
University of California, Irvine

ICS 52: Introduction to Software
Engineering

Fall Quarter 2004
Professor Richard N. Taylor

Lecture Notes
Week 3: Architectures

http://www.ics.uci.edu/~taylor/ICS_52_FQ04/syllabus.html
Copyright 2004, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

University of California, Irvine

"Magician Coder" View of Development

Requirements

(Here a Miracle happens)

Code

University of California, Irvine

A Professional View

Requirements

Code
Architecture

University of California, Irvine

ICS 52 Life Cycle
Requirements

phase
Verify

Architecture/Design
phase
Verify

Implementation
phase
Test

Testing
phase
Verify

University of California, Irvine

ICS 52 Software Life Cycle
 Requirements specification

– Interview customer (TA)
– Focus on “what”, not “how”

 Architectural and module design
– Based on provided “official” requirements specification
– Based on design recovery
– Focus on system structure and interfaces

 Implementation
– Based on provided “official” design
– Based on the existing code base
– Focus on good implementation techniques

 Testing
– Based on provided “official” implementation
– Focus on fault scenarios and discovery

University of California, Irvine

Bridges…

University of California, Irvine

Architecture of Buildings
 Types (Domains): office building, shepherd's shelter, detached home,

apartment building, aircraft hanger
– Domain-specific software architectures

 Styles: colonial, Victorian, Greek revival, Mediterranean, Bauhaus
– Software system organization paradigms

 Building codes: electrical, structural, ...
– Constraints on how the building can be legally built

 Blueprints and drawings
– Formal specification of supporting details

University of California, Irvine

Architectural Design

Elements
– Floors
– Walls
– Rooms

Types
– Office building
– Villa
– Aircraft hanger

Styles
– Colonial
– Victorian
– Southwestern

Rules and regulations
– Electrical
– Structural

Elements
– Components
– Interfaces
– Connections

Types
– Office automation
– Game
– Space shuttle control

Styles
– Pipe and filter
– Layered
– Implicit invocation

Rules and regulations
– Use of interfaces
– Methods of change

Buildings Software

University of California, Irvine

Design
 Architectural (software system) design

– High-level partitioning of a software system into separate modules
(components)

– Focus on the interactions among parts (connections)
– Focus on structural properties (architecture)

» “How does it all fit together?”
 Module design

– Detailed design of a component
– Focus on the internals of a component
– Focus on computational properties

» “How does it work?”

University of California, Irvine

Comparison to Programming (of Modules)

Architecture Modules
• interactions among parts • implementations of parts
• structural properties • computational properties
• system-level performance • algorithmic performance
• outside module boundary • inside module boundary

University of California, Irvine

Software Architecture Topics

Essential elements
Repertoire of architectural styles
Choosing and/or modifying a style
Designing within a style
Architecture in support of application families

University of California, Irvine

Software Architecture: Essentials
 Components

– What are the elements?
– What aspects of the requirements do they correspond to? Where did

they come from?
– Examples: filters, databases, objects, ADTs

 Connections
– How do components communicate?
– Examples: procedure calls, messages, pipes, event broadcast

 Topology
– How are the components and connections organized topologically?

 Constraints (including constraints on change)

University of California, Irvine

We Can Do Anything…

Provided Interface

Big Component
Required Interface

Provided Interface

Tiny Component
Required Interface

Provided Interface

B Component
Required Interface

Provided Interface

Mr. Component
Required Interface

Provided Interface

A Component
Required Interface

Provided Interface

Yet Component
Required Interface

Provided Interface

Some Component
Required Interface

Provided Interface

One Component
Required Interface

Provided Interface

Mrs. Component
Required Interface

University of California, Irvine

…But Style Has Proven to Help
 Architectural styles restrict the way in which components can be connected

– Prescribe patterns of interaction
– Promote fundamental principles

» Rigor, separation of concerns, anticipation of change, generality, incrementality
» Low coupling
» High cohesion

 Architectural styles are based on success stories
– For many years most compilers were built as “pipe-and-filter”
– Almost all network protocols are built as “layers”
– Many business systems are built as “three-tier” systems

University of California, Irvine

 Data flow systems
– (1) Batch sequential
– (2) pipe-and-filter

 (3) Data and/or service-centric systems: the Client-Server style
– The (pre-1994) WWW
– Database servers

 (4) Hierarchical systems
– Main program and subroutines;

 (5) Data abstraction/OO systems
 (6) Peer-to-Peer
 (7) Layered systems
 (8) Interpreters
 (9) Implicit invocation (event-based)
 (10) Three-level architectures

Common Simple Architectural Idioms

Many of the following slides are from David Garlan, Mary Shaw, and Jose Galmes: Experience with
a Course on Architectures for Software Systems, Part II: Educational Materials

Note: not all of these
are of equal value,
current use, or
intellectual depth

University of California, Irvine

Style 1: Batch Sequential

Validate Sort Update Reporttape tape tape tape report

tape

Data Flow

Data transformation

University of California, Irvine

Batch Sequential
 Components

– components are independent programs
– each component runs to completion before next step starts

 Connections
– Data transmitted as a whole between components

 Topology
– Connectors define data flow graph

 Typical application: classical data processing

University of California, Irvine

Style 2: Pipe and filter

ls grep -e exp sort lpr

Data Flow
as ASCII Stream

Computation Filter

University of California, Irvine

Pipe and filter
 Components

– Like batch sequential, but components (filters) incrementally transform
some amount of the data at their inputs to data at outputs

– Little local context used in processing input stream
– No state preserved between instantiations

 Connections
– Pipes move data from a filter output to a filter input
– Data is a stream of ASCII characters

 Topology
– Connectors define data flow graph

 Pipes and filters run (non-deterministically) until no more computation
possible

 Typical applications: many Unix applications

University of California, Irvine

Style 3: Client-Server

Connections are remote procedure calls or remote method invocations

Provided Interface

Client
Required Interface

Provided Interface

Client
Required Interface

Provided Interface

Client
Required Interface

Provided Interface

Server
Required Interface

University of California, Irvine

Client-Server Systems
 Components

– 2 distinguished kinds
» Clients: towards the user; little persistent state; active (request services)
» Servers: “in the back office”; maintains persistent state and offers services;

passive
 Connectors

– Remote procedure calls or network protocols
 Topology

– Clients surround the server

University of California, Irvine

Example: The pre-1994 WWW Architecture

Browsers are clients
Web servers maintain state
Connections by HTTP/1.0 protocol

University of California, Irvine

Example: Database Centered Systems
 Components

– Central data repository
– Schema (how the data is organized) designed for application
– Independent operators

» Operations on database implemented independently, one per transaction type
» interact with database by queries and updates

 Connections
– Transaction stream drives operation
– Operations selected on basis of transaction type
– May be direct access to data; may be encapsulated

University of California, Irvine

Style 4: Hierarchy: Main Program and
Subroutines

Connections are function or method calls

Provided Interface

Main component
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

Provided Interface

Subcomponent
Required Interface

University of California, Irvine

Main Program and Subroutines
 Components

– Computational elements as provided by programming language
– Typically single thread

 Connections
– Call/return as provided by programming language
– Shared memory

 Topology
– Hierarchical decomposition as provided by language
– Interaction topologies can vary arbitrarily

University of California, Irvine

Style 5: Data Abstraction/OO Systems

University of California, Irvine

Data Abstraction/OO Systems
 Components

– Components maintain encapsulated state, with public interface
– Typically single threaded, though not logical

 Connections
– Procedure calls ("method invocations") between components
– Various degrees of polymorphism and dynamic binding
– Shared memory a common assumption

 Topology
– Components may share data and interface functions through inheritance

hierarchies
– Interaction topologies can vary arbitrarily

University of California, Irvine

Style 6: Peer-to-Peer

Connections are remote procedure calls or remote method invocations

Provided Interface

Peer
Required Interface

Provided Interface

Peer
Required Interface

Provided Interface

Peer
Required Interface

University of California, Irvine

Peer-to-Peer Architectures
 Components

– Autonomous
– Act as both clients and servers

 Connectors
– Asynchronous and synchronous message passing ("remote procedure

calls")
– By protocols atop TCP/IP
– No shared memory (except as an optimization when the configuration

allows)
 Topology

– Interaction topologies can vary arbitrarily and dynamically

University of California, Irvine

Layered Systems, Take 2

Core
Level

Basic Utility

Useful Systems

Users

Inter-level interfaces
usually procedure calls

University of California, Irvine

Style 7: Layered Systems, Take 1

Connections are function or method calls + “something in between”

Provided Interface

Layer 4
Required Interface

Provided Interface

Layer 3
Required Interface

Provided Interface

Layer 2
Required Interface

Provided Interface

Layer 1
Required Interface

Provided Interface

Layer 4
Required Interface

Provided Interface

Layer 3
Required Interface

Provided Interface

Layer 2
Required Interface

Provided Interface

Layer 1
Required Interface

University of California, Irvine

Style 7: Layered Systems, Take 1.1

Provided Interface

Layer 4
Required Interface

Provided Interface

Layer 3
Required Interface

Provided Interface

Layer 2
Required Interface

Provided Interface

Layer 1
Required Interface

Connections are function or method calls + “something in between”

University of California, Irvine

Layered Systems
 Components

– Each layer provides a set of services
 Connections

– Typically procedure calls
– A layer typically hides the interfaces of all layers below, but others use

"translucent" layers
 Topology

– Nested
 Typical applications: support for portability, systems with many variations

("core features" v. extended capabilities)

University of California, Irvine

Style 8: Implicit Invocation (Event-based)

Connections are provided by connectors, with communication
via events on the software bus

Provided Interface

Component
Required Interface

Provided Interface

Component
Required Interface

Provided Interface

Component
Required Interface

Provided Interface

Component
Required Interface

Provided Interface

Connector (bus)
Required Interface

University of California, Irvine

Event-based/Implicit Invocation
 Components

– Encapsulate computation
– Autonomous

 Inter-component communication is via events (only)
 Connectors

– Encapsulate communication
– Responsible for routing events to their destinations
– Asynchronous and synchronous message passing ("remote procedure

calls")
– No shared memory (except as an optimization when the configuration

allows)
 Topology

– Interaction topologies can vary dynamically
– Components to connectors to components

 Typical applications: decentralized systems, dynamic systems

University of California, Irvine

Style 9: Interpreters

Simulated Interpretation
Engine

Internal Interpreter
State (the interpreter’s

local variables)

Program Being
Interpreted

State of Program
Being Interpreted

Program to be interpreted P
Data upon which P is to be executed

Output of P
Output of interpreter
(e.g. error messages)

University of California, Irvine

Interpreters
 Components

– Execution engine simulated in software (with its internal data)
– Program being interpreted
– State of program being interpreted

 Connections
– program being interpreted determines sequence of actions by interpreter
– shared memory

 Topology
 Typical applications: end-user customization; dynamically changing set of

capabilities (e.g. HotJava)

University of California, Irvine

Style 10: “Three Level Architectures”
 User interface
 Application Logic
 Database (server)

University of California, Irvine

Where do
Architectures and Components Come From?

 Architectures: typically driven by kind of application
– Often possible to solve one problem many different ways

 Components: many design strategies
– ICS 52 component strategy:

» Component design by information hiding
» Designing systems for ease of extension and contraction
» An OO design approach

– Rationale: design systems that have a long, useful lifetime

University of California, Irvine

Choosing the Right Style
 Ask questions on whether a certain style makes sense

– The Internet as a blackboard??
» Does that scale?

– Stock exchange as a layers??
» How to deal with the continuous change?

– Math as hierarchy??
» How to properly call different modules for different functions?

 Draw a picture of the major entities
 Look for the natural paradigm
 Look for what “feels right”

