
1

Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Analysis of
Software Architectures

Software Architecture
Lecture 13

2

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

What Is Architectural Analysis?
 Architectural analysis is the activity of discovering

important system properties using the system’s
architectural models.
 Early, useful answers about relevant architectural

aspects
 Available prior to system’s construction

 Important to know
1. which questions to ask
2. why to ask them
3. how to ask them
4. how to ensure that they can be answered

2

3

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Informal Architectural Models
and Analysis

 Helps architects get
clarification from
system customers

 Helps managers
ensure project
scope

 Not as useful to
developers

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

4

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Formal Architectural Models and
Analysis

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Component UserInterface
 Port getValues
 Port calculate
 Computation
Connector Call
 Role Caller =
 Role Callee =
 Glue =
Configuration LunarLander
 Instances
 DS : DataStore
 C : Calculation
 UI : UserInterface
 CtoUIgetValues, CtoUIstoreValues, UItoC, UItoDS : Call
 Attachments
 C.getValues as CtoUIgetValues.Caller
 DS.getValues as CtoUIgetValues.Callee
 C.storeValues as CtoUIstoreValues.Caller
 DS.storeValues as CtoUIstoreValues.Callee
 UI.calculate as UItoC.Caller
 C.calulate as UItoC.Callee
 UI.getValues as UItoDS.Caller
 DS.getValues as UItoDS.Callee
End LunarLander.

 Helps architects
determine
component
composability

 Helps developers
with
implementation-
level decisions

 Helps with locating
and selecting
appropriate OTS
components

 Helps with
automated code
generation

 Not as useful for
discussions with
non-technical
stakeholders

3

5

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Concerns Relevant to Architectural
Analysis
 Goals of analysis
 Scope of analysis
 Primary architectural concern being analyzed
 Level of formality of architectural models
 Type of analysis
 Level of automation
 System stakeholders interested in analysis

6

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis Goals

 The four “C”s
 Completeness
 Consistency
 Compatibility
 Correctness

4

7

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis Goals –
Completeness
 Completeness is both an external and an internal

goal
 It is external with respect to system requirements

 Challenged by the complexity of large systems’
requirements and architectures

 Challenged by the many notations used to capture
complex requirements as well as architectures

 It is internal with respect to the architectural intent
and modeling notation
 Have all elements been fully modeled in the

notation?
 Have all design decisions been properly captured?

8

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis Goals –
Consistency
 Consistency is an internal property of an architectural

model
 Ensures that different model elements do not

contradict one another
 Dimensions of architectural consistency

 Name
 Interface
 Behavior
 Interaction
 Refinement

5

9

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Name Consistency

 Component and connector names
 Component service names
 May be non-trivial to establish at the architectural level

 Multiple system elements/services with identical
names

 Loose coupling via publish-subscribe or asynchronous
event broadcast

 Dynamically adaptable architectures

10

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Interface Consistency

 Encompasses name consistency
 Also involves parameter lists in component services
 A rich spectrum of choices at the architectural level
 Example: matching provided and required interfaces

ReqInt: getSubQ(Natural first, Natural last, Boolean remove)

 returns FIFOQueue;

ProvInt1: getSubQ(Index first, Index last)

 returns FIFOQueue;

ProvInt2: getSubQ(Natural first, Natural last, Boolean remove)

 returns Queue;

6

11

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Behavioral Consistency

 Names and interfaces of interacting components may match, but
behaviors need not

 Example: subtraction
subtract(Integer x, Integer y) returns Integer;

 Can we be sure what the subtract operation does?
 Example: QueueClient and QueueServer components

QueueClient
precondition q.size > 0;
postcondition ~q.size = q.size;

QueueServer
precondition q.size > 1;
postcondition ~q.size = q.size - 1;

12

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Interaction Consistency

 Names, interfaces, and behaviors of interacting
components may match, yet they may still be unable
to interact properly

 Example: QueueClient and QueueServer components

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

7

13

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Refinement Consistency

 Architectural models are refined during the design
process

 A relationship must be maintained between higher and
lower level models
 All elements are preserved in the lower level model
 All design decisions are preserved in the lower-level

model
 No new design decisions violate existing design

decisions

14

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Refinement Consistency Example

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

8

15

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis Goals –
Compatibility

 Compatibility is an external property of an architectural
model

 Ensures that the architectural model adheres to
guidelines and constraints of
 a style
 a reference architecture
 an architectural standard

16

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Compatibility Example –
Lunar Lander

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

9

17

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis Goals –
Correctness
 Correctness is an external property of an architectural model
 Ensures that

1. the architectural model fully realizes a system
specification

2. the system’s implementation fully realizes the
architecture

 Inclusion of OTS elements impacts correctness
 System may include structural elements, functionality,

and non-functional properties that are not part of the
architecture

 The notion of fulfillment is key to ensuring architectural
correctness

18

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Scope of Architectural Analysis

 Component- and connector-level
 Subsystem- and system-level

 Beware of the “honey-baked ham” syndrome
 Data exchanged in a system or subsystem

 Data structure
 Data flow
 Properties of data exchange

 Architectures at different abstraction levels
 Comparison of two or more architectures

 Processing
 Data
 Interaction
 Configuration
 Non-functional properties

10

19

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Data Exchange Example

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

20

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectures at Different Abstraction
Levels

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

11

21

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Concern Being
Analyzed

 Structural characteristics
 Behavioral characteristics
 Interaction characteristics
 Non-functional characteristics

22

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Level of Formality

 Informal models
 Semi-formal models
 Formal models

12

23

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Type of Analysis

 Static analysis
 Dynamic analysis
 Scenario-driven analysis

 Can be both static and dynamic

24

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Level of Automation

 Manual
 Partially automated
 Fully automated

13

25

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Analysis Stakeholders

 Architects
 Developers
 Managers
 Customers
 Vendors

26

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architectural Analysis in a Nutshell

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

