
ICS 221 Winter 2001 Formal Specification Methods

© 2001 David S. Rosenblum 1

Formal Specification Methods

David S. Rosenblum
ICS 221

Winter 2001

What Are Formal Methods?
! Use of formal notations …

! first-order logic, state machines, etc.
! … in software system descriptions …

! system models, constraints, specifications,
designs, etc.

! … for a broad range of effects …
! correctness, reliability, safety, security, etc.

! … and varying levels of use
! guidance, documentation, rigor, mechanisms

Formal method = specification language + formal reasoning

Objectives of Formal Methods
! Verification

! “Are we building the system right?”
! Formal consistency between specificand (the thing

being specified) and specification

! Validation
! “Are we building the right system?”
! Testing for satisfaction of ultimate customer intent

! Documentation
! Communication among stakeholders

Why Use Formal Methods?
! Formal methods have the potential to

improve both software quality and
development productivity
! Circumvent problems in traditional practices
! Promote insight and understanding
! Enhance early error detection
! Develop safe, reliable, secure software-intensive

systems
! Facilitate verifiability of implementation
! Enable powerful analyses

! simulation, animation, proof, execution, transformation
! Gain competitive advantage

Why Choose Not to Use
Formal Methods?
! Emerging technology with unclear payoff
! Lack of experience and evidence of success
! Lack of automated support
! Lack of user friendly tools
! Ignorance of advances
! High learning curve
! Requires perfection and mathematical sophistication
! Techniques not widely applicable
! Techniques not scalable
! Too many in-place tools and techniques

Desirable Properties of Formal
Specifications
! Unambiguous

! Exactly one specificand (set) satisfies it
! Consistency

! A specificand exists that satisfies it
! Completeness

! All aspects of specificands are specified
! Inference

! Consequences of the specification and properties
of its satisfying specificands are discovered

ICS 221 Winter 2001 Formal Specification Methods

© 2001 David S. Rosenblum 2

Different Kinds of Formal
Specification Languages
! Axiomatic specifications

! Defines system in terms of logical assertions

! State transition specifications
! Defines system in terms of states & transitions

! Abstract model specifications
! Defines system in terms of mathematical model

! Algebraic specifications
! Defines system in terms of equivalence relations

! Temporal logic specifications
! Defines operations in terms of time-ordered assertions

! Concurrency specifications
! Defines operations in terms of concurrent event occurrences

Tool Support for
Specification Languages
! Modeling

! Editors and word processors
! Analysis

! Syntax checking
! Model checking
! Proving and proof checking
! Property checking

! deadlock, reachability, data flow, liveness, safety, …
! Runtime checking

! Synthesis
! Refinement
! Code generation
! Test case and test oracle generation

A Closer Look:
Axiomatic Specification
! Formal specification in which statements in

first-order predicate logic are used to define
the semantics of a system and its constituent
elements (statements, functions, modules)

! Usually taken to mean specification with
! Pre-conditions
! Post-conditions
! Invariants
! Point Assertions

History of Axiomatic
Specification
! Attempts to put program development on a

formal basis date at least to John McCarthy’s
1962 paper (w.r.t recursive functions)

! Floyd’s 1967 paper presented the first
worked-out approach (in terms of flowcharts)

! Hoare’s 1969 paper formed the basis for
much of the later work in formalized
development
! Formal specification languages
! Formal verification
! Axiomatic semantics of programming languages

Hoare’s Basic Approach

! If environment of S makes assertion P true
! And if S terminates
! Then assertion Q must be true
! But

! If the environment doesn’t establish P, Q need not be true
! If S doesn’t terminate, Q need not be true
! Proving {P} S {Q} establishes partial correctness

! To establish total correctness, one must also prove that S
terminates, which in general is undecidable

P {S} Q (nowadays written {P} S {Q})

Axiomatic Specification of
Programs

! One typically specifies (components of) whole
programs
! S is a program, module, method, etc.
! P is the desired pre-condition of S
! Q is the desired post-condition of S

! The axiomatic semantics of the language of S
comprises Hoare-style axiom schemas for the
constituent statements of S
! assignments, conditionals, loops, etc.
! Used for verifying S with respect to P and Q

{P} S {Q}

ICS 221 Winter 2001 Formal Specification Methods

© 2001 David S. Rosenblum 3

A Simple Example of an
Axiomatic Specification

! Can embellish with open/close, interest,
credit limit, ID/PIN, etc.

class BankAccount is {
public Amount Balance() { … }

public void Deposit(Amount a)
// PRE: a > 0;
// POST: Balance() = (in Balance()) + a;
{ … }

public void Withdraw(Amount a)
// PRE: a > 0 and Balance() >= a;
// POST: Balance() = (in Balance()) – a;
{ … }

};

Hoare’s Axiom Schemas (I)
! Axiom of Assignment

! Rules of Consequence

! Rule of Composition

{P}S{Q} and Q ⇒ Q’
{P}S{Q’}

{P}S{Q} and P’ ⇒ P
{P’}S{Q}

{P[f/x]} x := f {P}

{P}S1{Q} and {Q}S2{R}
{P}S1;S2{R}

Hoare’s Axiom Schemas (II)
! Rule of Iteration

! P is the loop invariant, which typically must
be supplied by the specifier

! Rules have been defined for other
common language features
! arrays, do-until, if-then, if-then-else,

subprogram calls, …

P and {C}S{P}
{P}while C do S{not C and P}

An Example Verification:
Integer Square Root

procedure sqrt(N : Integer; R : out Integer);
S, T : Integer;

begin
R := 0;
S := 1;
T := 1;
while S <= N loop

R := R + 1;
T := T + 2;
S := S + T;

end loop;
end sqrt;

Specifying the
Pre- and Post-Conditions

{ pre: N >= 0 }
begin

R := 0;
S := 1;
T := 1;
while S <= N loop

R := R + 1;
T := T + 2;
S := S + T;

end loop;
end;
{ post: (R2 <= N < (R+1)2) and (R >= 0) }

Specifying the
Loop Invariant

{ pre: N >= 0 }
begin

R := 0;
S := 1;
T := 1;
while S <= N loop

{ I: (T = 2*R + 1) and (S = (R+1)2) and (R2 <= N)
and (R >= 0) }

R := R + 1;
T := T + 2;
S := S + T;

end loop;
end;
{ post: (R2 <= N < (R+1)2) and (R >= 0) }

ICS 221 Winter 2001 Formal Specification Methods

© 2001 David S. Rosenblum 4

Verification Via Backward
Substitution (I)

begin
R := 0;
S := 1;
T := 1;
while S <= N loop

{ I: (T = 2*R + 1) and (S = (R+1)2) and (R2 <= N)
and (R >= 0) }

R := R + 1;
T := T + 2;
S := S + T;

end loop;

{ (T = 2*R + 1) and (S = (R+1)2) and (R2 <= N)
and (R>=0) and (S > N) } implies post?

end;
{ post: (R2 <= N < (R+1)2) and (R >= 0) }

Apply Rule of Iteration and Rule of Consequence:

Verification Via Backward
Substitution (II)

begin
R := 0;
S := 1;
T := 1;
while S <= N loop

{ I: (T = 2*R + 1) and (S = (R+1)2) and (R2 <= N)
and (R >= 0) }

I implies { ((T+2) = 2*(R+1) + 1)
and ((S+(T+2)) = ((R+1)+1)2)
and ((R+1)2 <= N) and ((R+1)>=0)
and ((S+(T+2)) > N) } ?

R := R + 1;
T := T + 2;
S := S + T;

end loop;
end;

Apply Axiom of Assignment and Rule of Consequence:

Verification Via Backward
Substitution (III)

{ pre: N >= 0 }
begin

pre implies { (1 = 2*0 + 1) and (1 = (0+1)2)
and (02 <= N) and (0>=0) } ?

R := 0;
S := 1;
T := 1;
while S <= N loop

{ I: (T = 2*R + 1) and (S = (R+1)2) and (R2 <= N)
and (R >= 0) }

R := R + 1;
T := T + 2;
S := S + T;

end loop;
end;

Apply Axiom of Assignment and Rule of Consequence:

Anthony Hall’s Seven Myths of
Formal Methods (I)
1) Formal methods can guarantee that

software is perfect
! How do you ensure the initial spec is perfect?

2) Formal methods are all about program
proving
! They’re also about modeling, communication,

analyzing, demonstrating
3) Formal methods are only useful for safety-

critical systems
! Can be useful in any system

Anthony Hall’s Seven Myths of
Formal Methods (II)
4) Formal methods require highly trained

mathematicians
! Many methods involve nothing more than set

theory and logic
5) Formal methods increase the cost of

development
! There is evidence that the opposite is true

6) Formal methods are unacceptable to users
! When properly presented, users find them

helpful

Anthony Hall’s Seven Myths of
Formal Methods (III)
7) Formal methods are not used on real,

large-scale software
! They’re used daily in many branches of

industry

ICS 221 Winter 2001 Formal Specification Methods

© 2001 David S. Rosenblum 5

Bertrand Meyer’s Seven Sins
of the Specifier (I)
1) Noise

! the presence in the specification text of an
element that does not carry information relevant
to any feature of the problem

! Includes redundancy and remorse
2) Silence

! the existence of a feature of the problem that is
not covered by any element of the text

3) Overspecification
! the presence in the text of an element that

corresponds not to a feature of the problem but
to features of a possible solution

Bertrand Meyer’s Seven Sins
of the Specifier (II)
4) Contradiction

! the presence in the text of two or more elements
that define a feature of the system in an
incompatible way

5) Ambiguity
! the presence in the text of an element that

makes it possible to interpret a feature of the
problem in at least two different ways

6) Forward reference
! the presence in the text of an element that uses

features of the problem not defined until later in
the text

Bertrand Meyer’s Seven Sins
of the Specifier (III)
7) Wishful thinking

! the presence in the text of an element
that defines a feature of the problem in
such a way that a candidate solution
cannot reasonably be validated

Limits to the Notion of
“Correctness”
! Correctness of a program is always relative

! It’s relative to assumption that compiler is correct,
which is relative to

! Assumption that hardware architecture is correct,
which is relative to

! Assumption that digital approximations of
continuous electromagnetic phenomena are
correct, which is relative to

! Assumption that the laws of physics are correct
! In other words, correctness is always a

matter of demonstrating consistency of one
spec with another, where the latter is
assumed to be correct

