Process WEAVER: Adding Process Support to
Unix,” Proc. Second Int'l Conf. Software Process, 1993.

A. Finkelstein, J. Kramer, and B. Nuseibeh, Software Process Mod-
elling and Technology. Research Studies Press Ltd, 1994.

A. Fuggetta, “A Classification of CASE Technology,” Computer,
vol. 26, no. 12, pp. 25-38, Dec. 1993.

A. Fuggetta and C. Ghezzi, “Process Modeling Language Must Be
Fully-Reflective,” Proc. Eighth Int'l Software Process Workshop
(ISPW8), Mar. 1993.

A. Fuggetta and C. Ghezzi, “State of the Art and Open Issues in
Process-Centered Software Engineering Environments,” J. Systems
and Software, vol. 26, no. 1, pp. 53-60, July 1994.

D. Garlan, R. Allen, and]J. Ockerbloom, “Exploiting Style in Ar-
chitectural Design Environments,” Proc. Second ACM SIGSOFT
Syrp. Foundations of Software Eng., Dec. 1994.

D. Georgakopoulos, M. Hornick, and A. Sheth, “An Overview of
Workflow Management: from Process Modeling to Workflow
Automation Infrastructure,” Dlstnbuted and Parallel Databases,
no. 3, pp. 119-153, 1995.

Proc. Ninth Int’l Workshop Software Process (ISPW9), C. Ghezzi, ed.,
Oct. 1994.

[34]
[35]
[36]

[37]

[38]

{431

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

J. Gosling and H. McGilton, “The Java Language Environment: A
White Paper,” Technical Report, Sun Microsystems. Oct. 1995.

V. Gruhn, “Interpersonal Process Support Systems,” Season Re-
port 1/94, Lion GmbH, Bochum, Germany, 19%4.

“Developing Synervision Processes,” Hewlett-Packard, Palo Alto,
Calif., Part no.: B3261-90003, May 1993.

H. Ishu M. Kobayashi, and J. Grudin, “Integration of Inter-
personal Space and Shared Workspace: ClearBoard Design and
Experiments,” Proc. ACM Conf. Computer Supported Cooperative
Work 92, Nov. 1992.

G. Junkermann, B. Peuschel, W. Schafer, and S. Wolf, “MERLIN:
Supporting Cooperation in Software Development Through a
Knowledge-Based Environment,” Software Process Modelling and
Technology, Research Studies Press Ltd, 1994.

G.E. Kaiser, P.H. Feiler, and S. Popovich, “Intelligent Assistance
for Software Development and Mam’cenance,” IEEE Software,
vol. 5, no. 2, May 1988.

S.M. Kaplan, W.J. Tolone, AM. Carrol, D.P. Bogia, and C. Bignoli,
“Supporting Collaborative Software Development with Conver-
sation Builder,” Proc. Fifth ACM SIGSOFT Symp. Software Devel-
opment Environments, Dec. 1992.

K. Kishida and D.E. Perry, “Team Efforts—Session Summary,”
Proc. Sixth Int’l Workshop Software Process (ISPW6), Oct. 1990.

T.W. Malone, K. Lai, and C. Fry, “Experiments with Oval: A
Radically Tailorable Tool for Cooperative Work,” Proc. ACM Conf.
Computer Supported Cooperative Work 92, Nov. 1992.

R. Medina-Mora, T. Winograd, R. Flores, and F. Flores, “The Ac-
tion Workflow Approach to Workflow Management Technol-
ogy,” Proc. ACM Conf. Computer Supported Cooperative Work 92,
Nov. 1992.

D.E. Perry, “Enactment Control in Interact/Intermediate,” Proc.
Fourth European Workshop Software Process Technology, Lecture
Notes in Computer Science 913, Springer-Verlag, Apr. 1995.

S. Pozzi and E. Di Nitto, “ImagineDesk: A Software Platform
Supporting Cooperative Applications,” Proc. ACM 1994 Computer
Science Conf. (C5C94), Mar. 1994.

5. Reiss, “Connecting Tools Using Message Passing in the FIELD
Program Development Environment,” IEEE Software, vol. 7, no. 4,
pp. 57-67, July 1990.

S. Reiss, “Simplifying Data Integration: The Design of the Desert
Software Development Environment,” Proc. 18th. Int'l Conf. Soft—
ware Eng. (ICSE 18), 1996.

M. Roseman and S. Greenberg, “GroupKit: A Groupware Toolkit
for Building Real-Time Conferencing Applications,” Proc. ACM
Conf. Computer Supported Cooperative Work 92, Nov. 1992.

SPADE Team, SPADE 3.1 Manuals. Centro per la ricerca e la for-
mazione in tecnologia dellinformazione (CEFRIEL), Politecnico
di Milano, Italy, Mar. 1995.

SM. Sutton, D. Heimbigner, and LJ. Osterweil, “APPL/A: A
Language for Software-Process Programming,” ACM Trans. Soft-
ware Eng. Methodology, vol. 4, no. 3; July 1995.

K.D. Swenson, RJ. Maxwell, T. Matsumoto, B. Saghari, and
K. Irwin, “A Business Procéss Environment Supporting Collabo-
rative Planning,” Collaborative Computing, vol. 1, pp. 15-34, Mar.
1994.

G. Valetto and G. Kaiser, “Enveloping Sophisticated Tools into
Computer-Aided Software Engineeririg Environments,” Proc. JEEE
Seventh Int’l Workshop Computer-Aided Software Eng., July 1995.

Y. Yang, “Coordination for Process Support is Not Enough!” Proc.
Fourth European Workshop Software Process Technology, Lecture
Notes in Computer Science 913, Springer-Verlag, Apr. 1995.

BANDINELLI ET AL.: SUPPORTING COOPERATION IN THE SPADE-1 ENVIRONMENT 865

Sergio Bandinelli received his Dr degree in
. computer science from ESLAI, University of
Lujan, Argentina, in 1989, and his PhD degree in
informatics engineering from Politecnico di Mi-
lano, Italy, in 1995. From 1991 to 1995 he was a
researcher at CEFRIEL and teaching instructor
at Politecnico di Milano. Currently, he is a mem-
ber of the technical staff at ESI (European Soft-
ware Institute) in Bilbao, Spain, where he is
leading projects in the area of software. reuse.
Dr. Bandinelli is the author of several scientific
publications. His research interests are in process modeling, process
improvement, process technologies, and software reuse. He is a mem-
ber of the IEEE Computer Society.

Elisabetta Di Nitto received her PhD in infor-
matics engineering from Politecnico di Milano,
ltaly, in 1996. Currently, she is a researcher at
. CEFRIEL, a research institution created by Po-
litecnico di Milano and several IT industries. Her
research interests are in process support tech-
nology, inconsistency and deviation manage-
ment, and development of advanced telecom-
munication services. She is a member of the
|IEEE Computer Society.

Alfonso Fuggetta (M'90) is an associate pro-
fessor of software engineering at Politecnico di
Milano, Italy. He is also a senior researcher at
CEFRIEL, a research institution created by Po-
litecnico di Milano and several IT industries. His
research interests are in process technology,
process improvement, architecture of distributed
processes and systems, and inconsistency man-
agement. He is a member of the IEEE and the
IEEE Computer Society.

