|CS 52: Introduction to Software
Engineering

Fall Quarter 2004
Professor Richard N. Taylor
Lecture Notes
Week 3: Architectures

http://www.ics.uci.edu/~taylor/ICS_52_FQO04/syllabus.html

Copyright 2004, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

—

1CS

b

University of California, Irvine

"Magician Coder" View of Development

Requirements

N

(Here a Miracle happens)

®y¢

Code

University of California, Irvine

A Professional View

Requirements

N\

ICS 52 Life Cycle

Requirements
phase

Implementation

phase
TeéUng
phase

University of California, Irvine

ICS 52 Software Life Cycle

¢ Requirements specification
— Interview customer (TA)
— Focus on “what”, not “how”

& Architectural and module design

— Based on design recovery
— Focus on system structure and interfaces

¢ [mplementation

— Based on the existing code base
— Focus on good implementation techniques

¢ Testing

— Focus on fault scenarios and discovery

University of California, Irvine

Bridges...

aritornia, Irvine

Architecture of Buildings

¢ Types (Domains): office building, shepherd's shelter, detached home,
apartment building, aircraft hanger

— -specific software architectures
+ Styles: colonial, Victorian, Greek revival, Mediterranean, Bauhaus
— Software system
+ Building codes: electrical, structural, ...
— on how the building can be legally built
+ Blueprints and drawings
— Formal specification of supporting details

University of California, Irvine

Architectural Design

Elements
— Floors
— Walls
— Rooms

— Office building
— Villa
— Aircraft hanger

Styles
— Colonial
— Victorian
— Southwestern
Rules and regulations
— Electrical
— Structural

Elements
— Components
— Interfaces
— Connections

— Office automation
— Game
— Space shuttle control

— Pipe and filter

— Layered

— Implicit invocation
Rules and regulations

— Use of interfaces

— Methods of change

University of California, Irvine

Design

+ Architectural (software system) design

— High-level partitioning of a software system into separate modules
(components)

— Focus on the interactions among parts (connections)

— Focus on structural properties (architecture)
» “How does it all fit together?”

¢ Module design
— Detailed design of a component
— Focus on the internals of a component

— Focus on computational properties
» “How does it work?”

University of California, Irvine

Comparison to Programming (of Modules)

Architecture Modules
* interactions parts - Implementations of parts
- structural properties - computational properties
- system-level performance - algorithmic performance

» outside module boundary * inside module boundary

University of California, Irvine

Software Architecture Topics

¢ Essential elements

¢ Repertoire of architectural styles
+Choosing and/or modifying a style
+Designing within a style

o Architecture in support of application families

University of California, Irvine

Software Architecture: Essentials

+ Components
— What are the elements?

— What aspects of the requirements do they correspond to? Where did
they come from?

— Examples: filters, databases, objects, ADTs
¢ Connections

— How do components communicate?

— Examples: procedure calls, messages, pipes, event broadcast
¢ Topology

— How are the components and connections organized topologically?
& Constraints (including constraints on change)

University of California, Irvine

We Can Do Anything...

Provided Interface

Provided Interface Tinvy Component
Big Component Required Interface

Required Interface

Provided Interface

Required Interface

Provided Interface Provided Interface

Provided Interface Required Interface

Some Component

Required Interface

Required Interface

Provided Interface

Required Interface

Provided Interface

One Component Provided Interface
Required Interface Yet Component

Required Interface

...But Style Has Proven to Help

+ Architectural styles restrict the way in which components can be connected
— Prescribe patterns of interaction

— Promote fundamental principles
» Rigor, separation of concerns, anticipation of change, generality, incrementality
» Low coupling
» High cohesion

+ Architectural styles are based on success stories
— For many years most compilers were built as “pipe-and-filter”
— Almost all network protocols are built as “layers”
— Many business systems are built as “three-tier” systems

University of California, Irvine

Common Simple Architectural Idioms

& Data flow systems
- (1)
- (2)

¢ (3) Data and/or service-centric systems: the style
— The (pre-1994) WWW

_ Database servers Note: not all of these

o (4) systems are of equal value,
— Main program and subroutines; current use, or
¢ (5) Data abstraction/O0 systems intellectual depth
+ (6)
* (7) systems
+ (8)
+ (9) Implicit invocation)
¢ (10) architectures

Many of the following slides are from David Garlan, Mary Shaw, and Jose Galmes: Experience with

a Course on Architectures for Software Systems, Part II: Educational Materials
University of California, Irvine

Style 1: Batch Sequential

Data transformation

—/ \\

—> —> —> —>
tape Validate tape Sort tape Update tape Report report
g
\ // tape

Data Flow

University of California, Irvine

Batch Sequential

¢ Components
— components are independent programs
— each component runs to completion before next step starts
+ Connections
— Data transmitted as a whole between components
& Topology
— Connectors define data flow graph
+ Typical application: classical data processing

University of California, Irvine

Style 2: Pipe and filter

Computation Filter

—/ \\

Is

grep - exp

sort

\ //

Data Flow
as ASCII Stream

lpr

University of California, Irvine

Pipe and filter

¢ Components

— Like batch sequential, but components (filters) incrementally transform
some amount of the data at their inputs to data at outputs

— Little local context used in processing input stream
— No state preserved between instantiations

+ Connections
— Pipes move data from a filter output to a filter input
— Data is a stream of ASCII characters

& Topology
— Connectors define data flow graph

& Pipes and filters run (non-deterministically) until no more computation
possible

& Typical applications: many Unix applications

University of California, Irvine

Style 3: Client-Server

Provided Interface Provided Interface Provided Interface
Client Client Client

Required Interface Required Interface Required Interface

Provided Interface

Server

Required Interface

Connections are remote procedure calls or remote method invocations

University of California, Irvine

Client-Server Systems

¢ Components

— 2 distinguished kinds
» Clients: towards the user; little persistent state; active (request services)

» Servers: “in the back office”; maintains persistent state and offers services;
passive

+ Connectors

— Remote procedure calls or network protocols
& Topology

— Clients surround the server

University of California, Irvine

Example: The pre-1994 WWW Architecture

o Browsers are clients
o \Web servers maintain state
¢ Connections by HTTP/1.0 protocol

University of California, Irvine

Example: Database Centered Systems

¢ Components
— Central data repository
— Schema (how the data is organized) designed for application

— Independent operators
» Operations on database implemented independently, one per transaction type
» interact with database by queries and updates

+ Connections
— Transaction stream drives operation
— Operations selected on basis of transaction type
— May be direct access to data; may be encapsulated

University of California, Irvine

Style 4: Hierarchy: Main Program and
Subroutines

Provided Interface

Main component

Required Interface

Provided Interface Provided Interface Provided Interface

Required Interface Required Interface Required Interface

Provided Interface Provided Interface Provided Interface Provided Interface Provided Interface

Required Interface Required Interface Required Interface Required Interface Required Interface

Connections are function or method calls

University of California, Irvine

Main Program and Subroutines

¢ Components
— Computational elements as provided by programming language
— Typically single thread
+ Connections
— Call/return as provided by programming language
— Shared memory
& Topology
— Hierarchical decomposition as provided by language
— Interaction topologies can vary arbitrarily

University of California, Irvine

Style 5: Data Abstraction/OO Systems

Data Abstraction or Object-Oriented -

Manager ADT\

0
o
A
op is an invocation

E‘qﬁwareﬂméim e ———
17

Proc call

obj is a manager

California, Irvine

Data Abstraction/O0O Systems

¢ Components
— Components maintain encapsulated state, with public interface
— Typically single threaded, though not logical

+ Connections
— Procedure calls ("method invocations") between components
— Various degrees of polymorphism and dynamic binding
— Shared memory a common assumption

& Topology

— Components may share data and interface functions through inheritance
hierarchies

— Interaction topologies can vary arbitrarily

University of California, Irvine

Style 6: Peer-to-Peer

Provided Interface

Required Interface

Provided Interface

Required Interface

Provided Interface

Required Interface

Connections are remote procedure calls or remote method invocations

University of California, Irvine

Peer-to-Peer Architectures

¢ Components

— Autonomous

— Act as both clients and servers
¢ Connectors

— Asynchronous and synchronous message passing ("remote procedure
calls")

— By protocols atop TCP/IP

— No shared memory (except as an optimization when the configuration
allows)

& Topology
— Interaction topologies can vary arbitrarily and dynamically

University of California, Irvine

Layered Systems, Take 2

Inter-level interfaces
usually procedure calls Useful Systems

Basic Utility

Core
Level

University of California, Irvine

Style 7: Layered Systems, Take 1

Provided Interface 20e2)ul palinbay

Required Interface 20BH2IU] papIAOId

Provided Interface 20eI2)ul palinbay

Required Interface 20BH2IU papIAOLd

Provided Interface 20eI2)ul palinbay

Required Interface 20BH2IU papIAOLd

Provided Interface 20eI2)ul palinbay

Required Interface 20BH2IUT papIAOLd

Connections are function or method calls + “somethin% in between”

niversity of California, Irvine

Style 7: Layered Systems, Take 1.1

Provided Interface

Required Interface

ovidg ' g A |

1LY L 7Aa

a\, ..ed Interface

Provided Interface

Required Interface

Provided Interface

Required Interface

Connections are function or method calls + “somethin% in between”

niversity of California, Irvine

Layered Systems

¢ Components

— Each layer provides a set of services
¢ Connections

— Typically procedure calls

— A layer typically hides the interfaces of all layers below, but others use
"translucent" layers

+ Topology
— Nested

+ Typical applications: support for portability, systems with many variations
("core features" v. extended capabilities)

University of California, Irvine

Style 8: Implicit Invocation (Event-based)

Provided Interface

Component

Provided Interface Provided Interface Provided Interface

Component

Component Component

Required Interface Required Interface

]]

Provided Interface

Required Interface Required Interface

Connector (bus

Required Interface

Connections are provided by connectors, with communication
via events on the software bus

University of California, Irvine

Event-based/Implicit Invocation

¢ Components
— Encapsulate computation
— Autonomous
+ Inter-component communication is via events (only)
+ Connectors
— Encapsulate communication
— Responsible for routing events to their destinations

— Asynchronous and synchronous message passing ("remote procedure
calls")

— No shared memory (except as an optimization when the configuration
allows)

& Topology
— Interaction topologies can vary dynamically
— Components to connectors to components
+ Typical applications: decentralized systems, dynamic systems

University of California, Irvine

Style 9: Interpreters

Program Being
Interpreted

State of Program
Being Interpreted

Program to be interpreted P
Data upon which P is to be executed

Simulated Interpretation
: «—>
D Engine

Output of P
Output of interpreter
(e.g. error messages)

Internal Interpreter
State (the interpreter’s
local variables)

University of California, Irvine

Interpreters

¢ Components
— Execution engine simulated in software (with its internal data)
— Program being interpreted
— State of program being interpreted
+ Connections
— program being interpreted determines sequence of actions by interpreter
— shared memory
& Topology

+ Typical applications: end-user customization; dynamically changing set of
capabilities (e.g. HotJava)

University of California, Irvine

Style 10: “Three Level Architectures”

& User interface
& Application Logic
¢ Database (server)

University of California, Irvine

Where do
Architectures and Components Come From?

+ Architectures: typically driven by kind of application
— Often possible to solve one problem many different ways
+ Components: many design strategies

— |CS 52 component strategy:
» Component design by information hiding
» Designing systems for ease of extension and contraction
» An OO design approach

— Rationale: design systems that have a long, useful lifetime

University of California, Irvine

Choosing the Right Style

& Ask questions on whether a certain style makes sense

— The Internet as a blackboard??
» Does that scale?

— Stock exchange as a layers??
» How to deal with the continuous change?

— Math as hierarchy??
» How to properly call different modules for different functions?
¢ Draw a picture of the major entities
+ Look for the natural paradigm
& Look for what “feels right”

University of California, Irvine

Call Center Customer Care System
Wersion &

Cloek

Hends task applets
Cn-line u-line down|to WEEFCs
a2l e Dratabase Database b Wﬂﬂ{ﬂﬂ‘.’.’f
Lothe r twpes of Type 1 Type & FPaliey Dratabase
dutubuses) T [|
]
e s
Off-line = Hetwark -
(T Let o live dutubases bnoms —_— o
databace A e Ehplore nas wohally instulled i
| legd |
HOEE database
Billing Eystem
HOEE interaction
* transantion HORE provisioning HOEE worfores
Billing wamager(s] {kay Mmanagemant
Al e —— C—T—
2 I

. Transaction Transaction Transaction
et aea Consisteney Ck. Consisteney Ck. Consisteneyw Ck.
Type 1 Type 1 Type 2

Eegional eache in here?

"Downstream S aTe
fystem Trans Server Customer Su.p_pl:-rt Customer Sup;pl:-rt ik
Lowal transaction Laeal transaction - e Lional transaction

* Hrate Hrate Hrate
| (allows handott)
911 #stem —
| |]

wWaz PC wWaz pC Waid PC “Cruick” T
TR Task Processor Task Processor Task Processor i "Hinsk" Thettsie
{More TR and GTII and GTII and GTTT

$homew connection o

Emphazes of this design: Refleriwe Arehitecture thiz From 2ok contecer
*Eonduie iy Iodel and Iamager

*Replication of services

sLocation of stake *

';‘ﬁn;ﬂﬂ“;_n Wn_ﬁ:“m‘.-" Dy rammtio wnd wroh echrl stek: 02

sDatabase Yaantria i e btpulimenns i Led wipa burek)
Hrstem Configurator thee -

Tzt Interface

Telephone
Huyskem ' Trevrice

E Tayhor, 1056

