
1

Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Implementing
Architectures

Software Architecture
Lecture 15

2

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Objectives
 Concepts

 Implementation as a mapping problem
 Architecture implementation frameworks
 Evaluating frameworks
 Relationships between middleware, frameworks,

component models
 Building new frameworks
 Concurrency and generative technologies
 Ensuring architecture-to-implementation consistency

 Examples
 Different frameworks for pipe-and-filter
 Different frameworks for the C2 style

 Application
 Implementing Lunar Lander in different frameworks



2

3

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Objectives
 Concepts

 Implementation as a mapping problem
 Architecture implementation frameworks
 Evaluating frameworks
 Relationships between middleware, frameworks,

component models
 Building new frameworks
 Concurrency and generative technologies
 Ensuring architecture-to-implementation consistency

 Examples
 Different frameworks for pipe-and-filter
 Different frameworks for the C2 style

 Application
 Implementing Lunar Lander in different frameworks

4

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

The Mapping Problem

 Implementation is the one phase of software engineering that is not
optional

 Architecture-based development provides a unique twist on the
classic problem
 It becomes, in large measure, a mapping activity

 Maintaining mapping means ensuring that our architectural intent is
reflected in our constructed systems

Design
Decisions

Implementation
Artifacts



3

5

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Common Element Mapping

 Components and Connectors
 Partitions of application computation and

communication functionality
 Modules, packages, libraries, classes, explicit

components/connectors in middleware
 Interfaces

 Programming-language level interfaces (e.g.,
APIs/function or method signatures) are common

 State machines or protocols are harder to map

6

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Common Element Mapping
(cont’d)

 Configurations
 Interconnections, references, or dependencies

between functional partitions
 May be implicit in the implementation
 May be externally specified through a MIL and

enabled through middleware
 May involve use of reflection

 Design rationale
 Often does not appear directly in implementation
 Retained in comments and other documentation



4

7

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Common Element Mapping
(cont’d)
 Dynamic Properties (e.g., behavior):

 Usually translate to algorithms of some sort
 Mapping strategy depends on how the behaviors are specified

and what translations are available
 Some behavioral specifications are more useful for generating

analyses or testing plans
 Non-Functional Properties

 Extremely difficult to do since non-functional properties are
abstract and implementations are concrete

 Achieved through a combination of human-centric strategies like
inspections, reviews, focus groups, user studies, beta testing,
and so on

8

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

One-Way vs. Round Trip Mapping
 Architectures inevitably change after implementation begins

 For maintenance purposes
 Because of time pressures
 Because of new information

 Implementations can be a source of new information
 We learn more about the feasibility of our designs when we

implement
 We also learn how to optimize them

Design
Decisions

Implementation
Artifacts



5

9

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

One-Way vs. Round Trip Mapping
(cont’d)
 Keeping the two in sync is a difficult technical and

managerial problem
 Places where strong mappings are not present are

often the first to diverge
 One-way mappings are easier

 Must be able to understand impact on implementation
for an architectural design decision or change

 Two way mappings require more insight
 Must understand how a change in the implementation

impacts architecture-level design decisions

10

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

One-Way vs. Round Trip Mapping
(cont’d)
 One strategy: limit changes

 If all system changes must be done to the architecture first, only
one-way mappings are needed

 Works very well if many generative technologies in use
 Often hard to control in practice; introduces process delays and

limits implementer freedom
 Alternative: allow changes in either architecture or implementation

 Requires round-trip mappings and maintenance strategies
 Can be assisted (to a point) with automated tools



6

11

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architecture Implementation
Frameworks

 Ideal approach: develop architecture based on a known
style, select technologies that provide implementation
support for each architectural element

Design
Decisions

Database

Software
Library

OO Class

12

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architecture Implementation
Frameworks

 This is rarely easy or trivial
 Few programming languages have explicit support for

architecture-level constructs
 Support infrastructure (libraries, operating systems,

etc.) also has its own sets of concepts, metaphors,
and rules

 To mitigate these mismatches, we leverage an
architecture implementation framework



7

13

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architecture Implementation
Frameworks

 Definition: An architecture implementation framework
is a piece of software that acts as a bridge between a
particular architectural style and a set of implementation
technologies. It provides key elements of the
architectural style in code, in a way that assists
developers in implementing systems that conform to the
prescriptions and constraints of the style.

Design

Decisions

Design

Decisions

Database

Software

Library

OO Class
F
r
a
m
e
w
o
r
k

14

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Canonical Example

 The standard I/O (‘stdio’) framework in UNIX and other
operating systems
 Perhaps the most prevalent framework in use today
 Style supported: pipe-and-filter
 Implementation technologies supported: concurrent

process-oriented operating system, (generally) non-
concurrent language like C

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; ｩ 2008 John Wiley & Sons, Inc. Reprinted with permission. 



8

15

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

More on Frameworks

 Frameworks are meant to assist developers in following a style
 But generally do not constrain developers from violating a style

if they really want to
 Developing applications in a target style does not require a

framework
 But if you follow good software engineering practices, you’ll

probably end up developing one anyway
 Frameworks are generally considered as underlying infrastructure or

substrates from an architectural perspective
 You won’t usually see the framework show up in an architectural

model, e.g., as a component

16

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Same Style, Different Frameworks

 For a given style, there is no one perfect architecture
framework
 Different target implementation technologies induce

different frameworks
 stdio vs. iostream vs. java.io

 Even in the same (style/target technology) groupings,
different frameworks exist due to different qualitative
properties of frameworks
 java.io vs. java.nio
 Various C2-style frameworks in Java



9

17

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Evaluating Frameworks

 Can draw out some of the qualitative properties just
mentioned

 Platform support
 Target language, operating system, other

technologies
 Fidelity

 How much style-specific support is provided by the
framework?
 Many frameworks are more general than one

target style or focus on a subset of the style rules
 How much enforcement is provided?

18

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Evaluating Frameworks (cont’d)

 Matching Assumptions
 Styles impose constraints on the target architecture/application
 Frameworks can induce constraints as well

 E.g., startup order, communication patterns …
 To what extent does the framework make too many (or too few)

assumptions?
 Efficiency

 Frameworks pervade target applications and can potentially get
involved in any interaction

 To what extent does the framework limit its slowdown and
provide help to improve efficiency if possible (consider buffering
in stdio)?



10

19

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Evaluating Frameworks (cont’d)

 Other quality considerations
 Nearly every other software quality can affect

framework evaluation and selection
 Size
 Cost
 Ease of use
 Reliability
 Robustness
 Availability of source code
 Portability
 Long-term maintainability and support

20

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Middleware and Component
Models
 This may all sound similar to various kinds of

middleware/component frameworks
 CORBA, COM/DCOM, JavaBeans, .NET, Java Message

Service (JMS), etc.
 They are closely related

 Both provide developers with services not available in
the underlying OS/language

 CORBA provides well-defined interfaces, portability,
remote procedure call…

 JavaBeans provides a standardized packaging
framework (the bean) with new kinds of introspection
and binding



11

21

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Middleware and Component
Models (cont’d)
 Indeed, architecture implementation frameworks are

forms of middleware
 There’s a subtle difference in how they emerge and

develop
 Middleware generally evolves based on a set of

services that the developers want to have available
 E.g., CORBA: Support for language heterogeneity,

network transparency, portability
 Frameworks generally evolve based on a particular

architectural style that developers want to use
 Why is this important?

22

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Middleware and Component
Models (cont’d)
 By focusing on services, middleware developers often make other

decisions that substantially impact architecture
 E.g., in supporting network transparency and language

heterogeneity, CORBA uses RPC
 But is RPC necessary for these services or is it just an enabling

technique?
 In a very real way, middleware induces an architectural style

 CORBA induces the ‘distributed objects’ style
 JMS induces a distributed implicit invocation style

 Understanding these implications is essential for not having major
problems when the tail wags the dog!



12

23

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Resolving Mismatches

 A style is chosen first, but the middleware selected for
implementation does not support (or contradicts) that style

 A middleware is chosen first (or independently) and has undue
influence on the architectural style used

 Strategies
 Change or adapt the style
 Change the middleware selected
 Develop glue code
 Leverage parts of the middleware

and ignore others
 Hide the middleware in components/connectors

Use the middleware
as the basis for

a framework

24

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Hiding Middleware in Connectors

Comp 1

Comp 2

Async Event

Comp 1

Comp 2

RPC

(thread)

(thread)

Architecture

Implementation



13

25

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Building a New Framework

 Occasionally, you need a new framework
 The architectural style in use is novel
 The architectural style is not novel but it is being

implemented on a platform for which no framework exists
 The architectural style is not novel and frameworks exist for

the target platform, but the existing frameworks are
inadequate

 Good framework development is extremely difficult
 Frameworks pervade nearly every aspect of your system
 Making changes to frameworks often means changing the

entire system
 A task for experienced developers/architects

26

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

New Framework Guidelines

 Understand the target style first
 Enumerate all the rules and constraints in concrete

terms
 Provide example design patterns and corner cases

 Limit the framework to the rules and constraints of the
style
 Do not let a particular target application’s needs

creep into the framework
 “Rule of three” for applications



14

27

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

New Framework Guidelines
(cont’d)

 Choose the framework scope
 A framework does not necessarily have to implement

all possible stylistic advantages (e.g., dynamism or
distribution)

 Avoid over-engineering
 Don’t add capabilities simply because they are clever

or “cool”, especially if known target applications won’t
use them

 These often add complexity and reduce performance

28

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

New Framework Guidelines
(cont’d)
 Limit overhead for application developers

 Every framework induces some overhead (classes must
inherit from framework base classes, communication
mechanisms limited)

 Try to put as little overhead as possible on framework
users

 Develop strategies and patterns for legacy systems and
components
 Almost every large application will need to include

elements that were not built to work with a target
framework

 Develop strategies for incorporating and wrapping these



15

29

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Concurrency

 Concurrency is one of the most difficult concerns to address in
implementation
 Introduction of subtle bugs: deadlock, race conditions…
 Another topic on which there are entire books written

 Concurrency is often an architecture-level concern
 Decisions can be made at the architectural level
 Done carefully, much concurrency management can be

embedded into the architecture framework
 Consider our earlier example, or how pipe-and-filter architectures

are made concurrent without direct user involvement

30

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Generative Technologies

 With a sufficiently detailed architectural model, various
implementation artifacts can be generated
 Entire system implementations

 Requires extremely detailed models including
behavioral specifications

 More feasible in domain-specific contexts
 Skeletons or interfaces

 With detailed structure and interface specifications
 Compositions (e.g., glue code)

 With sufficient data about bindings between two
elements



16

31

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Maintaining Consistency

 Strategies for maintaining one-way or round-trip mappings
 Create and maintain traceability links from architectural

implementation elements
 Explicit links in a database, in architectural models, in

code comments can all help with consistency checking
 Make the architectural model part of the implementation

 When the model changes, the implementation adapts
automatically

 May involve “internal generation”
 Generate some or all of the implementation from the

architecture


