
1

Where do architectures come from?

Method

1) Efficient in familiar terrain
2) Not always successful
3) Predictable outcome (+ & -)
4) Quality of methods varies

Creativity

1) Fun!
2) Fraught with peril
3) May be unnecessary
4) May yield the best

How Do You Design?

Objectives

 Creativity
– Enhance your skillset
– Provide new tools

 Method
– Focus on highly effective techniques

 Develop judgment: when to develop novel
solutions, and when to follow established
method

2

Engineering Design Process

 Feasibility stage: identifying a set of feasible
concepts for the design as a whole

 Preliminary design stage: selection and
development of the best concept.

 Detailed design stage: development of
engineering descriptions of the concept.

 Planning stage: evaluating and altering the
concept to suit the requirements of
production, distribution, consumption and
product retirement.

Potential Problems

 If the designer is unable to produce a set of feasible
concepts, progress stops.

 As problems and products increase in size and
complexity, the probability that any one individual can
successfully perform the first steps decreases.

 The standard approach does not directly address the
situation where system design is at stake, i.e. when
relationship between a set of products is at issue.

  As complexity increases or the experience of the
designer is not sufficient, alternative approaches to
the design process must be adopted.

3

Alternative Design Strategies

 Standard
– Linear model described above

 Cyclic
– Process can revert to an earlier stage

 Parallel
– Independent alternatives are explored in parallel

 Adaptive (“lay tracks as you go”)
– The next design strategy of the design activity is

decided at the end of a given stage
 Incremental

– Each stage of development is treated as a task of
incrementally improving the existing design

Identifying a Viable Strategy

 Use fundamental design tools: abstraction
and modularity.
– But how?

 Inspiration, where inspiration is needed.
Predictable techniques elsewhere.
– But where is creativity required?

 Applying own experience or experience of
others.

4

The Tools of “Software Engineering 101”

 Abstraction
– Abstraction(1): look at details, and abstract

“up” to concepts
– Abstraction(2): choose concepts, then add

detailed substructure, and move “down”
• Example: design of a stack class

 Separation of concerns

A Few Definitions… from the OED
Online
 Abstraction: “The act or process of separating in

thought, of considering a thing independently of its
associations; or a substance independently of its
attributes; or an attribute or quality independently of
the substance to which it belongs.”

 Reification: “The mental conversion of … [an]
abstract concept into a thing.”

 Deduction: “The process of drawing a conclusion
from a principle already known or assumed; spec. in
Logic, inference by reasoning from generals to
particulars; opposed to INDUCTION.”

 Induction: “The process of inferring a general law or
principle from the observation of particular instances
(opposed to DEDUCTION, q.v.).”

5

Abstraction and the Simple Machines

 What concepts should be chosen at the outset of a
design task?
– One technique: Search for a “simple machine”

that serves as an abstraction of a potential system
that will perform the required task

– For instance, what kind of simple machine makes
a software system embedded in a fax machine?

• At core, it is basically just a little state machine.

 Simple machines provide a plausible first conception
of how an application might be built.

 Every application domain has its common simple
machines.

Simple Machines

Spreadsheets
Databases
Transactions

Banking

Matrices
Mathematical functions

Scientific computing

Hypertext
Composite documents

Web pages

Hypertext
Spreadsheets
Form templates

Income Tax Software

Finite state machinesProcess control

Structured documents
Layouts

Word processing

Pixel arrays
Transformation matrices
Widgets
Abstract depiction graphs

Graphics

Simple MachinesDomain

6

Choosing the Level and Terms of Discourse

 Any attempt to use abstraction as a tool must choose
a level of discourse, and once that is chosen, must
choose the terms of discourse.

 Alternative 1: initial level of discourse is one of the
application as a whole (step-wise refinement).

 Alternative 2: work, initially, at a level lower than that
of the whole application.
– Once several such sub-problems are solved they

can be composed together to form an overall
solution

 Alternative 3: work, initially, at a level above that of
the desired application.
– E.g. handling simple application input with a

general parser.

Separation of Concerns

 Separation of concerns is the subdivision of a
problem into (hopefully) independent parts.

 The difficulties arise when the issues are
either actually or apparently intertwined.

 Separations of concerns frequently involves
many tradeoffs

 Total independence of concepts may not be
possible.

 Key example from software architecture:
separation of components (computation) from
connectors (communication)

7

The Grand Tool: Refined Experience

 Experience must be reflected upon and refined.
 The lessons from prior work include not only the

lessons of successes, but also the lessons arising
from failure.

 Learn from success and failure of other engineers
– Literature
– Conferences

 Experience can provide that initial feasible set of
“alternative arrangements for the design as a whole”.

Patterns, Styles, and DSSAs

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

8

Domain-Specific Software Architectures

 A DSSA is an assemblage of software components
– specialized for a particular type of task (domain),
– generalized for effective use across that domain, and
– composed in a standardized structure (topology)

effective for building successful applications.
 Since DSSAs are specialized for a particular domain

they are only of value if one exists for the domain
wherein the engineer is tasked with building a new
application.

 DSSAs are the pre-eminent means for maximal reuse
of knowledge and prior development and hence for
developing a new architectural design.

Architectural Patterns

 An architectural pattern is a set of
architectural design decisions that are
applicable to a recurring design problem, and
parameterized to account for different
software development contexts in which that
problem appears.

 Architectural patterns are similar to DSSAs
but applied “at a lower level” and within a
much narrower scope.

9

State-Logic-Display: Three-Tiered Pattern

 Application Examples
– Business applications
– Multi-player games
– Web-based applications

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Model-View-Controller (MVC)

 Objective: Separation between information,
presentation and user interaction.

 When a model object value changes, a
notification is sent to the view and to the
controller. So that the view can update itself
and the controller can modify the view if its
logic so requires.

 When handling input from the user the
windowing system sends the user event to
the controller; If a change is required, the
controller updates the model object.

10

Model-View-Controller

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Sense-Compute-Control

Objective: Structuring embedded control applications
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

11

The Lunar Lander: A Long-Running
Example
 A simple computer game that first appeared in the

1960’s
 Simple concept:

– You (the pilot) control the descent rate of the
Apollo-era Lunar Lander

• Throttle setting controls descent engine
• Limited fuel
• Initial altitude and speed preset
• If you land with a descent rate of < 5 fps: you win

(whether there’s fuel left or not)

– “Advanced” version: joystick controls attitude &
horizontal motion

Sense-Compute-Control LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

12

Architectural Styles

 An architectural style is a named collection of
architectural design decisions that

• are applicable in a given development context
• constrain architectural design decisions that are specific

to a particular system within that context
• elicit beneficial qualities in each resulting system

 A primary way of characterizing lessons from
experience in software system design

 Reflect less domain specificity than architectural
patterns

 Useful in determining everything from subroutine
structure to top-level application structure

Definitions of Architectural Style
 Definition. An architectural style is a named collection of

architectural design decisions that
– are applicable in a given development context
– constrain architectural design decisions that are

specific to a particular system within that context
– elicit beneficial qualities in each resulting system.

 Recurring organizational patterns & idioms
– Established, shared understanding of common design

forms
– Mark of mature engineering field.

• Shaw & Garlan
 Abstraction of recurring composition & interaction

characteristics in a set of architectures
• Taylor

13

Basic Properties of Styles

 A vocabulary of design elements
– Component and connector types; data

elements
– e.g., pipes, filters, objects, servers

 A set of configuration rules
– Topological constraints that determine allowed

compositions of elements
– e.g., a component may be connected to at

most two other components
 A semantic interpretation

– Compositions of design elements have well-
defined meanings

 Possible analyses of systems built in a style

Benefits of Using Styles
 Design reuse

– Well-understood solutions applied to new problems
 Code reuse

– Shared implementations of invariant aspects of a style
 Understandability of system organization

– A phrase such as “client-server” conveys a lot of information
 Interoperability

– Supported by style standardization
 Style-specific analyses

– Enabled by the constrained design space
 Visualizations

– Style-specific depictions matching engineers’ mental models

14

Style Analysis Dimensions

 What is the design vocabulary?
– Component and connector types

 What are the allowable structural patterns?
 What is the underlying computational model?
 What are the essential invariants of the style?
 What are common examples of its use?
 What are the (dis)advantages of using the

style?
 What are the style’s specializations?

Some Common Styles
 Traditional, language-

influenced styles
– Main program and

subroutines
– Object-oriented

 Layered
– Virtual machines
– Client-server

 Data-flow styles
– Batch sequential
– Pipe and filter

 Shared memory
– Blackboard
– Rule based

 Interpreter
– Interpreter
– Mobile code

 Implicit invocation
– Event-based
– Publish-subscribe

 Peer-to-peer
 “Derived” styles

– C2
– CORBA

15

Main Program and Subroutines LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Object-Oriented Style
 Components are objects

– Data and associated operations
 Connectors are messages and method invocations
 Style invariants

– Objects are responsible for their internal representation
integrity

– Internal representation is hidden from other objects
 Advantages

– “Infinite malleability” of object internals
– System decomposition into sets of interacting agents

 Disadvantages
– Objects must know identities of servers
– Side effects in object method invocations

16

Object-Oriented LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

OO/LL in UML

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

17

Layered Style

 Hierarchical system organization
– “Multi-level client-server”
– Each layer exposes an interface (API) to be used

by above layers
 Each layer acts as a

– Server: service provider to layers “above”
– Client: service consumer of layer(s) “below”

 Connectors are protocols of layer interaction
 Example: operating systems
 Virtual machine style results from fully opaque layers

Layered Style (cont’d)

 Advantages
– Increasing abstraction levels
– Evolvability
– Changes in a layer affect at most the

adjacent two layers
• Reuse

– Different implementations of layer are
allowed as long as interface is preserved

– Standardized layer interfaces for libraries
and frameworks

18

Layered Style (cont’d)

 Disadvantages
– Not universally applicable
– Performance

 Layers may have to be skipped
– Determining the correct abstraction level

Layered Systems/Virtual Machines

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

19

Layered LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Client-Server Style

 Components are clients and servers
 Servers do not know number or identities of

clients
 Clients know server’s identity
 Connectors are RPC-based network

interaction protocols

20

Client-Server LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Data-Flow Styles

Batch Sequential
– Separate programs are executed in order; data is

passed as an aggregate from one program to the
next.

– Connectors: “The human hand” carrying tapes
between the programs, a.k.a. “sneaker-net ”

– Data Elements: Explicit, aggregate elements
passed from one component to the next upon
completion of the producing program’s execution.

 Typical uses: Transaction processing in financial
systems. “The Granddaddy of Styles”

21

Batch-Sequential: A Financial
Application

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Batch-Sequential LL

Not a recipe for a successful lunar mission!
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

22

Pipe and Filter Style
 Components are filters

– Transform input data streams into output data streams
– Possibly incremental production of output

 Connectors are pipes
– Conduits for data streams

 Style invariants
– Filters are independent (no shared state)
– Filter has no knowledge of up- or down-stream filters

 Examples
– UNIX shell signal processing
– Distributed systems parallel programming

 Example: ls invoices | grep -e August | sort

Pipe and Filter (cont’d)

 Variations
– Pipelines — linear sequences of filters
– Bounded pipes — limited amount of data on a pipe
– Typed pipes — data strongly typed

 Advantages
– System behavior is a succession of component

behaviors
– Filter addition, replacement, and reuse

• Possible to hook any two filters together
– Certain analyses

• Throughput, latency, deadlock
– Concurrent execution

23

Pipe and Filter (cont’d)

 Disadvantages
– Batch organization of processing
– Interactive applications
– Lowest common denominator on data

transmission

Pipe and Filter LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

24

Blackboard Style

 Two kinds of components
– Central data structure — blackboard
– Components operating on the blackboard

 System control is entirely driven by the
blackboard state

 Examples
– Typically used for AI systems
– Integrated software environments (e.g.,

Interlisp)
– Compiler architecture

Blackboard LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

25

Rule-Based Style

Inference engine parses user input and
determines whether it is a fact/rule or a query.
If it is a fact/rule, it adds this entry to the
knowledge base. Otherwise, it queries the
knowledge base for applicable rules and
attempts to resolve the query.

Rule-Based Style (cont’d)

 Components: User interface, inference engine,
knowledge base

 Connectors: Components are tightly interconnected,
with direct procedure calls and/or shared memory.

 Data Elements: Facts and queries
 Behavior of the application can be very easily

modified through addition or deletion of rules from the
knowledge base.

 Caution: When a large number of rules are involved
understanding the interactions between multiple rules
affected by the same facts can become very difficult.

26

Rule Based LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Interpreter Style

 Interpreter parses and executes input commands,
updating the state maintained by the interpreter

 Components: Command interpreter,
program/interpreter state, user interface.

 Connectors: Typically very closely bound with direct
procedure calls and shared state.

 Highly dynamic behavior possible, where the set of
commands is dynamically modified. System
architecture may remain constant while new
capabilities are created based upon existing
primitives.

 Superb for end-user programmability; supports
dynamically changing set of capabilities

 Lisp and Scheme

27

Interpreter LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Mobile-Code Style

 Summary: a data element (some representation of a
program) is dynamically transformed into a data
processing component.

 Components: “Execution dock”, which handles
receipt of code and state; code compiler/interpreter

 Connectors: Network protocols and elements for
packaging code and data for transmission.

 Data Elements: Representations of code as data;
program state; data

 Variants: Code-on-demand, remote evaluation, and
mobile agent.

28

Mobile Code LL

Scripting languages (i.e. JavaScript,
VBScript), ActiveX control,
embedded Word/Excel macros.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Implicit Invocation Style

 Event announcement instead of method invocation
– “Listeners” register interest in and associate

methods with events
– System invokes all registered methods implicitly

 Component interfaces are methods and events
 Two types of connectors

– Invocation is either explicit or implicit in response
to events

 Style invariants
– “Announcers” are unaware of their events’ effects
– No assumption about processing in response to

events

29

Implicit Invocation (cont’d)

 Advantages
– Component reuse
– System evolution

• Both at system construction-time & run-time
 Disadvantages

– Counter-intuitive system structure
– Components relinquish computation control to the

system
– No knowledge of what components will respond to

event
– No knowledge of order of responses

Publish-Subscribe

Subscribers register/deregister to receive
specific messages or specific content.
Publishers broadcast messages to
subscribers either synchronously or
asynchronously.

30

Publish-Subscribe (cont’d)

 Components: Publishers, subscribers, proxies for
managing distribution

 Connectors: Typically a network protocol is required.
Content-based subscription requires sophisticated
connectors.

 Data Elements: Subscriptions, notifications,
published information

 Topology: Subscribers connect to publishers either
directly or may receive notifications via a network
protocol from intermediaries

 Qualities yielded Highly efficient one-way
dissemination of information with very low-coupling of
components

Pub-Sub LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

31

Event-Based Style
 Independent components asynchronously emit and receive

events communicated over event buses
 Components: Independent, concurrent event generators and/or

consumers
 Connectors: Event buses (at least one)
 Data Elements: Events – data sent as a first-class entity over

the event bus
 Topology: Components communicate with the event buses, not

directly to each other.
 Variants: Component communication with the event bus may

either be push or pull based.
 Highly scalable, easy to evolve, effective for highly distributed

applications.

Event-based LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

32

Peer-to-Peer Style
 State and behavior are distributed among

peers which can act as either clients or
servers.

 Peers: independent components, having
their own state and control thread.

 Connectors: Network protocols, often
custom.

 Data Elements: Network messages

Peer-to-Peer Style (cont’d)
 Topology: Network (may have redundant

connections between peers); can vary
arbitrarily and dynamically

 Supports decentralized computing with
flow of control and resources distributed
among peers. Highly robust in the face of
failure of any given node. Scalable in
terms of access to resources and
computing power. But caution on the
protocol!

33

Peer-to-Peer LL

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

