
1

Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Analysis of
Software Architectures

Software Architecture
Lecture 13

2

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

What Is Architectural Analysis?
 Architectural analysis is the activity of discovering

important system properties using the system’s
architectural models.
 Early, useful answers about relevant architectural

aspects
 Available prior to system’s construction

 Important to know
1. which questions to ask
2. why to ask them
3. how to ask them
4. how to ensure that they can be answered

2

3

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Informal Architectural Models
and Analysis

 Helps architects get
clarification from
system customers

 Helps managers
ensure project
scope

 Not as useful to
developers

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

4

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Formal Architectural Models and
Analysis

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Component UserInterface
 Port getValues
 Port calculate
 Computation
Connector Call
 Role Caller =
 Role Callee =
 Glue =
Configuration LunarLander
 Instances
 DS : DataStore
 C : Calculation
 UI : UserInterface
 CtoUIgetValues, CtoUIstoreValues, UItoC, UItoDS : Call
 Attachments
 C.getValues as CtoUIgetValues.Caller
 DS.getValues as CtoUIgetValues.Callee
 C.storeValues as CtoUIstoreValues.Caller
 DS.storeValues as CtoUIstoreValues.Callee
 UI.calculate as UItoC.Caller
 C.calulate as UItoC.Callee
 UI.getValues as UItoDS.Caller
 DS.getValues as UItoDS.Callee
End LunarLander.

 Helps architects
determine
component
composability

 Helps developers
with
implementation-
level decisions

 Helps with locating
and selecting
appropriate OTS
components

 Helps with
automated code
generation

 Not as useful for
discussions with
non-technical
stakeholders

3

5

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Concerns Relevant to Architectural
Analysis
 Goals of analysis
 Scope of analysis
 Primary architectural concern being analyzed
 Level of formality of architectural models
 Type of analysis
 Level of automation
 System stakeholders interested in analysis

6

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis Goals

 The four “C”s
 Completeness
 Consistency
 Compatibility
 Correctness

4

7

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis Goals –
Completeness
 Completeness is both an external and an internal

goal
 It is external with respect to system requirements

 Challenged by the complexity of large systems’
requirements and architectures

 Challenged by the many notations used to capture
complex requirements as well as architectures

 It is internal with respect to the architectural intent
and modeling notation
 Have all elements been fully modeled in the

notation?
 Have all design decisions been properly captured?

8

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis Goals –
Consistency
 Consistency is an internal property of an architectural

model
 Ensures that different model elements do not

contradict one another
 Dimensions of architectural consistency

 Name
 Interface
 Behavior
 Interaction
 Refinement

5

9

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Name Consistency

 Component and connector names
 Component service names
 May be non-trivial to establish at the architectural level

 Multiple system elements/services with identical
names

 Loose coupling via publish-subscribe or asynchronous
event broadcast

 Dynamically adaptable architectures

10

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Interface Consistency

 Encompasses name consistency
 Also involves parameter lists in component services
 A rich spectrum of choices at the architectural level
 Example: matching provided and required interfaces

ReqInt: getSubQ(Natural first, Natural last, Boolean remove)

 returns FIFOQueue;

ProvInt1: getSubQ(Index first, Index last)

 returns FIFOQueue;

ProvInt2: getSubQ(Natural first, Natural last, Boolean remove)

 returns Queue;

6

11

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Behavioral Consistency

 Names and interfaces of interacting components may match, but
behaviors need not

 Example: subtraction
subtract(Integer x, Integer y) returns Integer;

 Can we be sure what the subtract operation does?
 Example: QueueClient and QueueServer components

QueueClient
precondition q.size > 0;
postcondition ~q.size = q.size;

QueueServer
precondition q.size > 1;
postcondition ~q.size = q.size - 1;

12

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Interaction Consistency

 Names, interfaces, and behaviors of interacting
components may match, yet they may still be unable
to interact properly

 Example: QueueClient and QueueServer components

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

7

13

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Refinement Consistency

 Architectural models are refined during the design
process

 A relationship must be maintained between higher and
lower level models
 All elements are preserved in the lower level model
 All design decisions are preserved in the lower-level

model
 No new design decisions violate existing design

decisions

14

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Refinement Consistency Example

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

8

15

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis Goals –
Compatibility

 Compatibility is an external property of an architectural
model

 Ensures that the architectural model adheres to
guidelines and constraints of
 a style
 a reference architecture
 an architectural standard

16

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Compatibility Example –
Lunar Lander

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

9

17

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis Goals –
Correctness
 Correctness is an external property of an architectural model
 Ensures that

1. the architectural model fully realizes a system
specification

2. the system’s implementation fully realizes the
architecture

 Inclusion of OTS elements impacts correctness
 System may include structural elements, functionality,

and non-functional properties that are not part of the
architecture

 The notion of fulfillment is key to ensuring architectural
correctness

18

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Scope of Architectural Analysis

 Component- and connector-level
 Subsystem- and system-level

 Beware of the “honey-baked ham” syndrome
 Data exchanged in a system or subsystem

 Data structure
 Data flow
 Properties of data exchange

 Architectures at different abstraction levels
 Comparison of two or more architectures

 Processing
 Data
 Interaction
 Configuration
 Non-functional properties

10

19

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Data Exchange Example

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

20

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectures at Different Abstraction
Levels

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

11

21

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Concern Being
Analyzed

 Structural characteristics
 Behavioral characteristics
 Interaction characteristics
 Non-functional characteristics

22

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Level of Formality

 Informal models
 Semi-formal models
 Formal models

12

23

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Type of Analysis

 Static analysis
 Dynamic analysis
 Scenario-driven analysis

 Can be both static and dynamic

24

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Level of Automation

 Manual
 Partially automated
 Fully automated

13

25

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Analysis Stakeholders

 Architects
 Developers
 Managers
 Customers
 Vendors

26

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis in a Nutshell

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

