
1

Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

The Big Idea

Software Architecture
Lecture 1

2

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

The Origins

 Software Engineers have always employed software
architectures
 Very often without realizing it!

 Address issues identified by researchers and
practitioners
 Essential software engineering difficulties
 Unique characteristics of programming-in-the-large
 Need for software reuse

 Many ideas originated in other (non-computing) domains

2

3

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Software Engineering Difficulties

 Software engineers deal with unique set of problems
 Young field with tremendous expectations
 Building of vastly complex, but intangible systems
 Software is not useful on its own e.g., unlike a car,

thus
 It must conform to changes in other engineering

areas
 Some problems can be eliminated

 These are Brooks’ “accidental difficulties”
 Other problems can be lessened, but not eliminated

 These are Brooks’ “essential difficulties”

4

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Accidental Difficulties

 Solutions exist
 Possibly waiting to be discovered

 Past productivity increases result of overcoming
 Inadequate programming constructs & abstractions

 Remedied by high-level programming languages
 Increased productivity by factor of five
 Complexity was never inherent in program at all

3

5

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Accidental Difficulties (cont’d)

 Past productivity increases result of overcoming (cont’d)
 Viewing results of programming decisions took long

time
 Remedied by time–sharing
 Turnaround time approaching limit of human

perception
 Difficulty of using heterogeneous programs

 Addressed by integrated software development
environments

 Support task that was conceptually always possible

6

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Essential Difficulties

 Only partial solutions exist for them, if any
 Cannot be abstracted away

 Complexity
 Conformity
 Changeability
 Intangibility

4

7

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Complexity

 No two software parts are alike
 If they are, they are abstracted away into one

 Complexity grows non-linearly with size
 E.g., it is impossible to enumerate all states of

program
 Except perhaps “toy” programs

8

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Conformity

 Software is required to conform to its
 Operating environment
 Hardware

 Often “last kid on block”
 Perceived as most conformable

5

9

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Changeability

 Change originates with
 New applications, users, machines, standards, laws
 Hardware problems

 Software is viewed as infinitely malleable

10

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Intangibility

 Software is not embedded in space
 Often no constraining physical laws

 No obvious representation
 E.g., familiar geometric shapes

6

11

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Pewter Bullets

 Ada, C++, Java and other high–level languages
 Object-oriented design/analysis/programming
 Artificial Intelligence
 Automatic Programming
 Graphical Programming
 Program Verification
 Environments & tools
 Workstations

12

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Promising Attacks On Complexity (In
1987)

 Buy vs. Build
 Requirements refinement & rapid prototyping

 Hardest part is deciding what to build (or buy?)
 Must show product to customer to get complete spec.
 Need for iterative feedback

7

13

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Promising Attacks On Complexity
(cont’d)

 Incremental/Evolutionary/Spiral Development
 Grow systems, don’t build them
 Good for morale
 Easy backtracking
 Early prototypes

 Great designers
 Good design can be taught; great design cannot
 Nurture great designers

14

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Primacy of Design

 Software engineers collect requirements, code, test,
integrate, configure, etc.

 An architecture-centric approach to software engineering
places an emphasis on design
 Design pervades the engineering activity from the

very beginning
 But how do we go about the task of architectural

design?

8

15

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Analogy: Architecture of Buildings

 We all live in them
 (We think) We know how they are built

 Requirements
 Design (blueprints)
 Construction
 Use

 This is similar (though not identical) to how we build
software

16

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Some Obvious Parallels

 Satisfaction of customers’ needs
 Specialization of labor
 Multiple perspectives of the final product
 Intermediate points where plans and progress are

reviewed

9

17

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Deeper Parallels

 Architecture is different from, but linked with the
product/structure

 Properties of structures are induced by the design of the
architecture

 The architect has a distinctive role and character

18

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Deeper Parallels (cont’d)

 Process is not as important as architecture
 Design and resulting qualities are at the forefront
 Process is a means, not an end

 Architecture has matured over time into a discipline
 Architectural styles as sets of constraints
 Styles also as wide range of solutions, techniques and

palettes of compatible materials, colors, and sizes

10

19

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

More about the Architect

 A distinctive role and character in a project
 Very broad training
 Amasses and leverages extensive experience
 A keen sense of aesthetics
 Deep understanding of the domain

 Properties of structures, materials, and environments
 Needs of customers

20

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

More about the Architect (cont’d)

 Even first-rate programming skills are insufficient for the
creation of complex software applications
 But are they even necessary?

11

21

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Limitations of the Analogy…

 We know a lot about buildings, much less about
software

 The nature of software is different from that of building
architecture

 Software is much more malleable than physical materials
 The two “construction industries” are very different
 Software deployment has no counterpart in building

architecture
 Software is a machine; a building is not

22

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

…But Still Very Real Power of
Architecture

 Giving preeminence to architecture offers the potential
for
 Intellectual control
 Conceptual integrity
 Effective basis for knowledge reuse
 Realizing experience, designs, and code
 Effective project communication
 Management of a set of variant systems

 Limited-term focus on architecture will not yield
significant benefits!

12

23

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architecture in Action: WWW

 This is the Web

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

24

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architecture in Action: WWW

 So is this

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

13

25

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architecture in Action: WWW

 And this

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

26

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

WWW in a (Big) Nutshell

 The Web is a collection of resources, each of which has
a unique name known as a uniform resource locator, or
“URL”.

 Each resource denotes, informally, some information.
 URI’s can be used to determine the identity of a machine

on the Internet, known as an origin server, where the
value of the resource may be ascertained.

 Communication is initiated by clients, known as user
agents, who make requests of servers.
 Web browsers are common instances of user agents.

14

27

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

WWW in a (Big) Nutshell (cont’d)

 Resources can be manipulated through their
representations.
 HTML is a very common representation language

used on the Web.
 All communication between user agents and origin

servers must be performed by a simple, generic protocol
(HTTP), which offers the command methods GET, POST,
etc.

 All communication between user agents and origin
servers must be fully self-contained. (So-called “stateless
interactions”)

28

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

WWW’s Architecture

 Architecture of the Web is wholly separate from the code
 There is no single piece of code that implements the

architecture.
 There are multiple pieces of code that implement the

various components of the architecture.
 E.g., different Web browsers

15

29

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

WWW’s Architecture (cont’d)

 Stylistic constraints of the Web’s architectural style are
not apparent in the code
 The effects of the constraints are evident in the Web

 One of the world’s most successful applications is only
understood adequately from an architectural vantage
point.

30

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architecture in Action: Desktop

 Remember pipes and filters in Unix?

 ls invoices | grep –e august | sort
 Application architecture can be understood based on

very few rules
 Applications can be composed by non-programmers

 Akin to Lego blocks
 A simple architectural concept that can be

comprehended and applied by a broad audience

16

31

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Architecture in Action: Product
Line
 Motivating example

 A consumer is interested in a 35-inch HDTV with a built-in DVD
player for the North American market.

Such a device might contain upwards of a million lines of
embedded software.

This particular television/DVD player will be very similar to a 35-
inch HDTV without the DVD player, and also to a 35-inch HDTV
with a built-in DVD player for the European market, where the
TV must be able to handle PAL or SECAM encoded broadcasts,
rather than North America’s NTSC format.

These closely related televisions will similarly each have a million
or more lines of code embedded within them.

32

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Growing Sophistication of Consumer Devices

17

33

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Families of Related Products

34

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

The Necessity and Benefit of PLs

 Building each of these TVs from scratch would likely put
Philips out of business

 Reusing structure, behaviors, and component
implementations is increasingly important to successful
business practice
 It simplifies the software development task
 It reduces the development time and cost
 it improves the overall system reliability

 Recognizing and exploiting commonality and variability
across products

18

35

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Reuse as the Big Win

 Architecture: reuse of

 Ideas
 Knowledge
 Patterns
 engineering

guidance
 Well-worn

experience

 Product families: reuse of

 Structure
 Behaviors
 Implementations
 Test suites…

36

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Added Benefit – Product Populations

19

37

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

The Centerpiece – Architecture

38

Foundations, Theory, and PracticeSoftware ArchitectureSoftware Architecture

Summary

 Software is complex
 So are buildings

 And other engineering artifacts
 Building architectures are an attractive source of

analogy
 Software engineers can learn from other domains
 They also need to develop—and have developed—a rich

body of their own architectural knowledge and
experience

