
1

Overview (and reorientation) of SE

Richard N. Taylor
Institute for Software Research
University of California, Irvine

The Origins
 Many ideas originated in other (non-

computing) domains
 Software Engineers have always employed

architectures
– Very often without realizing it!

 Address issues identified by researchers and
practitioners
– Essential software engineering difficulties
– Unique characteristics of programming-in-the-

large
– Need for software reuse

2

Primacy of Design

 Software engineers collect requirements,
code, test, integrate, configure, etc.

 An architecture-centric approach to software
engineering places an emphasis on design
– Design pervades the engineering activity from the

very beginning
 But how do we go about the task of

architectural design?

Analogy: Architecture of
Buildings
 We all live in them
 (We think) We know how they are built

– Requirements
– Design (blueprints)
– Construction
– Use

 This is similar (though not identical) to
how we build software

3

Some Obvious Parallels

 Satisfaction of customers’ needs
 Specialization of labor
 Multiple perspectives of the final

product
 Intermediate points where plans and

progress are reviewed

Deeper Parallels

 Architecture is different from, but linked
with the product/structure

 Properties of structures are induced by
the design of the architecture

 The architect has a distinctive role and
character

4

Deeper Parallels (cont’d)

 Process is not as important as architecture
– Design and resulting qualities are at the forefront
– Process is a means, not an end

 Architecture has matured over time into a
discipline
– Architectural styles as sets of constraints
– Styles also as wide range of solutions, techniques

and palettes of compatible materials, colors, and
sizes

About the Architect

 A distinctive role and character in a project
 Very broad training
 Amasses and leverages extensive experience
 A keen sense of aesthetics
 Deep understanding of the domain

– Properties of structures, materials, and
environments

– Needs of customers

5

More about the Architect

 Even first-rate programming skills are
insufficient for the creation of complex
software applications
– But are they even necessary?

Limitations of the Analogy…

 We know a lot about buildings, much less
about software

 The nature of software is different from that of
building architecture

 Software is much more malleable than
physical materials

 The two “construction industries” are very
different

 Software deployment has no counterpart in
building architecture

 Software is a machine; a building is not

6

…But Still Very Real Power of
Architecture
 Giving preeminence to architecture offers the

potential for
– Intellectual control
– Conceptual integrity
– Effective basis for knowledge reuse
– Realizing experience, designs, and code
– Effective project communication
– Management of a set of variant systems

 Limited-term focus on architecture will not
yield significant benefits!

Architecture in Action: WWW

 This is the Web

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

7

Architecture in Action: WWW

 So is this

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Architecture in Action: WWW

 And this

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

8

WWW in a (Big) Nutshell

 The Web is a collection of resources, each of which
has a unique name known as a uniform resource
locator, or “URL”.

 Each resource denotes, informally, some information.
 URI’s can be used to determine the identity of a

machine on the Internet, known as an origin server,
where the value of the resource may be ascertained.

 Communication is initiated by clients, known as user
agents, who make requests of servers.
– Web browsers are common instances of user agents.

WWW in a (Big) Nutshell
(cont’d)
 Resources can be manipulated through their

representations.
– HTML is a very common representation language

used on the Web.
 All communication between user agents and

origin servers must be performed by a simple,
generic protocol (HTTP), which offers the
command methods GET, POST, etc.

 All communication between user agents and
origin servers must be fully self-contained.
(So-called “stateless interactions”)

9

WWW’s Architecture

 Architecture of the Web is wholly
separate from the code

 There is no single piece of code that
implements the architecture.

 There are multiple pieces of code that
implement the various components of
the architecture.
– E.g., different Web browsers

WWW’s Architecture (cont’d)

 Stylistic constraints of the Web’s architectural
style are not apparent in the code
– The effects of the constraints are evident in the

Web

 One of the world’s most successful
applications is only understood adequately
from an architectural vantage point.

10

Fundamental Understanding

 Architecture is a set of principal design
decisions about a software system

 Three fundamental understandings of
software architecture
– Every application has an architecture
– Every application has at least one architect
– Architecture is not a phase of development

Wrong View: Architecture as a
Phase

– Treating architecture as a phase denies its
foundational role in software development

– More than “high-level design”
– Architecture is also represented, e.g., by

object code, source code, …

11

Context of Software Architecture

 Requirements
 Design
 Implementation
 Analysis and Testing
 Evolution
 Development Process

Requirements Analysis
 Traditional SE suggests requirements

analysis should remain unsullied by any
consideration for a design

 However, without reference to existing
architectures it becomes difficult to assess
practicality, schedules, or costs
– In building architecture we talk about specific

rooms…
– …rather than the abstract concept “means for

providing shelter”
 In engineering new products come from the

observation of existing solution and their
limitations

12

New Perspective on Requirements
Analysis
 Existing designs and architectures provide

the solution vocabulary
 Our understanding of what works now, and

how it works, affects our wants and perceived
needs

 The insights from our experiences with
existing systems
– helps us imagine what might work and
– enables us to assess development time and costs

  Requirements analysis and consideration
of design must be pursued at the same time

Non-Functional Properties (NFP)

 NFPs are the result of architectural choices
 NFP questions are raised as the result of

architectural choices
 Specification of NFP might require an

architectural framework to even enable their
statement

 An architectural framework will be required for
assessment of whether the properties are
achievable

13

The Twin Peaks Model

Design and Architecture
 Design is an activity that pervades software

development
 It is an activity that creates part of a system’s

architecture
 Typically in the traditional Design Phase

decisions concern
– A system’s structure
– Identification of its primary components
– Their interconnections

 Architecture denotes the set of principal design
decisions about a system
– That is more than just structure

14

Architecture-Centric Design

 Traditional design phase suggests translating
the requirements into algorithms, so a
programmer can implement them

 Architecture-centric design
– stakeholder issues
– decision about use of COTS component
– overarching style and structure
– package and primary class structure
– deployment issues
– post implementation/deployment issues

Design Techniques

 Basic conceptual tools
– Separation of concerns
– Abstraction
– Modularity

 Two illustrative widely adapted strategies
– Object-oriented design
– Domain-specific software architectures (DSSA)

15

Object-Oriented Design (OOD)

 Objects
– Main abstraction entity in OOD
– Encapsulations of state with functions for

accessing and manipulating that state

Pros and Cons of OOD
 Pros

– UML modeling notation
– Design patterns

 Cons
– Provides only

• One level of encapsulation (the object)
• One notion of interface
• One type of explicit connector (procedure call)

– Even message passing is realized via procedure
calls

– OO programming language might dictate
important design decisions

– OOD assumes a shared address space

16

DSSA

 Capturing and characterizing the best
solutions and best practices from past
projects within a domain

 Production of new applications can focus on
the points of novel variation

 Reuse applicable parts of the architecture
and implementation

 Applicable for product lines
– Philips Koala example

Implementation

 The objective is to create machine-executable
source code
– That code should be faithful to the architecture

• Alternatively, it may adapt the architecture
• How much adaptation is allowed?
• Architecturally-relevant vs. -unimportant adaptations

– It must fully develop all outstanding details of the
application

17

Faithful Implementation
 All of the structural elements found in the

architecture are implemented in the source
code

 Source code must not utilize major new
computational elements that have no
corresponding elements in the architecture

 Source code must not contain new
connections between architectural elements
that are not found in the architecture

 Is this realistic?
Overly constraining?
What if we deviate from this?

Unfaithful Implementation
 The implementation does have an

architecture
– It is latent, as opposed to what is documented.

 Failure to recognize the distinction between
planned and implemented architecture
– robs one of the ability to reason about the

application’s architecture in the future
– misleads all stakeholders regarding what they

believe they have as opposed to what they really
have

– makes any development or evolution strategy that
is based on the documented (but inaccurate)
architecture doomed to failure

18

Implementation Strategies

 Generative techniques
– e.g. parser generators

 Frameworks
– collections of source code with identified places

where the engineer must “fill in the blanks”
 Middleware

– CORBA, DCOM, RPC, …
 Reuse-based techniques

– COTS, open-source, in-house
 Writing all code manually

How It All Fits Together

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

19

Analysis and Testing

 Analysis and testing are activities undertaken
to assess the qualities of an artifact

 The earlier an error is detected and corrected
the lower the aggregate cost

 Rigorous representations are required for
analysis, so precise questions can be asked
and answered

Analysis of Architectural Models

 Formal architectural model can be examined
for internal consistency and correctness

 An analysis on a formal model can reveal
– Component mismatch
– Incomplete specifications
– Undesired communication patterns
– Deadlocks
– Security flaws

 It can be used for size and development time
estimations

20

Analysis of Architectural Models
(cont’d)
 Architectural model

– may be examined for consistency with
requirements

– may be used in determining analysis and
testing strategies for source code

– may be used to check if an implementation
is faithful

Evolution and Maintenance
 All activities that chronologically follow the

release of an application
 Software will evolve

– Regardless of whether one is using an
architecture-centric development process or not

 The traditional software engineering approach
to maintenance is largely ad hoc
– Risk of architectural decay and overall quality

degradation
 Architecture-centric approach

– Sustained focus on an explicit, substantive, modifiable,
faithful architectural model

21

Architecture-Centric Evolution
Process
 Motivation
 Evaluation or assessment
 Design and choice of approach
 Action

– includes preparation for the next round of
adaptation

Processes

 Traditional software process discussions
make the process activities the focal point

 In architecture-centric software engineering
the product becomes the focal point

 No single “right” software process for
architecture-centric software engineering
exists

22

Turbine – A New Visualization
Model
 Goals of the visualization

– Provide an intuitive sense of
• Project activities at any given time

– Including concurrency of types of development activities
• The “information space” of the project

– Show centrality of the products
• (Hopefully) Growing body of artifacts
• Allow for the centrality of architecture

– But work equally well for other approaches,
including “dysfunctional” ones

– Effective for indicating time, gaps, duration of
activities

– Investment (cost) indicators

Coding

Design

Requirements

Testing

Simplistic Waterfall,
Side perspective

time

The Turbine Model

“Core” of project
artifacts

Radius of rotor indicates
level of staffing at time t

Gap between rotors
indicates no project
activity for that Δt

ti

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

23

Cross-section at time ti
Design

(activity)

Requirements

Design
doc

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

The Turbine Model

Waterfall example,
Angled perspective

time

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

24

A Richer Example

S1

Design/Build/
Requirements

Test/Build/
Deploy

Assess/…

Requirements/Architecture
assessment/Planning

Build/Design/
Requirements/Test

time

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

A Sample Cross-Section

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

25

A Cross-Section at Project End

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Design/Build/
Requirements

Test/Build/
Deploy

Assess/…

Requirements/Architecture
assessment/Planning

Build/Design/
Requirements/Test

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Volume Indicates Where Time was Spent

26

A Technically Strong Product
Line Project

Assessment

ParameterizationCustomization

Deployment
Capture of new work
Other

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Visualization Summary

 It is illustrative, not prescriptive
 It is an aid to thinking about what’s going on

in a project
 Can be automatically generated based on

input of monitored project data
 Can be extended to illustrate development of

the information space (artifacts)
– The preceding slides have focused primarily on

the development activities

27

Processes Possible in this Model

 Traditional, straight-line waterfall
 Architecture-centric development
 DSSA-based project
 Agile development
 Dysfunctional process

Summary (1)
 A proper view of software architecture affects

every aspect of the classical software
engineering activities

 The requirements activity is a co-equal
partner with design activities

 The design activity is enriched by techniques
that exploit knowledge gained in previous
product developments

 The implementation activity
– is centered on creating a faithful implementation of

the architecture
– utilizes a variety of techniques to achieve this in a

cost-effective manner

28

Summary (2)

 Analysis and testing activities can be
focused on and guided by the
architecture

 Evolution activities revolve around the
product’s architecture.

 An equal focus on process and product
results from a proper understanding of
the role of software architecture

