
Software Requirements
Thomas Alspaugh

Informatics 221
2007 Oct 2

Overview of talk

• Requirements forms

• Requirements activities

• Requirements contexts and appropriate practices

• Active research areas in requirements

• Some current research

Some requirements forms

• Properties — the classic form (“The system shall ...”)

• Narratives — the ubiquitous form (scenarios, use
cases, user stories, ...)

• Goals (with tradeoffs, relationships)

• Ontologies (describing domain and system)

• Models,usually state models (MSC, SD, LTS, ...)

• Hybrid forms, often tabular (SCR, Problem Frames, ...)

Properties (“shalls”)

• Contractual

• Good for broadly-exhibited characteristics

• Can be good for analysis of later models

• Can be hard to analyze, infer from

• Bad for describing dynamic behavior (except
temporal logics, which have their own drawbacks)

• Can be problem for nontechnical stakeholders

Example properties

Narratives

• Almost universal (scenarios, use cases, prose)

• Sometimes the primary requirements
— especially in the U.S.

• Other forms commonly accompanied by them

• Evocative, partial, concrete, widely understood

• Challenging to integrate, analyze, infer from

• Individual narratives are easy, groups are hard

Example
narrative

Goals

• Explanatory power — why a requirement is there

• Other kinds of requirements usually are means

• More stable

• Have relationships that can be worked with

• Good for tradeoff analysis

• Stakeholders often more certain of goals

Example goals and relations

Ontologies

• Entities, sets of entities, relationships

• Define terminology

• Define the shape of the world in question

• Not widely used in requirements
(except glossaries)

• Good ontologies are rare

Example
ontology

(this example has
no glossary)

State models
• Good for analysis; powerful techniques, including

model checking

• Especially good for concurrent systems and
systems with high failure costs

• Models can be complete
—completeness is problematic for all other forms

• Often stray into design

• Require training — stakeholders don’t understand

Example state model

Hybrid forms

• Most often tabular

• Organize requirements for ease of reference

• Often integrate two or more forms

• May be analyzable (e.g. SCRTool)

• Usually best for one kind of system
—e.g. SCR for embedded realtime

• Problem Frames designed to be flexible

Example hybrid form

Requirements activities

• Elicitation

• Analysis (inference; formal properties)

• Presentation (esp. written)

• Negotiation

• Evolution (esp. throughout development process)

• Integration into other phases (e.g. testing)

What requirements are
good for (or should be)

• Communication among all parties involved

• Stakeholder input, agreement, buy-in

• Analysis, inference, tradeoffs at inexpensive time

• Light showing where the end of the tunnel lies

• Context for all subsequent refinements, choices

• Criteria for testing, buyer satisfaction, sign-off

Arguments against and for
• Against: Requirements are hard!

• Against: Requirements evolve, so why bother

• Against: Requirements don’t reflect implementation

• For: If you don’t know where you’re headed ...

• For: The decisions you don’t realize you make ...

• For: You can’t recapture the requirements later

• For: Stakeholders understand requirements, only

• For: Requirements are cheap and effective

The classical
requirements context

• Big, expensive, one-off system
—hundreds of developers working for years

• Developed on contract: customers vs. developers

• Waterfall model, Boehm statistics

• Ineffective tool support

• Lawyers, project managers, accountants

• The development process is an ocean liner

Most systems aren’t developed
like that

Dimensions of
requirements context

• Novelty —domain, system, implementation

• Total cost of system development
—Requirements effort usua&y proportional (10-50%)

• Cost of failing to meet requirements
—Not necessarily related to development cost

• Stakeholder characteristics
—What form of requirements is effective for them?

• System characteristics / Stakeholder goals
—How can what’s important be expressed?

Four contexts
• Project expensive, system failures expensive
—ATC

• System failures expensive
— fly-by-wire, medical systems, HIPAA

• Project moderate, system failures cheap,
stakeholders nontechnical
—many business systems, most PC software

• Small project, system failures inexpensive,
system domain complex, medium to high novelty
—Embedded contro&ers, some business systems

Context #1: expensive,
high cost of failure

• Goals for tradeoffs, focus, rationale

• Models for convincing analysis of consequences

• Properties for contractual force

• Narratives to explain contexts, give immediacy

• Ontology (or at least glossary) for agreement

#2: high cost of failure

• Similar, but different emphases

• Models for convincing analysis of consequences

• Properties and narratives for verification

• Narratives to explain contexts, “same page”

• Ontology for domain understanding

• Goals for rationale, tradeoffs, focus

#3: limited failure cost,
nontechnical stakeholders

• Narratives as primary form

• Ontology for domain understanding

• Goals for exploration, tradeoffs, rationales

• No properties (or few), no models

#4: small system, limited
failure cost, complex domain
• XP: 10 or fewer, highly-ski&ed, a year or less

• Domain expert sitting with developers

• Requirements = the tests (specialized narratives)

• Implementation is what’s analyzed

• Evolution expected, welcomed (in implementation)

• Requirements activities distributed throughout
development, in small chunks

Hot research areas (RE’07)
• The business view of requirements

• Globalization (highlighted in the CfP)

• Natural language processing

• Evaluating effects of requirements practices

• Goals, i*, scenarios

• Problem modelling, not behavior modelling

• Product line engineering (an isolated world)

My current research

• Scenarios and the informal/formal boundary

• Automation with scenarios and of scenario work

• Scenarios and ontologies of their worlds

• Scenario-driven specification-based testing

• Scenarios and social interactions

Scenarios and ontologies

• A more exploratory view of ontologies

• Ontology describes structure of scenarios’ world

• Connect parts of scenario to related
parts of ontology

• Enhanced automation,
semantic connection

2. The dog chases it.

Parameter: a fox

to jump: to push oneself
off a surface and into the
air by using the muscles

in one's legs and feet

1. The quick brown fox jumps over the lazy dog.

Animals

Foxes Dogs

can
chase

Scenarios
and testing

Test
 Harness

API

Test
Scenarios

Test
Scenarios

Test
Scenarios

Scenario
Recognizer

instantiate
with dataused to

define

Scenario
Driver

generate

generate

Test CasesTest CasesTest Cases

validates

Scenarios

S2

S3

S1

Partial
Ontology

generate
data

Test Harness

System
Under Test

used to
construct

At
Test
Time

Event
Oracles

generate

Scenarios as data structure

• Computed social worlds

• Social interactions driven by, recalled as scenarios

• Implementation uses ScenarioML scenarios and
software for manipulating them

• Work with Bill Tomlinson and Eric Baumer

http://orchid.calit2.uci.edu/~ebaumer/aiide06/BaumerEtAlAIIDE06.mov

“feather”
“Hey, nice fire” “Thank you!”

Stakeholder visualizations
• Visualization created in real time, for almost-free

• Stakeholders understand better (dual-coding effect)

• Different audience, novel interactions, new ways

• Work with
Bill Tomlinson
and
Eric Baumer

http://orchid.calit2.uci.edu/~wmt/movies/softvis.mov

More information

http://www.ics.uci.edu/~alspaugh/

