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Implementing
Architectures

Software Architecture
Lecture 15
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Objectives
 Concepts

 Implementation as a mapping problem
 Architecture implementation frameworks
 Evaluating frameworks
 Relationships between middleware, frameworks,

component models
 Building new frameworks
 Concurrency and generative technologies
 Ensuring architecture-to-implementation consistency

 Examples
 Different frameworks for pipe-and-filter
 Different frameworks for the C2 style

 Application
 Implementing Lunar Lander in different frameworks
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The Mapping Problem

 Implementation is the one phase of software engineering that is not
optional

 Architecture-based development provides a unique twist on the
classic problem
 It becomes, in large measure, a mapping activity

 Maintaining mapping means ensuring that our architectural intent is
reflected in our constructed systems

Design
Decisions

Implementation
Artifacts
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Common Element Mapping

 Components and Connectors
 Partitions of application computation and

communication functionality
 Modules, packages, libraries, classes, explicit

components/connectors in middleware
 Interfaces

 Programming-language level interfaces (e.g.,
APIs/function or method signatures) are common

 State machines or protocols are harder to map
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Common Element Mapping
(cont’d)

 Configurations
 Interconnections, references, or dependencies

between functional partitions
 May be implicit in the implementation
 May be externally specified through a MIL and

enabled through middleware
 May involve use of reflection

 Design rationale
 Often does not appear directly in implementation
 Retained in comments and other documentation
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Common Element Mapping
(cont’d)
 Dynamic Properties (e.g., behavior):

 Usually translate to algorithms of some sort
 Mapping strategy depends on how the behaviors are specified

and what translations are available
 Some behavioral specifications are more useful for generating

analyses or testing plans
 Non-Functional Properties

 Extremely difficult to do since non-functional properties are
abstract and implementations are concrete

 Achieved through a combination of human-centric strategies like
inspections, reviews, focus groups, user studies, beta testing,
and so on
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One-Way vs. Round Trip Mapping
 Architectures inevitably change after implementation begins

 For maintenance purposes
 Because of time pressures
 Because of new information

 Implementations can be a source of new information
 We learn more about the feasibility of our designs when we

implement
 We also learn how to optimize them

Design
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One-Way vs. Round Trip Mapping
(cont’d)
 Keeping the two in sync is a difficult technical and

managerial problem
 Places where strong mappings are not present are

often the first to diverge
 One-way mappings are easier

 Must be able to understand impact on implementation
for an architectural design decision or change

 Two way mappings require more insight
 Must understand how a change in the implementation

impacts architecture-level design decisions
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One-Way vs. Round Trip Mapping
(cont’d)
 One strategy: limit changes

 If all system changes must be done to the architecture first, only
one-way mappings are needed

 Works very well if many generative technologies in use
 Often hard to control in practice; introduces process delays and

limits implementer freedom
 Alternative: allow changes in either architecture or implementation

 Requires round-trip mappings and maintenance strategies
 Can be assisted (to a point) with automated tools
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Architecture Implementation
Frameworks

 Ideal approach: develop architecture based on a known
style, select technologies that provide implementation
support for each architectural element

Design
Decisions

Database

Software
Library

OO Class
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Architecture Implementation
Frameworks

 This is rarely easy or trivial
 Few programming languages have explicit support for

architecture-level constructs
 Support infrastructure (libraries, operating systems,

etc.) also has its own sets of concepts, metaphors,
and rules

 To mitigate these mismatches, we leverage an
architecture implementation framework
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Architecture Implementation
Frameworks

 Definition: An architecture implementation framework
is a piece of software that acts as a bridge between a
particular architectural style and a set of implementation
technologies. It provides key elements of the
architectural style in code, in a way that assists
developers in implementing systems that conform to the
prescriptions and constraints of the style.
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Canonical Example

 The standard I/O (‘stdio’) framework in UNIX and other
operating systems
 Perhaps the most prevalent framework in use today
 Style supported: pipe-and-filter
 Implementation technologies supported: concurrent

process-oriented operating system, (generally) non-
concurrent language like C

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; ｩ 2008 John Wiley & Sons, Inc. Reprinted with permission. 
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More on Frameworks

 Frameworks are meant to assist developers in following a style
 But generally do not constrain developers from violating a style

if they really want to
 Developing applications in a target style does not require a

framework
 But if you follow good software engineering practices, you’ll

probably end up developing one anyway
 Frameworks are generally considered as underlying infrastructure or

substrates from an architectural perspective
 You won’t usually see the framework show up in an architectural

model, e.g., as a component
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Same Style, Different Frameworks

 For a given style, there is no one perfect architecture
framework
 Different target implementation technologies induce

different frameworks
 stdio vs. iostream vs. java.io

 Even in the same (style/target technology) groupings,
different frameworks exist due to different qualitative
properties of frameworks
 java.io vs. java.nio
 Various C2-style frameworks in Java
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Evaluating Frameworks

 Can draw out some of the qualitative properties just
mentioned

 Platform support
 Target language, operating system, other

technologies
 Fidelity

 How much style-specific support is provided by the
framework?
 Many frameworks are more general than one

target style or focus on a subset of the style rules
 How much enforcement is provided?
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Evaluating Frameworks (cont’d)

 Matching Assumptions
 Styles impose constraints on the target architecture/application
 Frameworks can induce constraints as well

 E.g., startup order, communication patterns …
 To what extent does the framework make too many (or too few)

assumptions?
 Efficiency

 Frameworks pervade target applications and can potentially get
involved in any interaction

 To what extent does the framework limit its slowdown and
provide help to improve efficiency if possible (consider buffering
in stdio)?
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Evaluating Frameworks (cont’d)

 Other quality considerations
 Nearly every other software quality can affect

framework evaluation and selection
 Size
 Cost
 Ease of use
 Reliability
 Robustness
 Availability of source code
 Portability
 Long-term maintainability and support
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Middleware and Component
Models
 This may all sound similar to various kinds of

middleware/component frameworks
 CORBA, COM/DCOM, JavaBeans, .NET, Java Message

Service (JMS), etc.
 They are closely related

 Both provide developers with services not available in
the underlying OS/language

 CORBA provides well-defined interfaces, portability,
remote procedure call…

 JavaBeans provides a standardized packaging
framework (the bean) with new kinds of introspection
and binding
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Middleware and Component
Models (cont’d)
 Indeed, architecture implementation frameworks are

forms of middleware
 There’s a subtle difference in how they emerge and

develop
 Middleware generally evolves based on a set of

services that the developers want to have available
 E.g., CORBA: Support for language heterogeneity,

network transparency, portability
 Frameworks generally evolve based on a particular

architectural style that developers want to use
 Why is this important?
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Middleware and Component
Models (cont’d)
 By focusing on services, middleware developers often make other

decisions that substantially impact architecture
 E.g., in supporting network transparency and language

heterogeneity, CORBA uses RPC
 But is RPC necessary for these services or is it just an enabling

technique?
 In a very real way, middleware induces an architectural style

 CORBA induces the ‘distributed objects’ style
 JMS induces a distributed implicit invocation style

 Understanding these implications is essential for not having major
problems when the tail wags the dog!
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Resolving Mismatches

 A style is chosen first, but the middleware selected for
implementation does not support (or contradicts) that style

 A middleware is chosen first (or independently) and has undue
influence on the architectural style used

 Strategies
 Change or adapt the style
 Change the middleware selected
 Develop glue code
 Leverage parts of the middleware

and ignore others
 Hide the middleware in components/connectors

Use the middleware
as the basis for

a framework
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Hiding Middleware in Connectors

Comp 1

Comp 2

Async Event

Comp 1

Comp 2

RPC

(thread)

(thread)

Architecture

Implementation
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Building a New Framework

 Occasionally, you need a new framework
 The architectural style in use is novel
 The architectural style is not novel but it is being

implemented on a platform for which no framework exists
 The architectural style is not novel and frameworks exist for

the target platform, but the existing frameworks are
inadequate

 Good framework development is extremely difficult
 Frameworks pervade nearly every aspect of your system
 Making changes to frameworks often means changing the

entire system
 A task for experienced developers/architects
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New Framework Guidelines

 Understand the target style first
 Enumerate all the rules and constraints in concrete

terms
 Provide example design patterns and corner cases

 Limit the framework to the rules and constraints of the
style
 Do not let a particular target application’s needs

creep into the framework
 “Rule of three” for applications
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New Framework Guidelines
(cont’d)

 Choose the framework scope
 A framework does not necessarily have to implement

all possible stylistic advantages (e.g., dynamism or
distribution)

 Avoid over-engineering
 Don’t add capabilities simply because they are clever

or “cool”, especially if known target applications won’t
use them

 These often add complexity and reduce performance
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New Framework Guidelines
(cont’d)
 Limit overhead for application developers

 Every framework induces some overhead (classes must
inherit from framework base classes, communication
mechanisms limited)

 Try to put as little overhead as possible on framework
users

 Develop strategies and patterns for legacy systems and
components
 Almost every large application will need to include

elements that were not built to work with a target
framework

 Develop strategies for incorporating and wrapping these
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Concurrency

 Concurrency is one of the most difficult concerns to address in
implementation
 Introduction of subtle bugs: deadlock, race conditions…
 Another topic on which there are entire books written

 Concurrency is often an architecture-level concern
 Decisions can be made at the architectural level
 Done carefully, much concurrency management can be

embedded into the architecture framework
 Consider our earlier example, or how pipe-and-filter architectures

are made concurrent without direct user involvement
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Generative Technologies

 With a sufficiently detailed architectural model, various
implementation artifacts can be generated
 Entire system implementations

 Requires extremely detailed models including
behavioral specifications

 More feasible in domain-specific contexts
 Skeletons or interfaces

 With detailed structure and interface specifications
 Compositions (e.g., glue code)

 With sufficient data about bindings between two
elements
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Maintaining Consistency

 Strategies for maintaining one-way or round-trip mappings
 Create and maintain traceability links from architectural

implementation elements
 Explicit links in a database, in architectural models, in

code comments can all help with consistency checking
 Make the architectural model part of the implementation

 When the model changes, the implementation adapts
automatically

 May involve “internal generation”
 Generate some or all of the implementation from the

architecture


