
ICS 221, Winter 2001 Software Architecture

© 2001 David S. Rosenblum 1

Software Architecture

David S. Rosenblum
ICS 221

Winter 2001

Software Architecture
(Perry & Wolf 92)
“Architecture is concerned with the selection of

architectural elements, their interactions, and the
constraints on those elements and their interactions
necessary to provide a framework in which to satisfy
the requirements and serve as a basis for the
design.”

“Design is concerned with the modularization and
detailed interfaces of the design elements, their
algorithms and procedures, and the data types
needed to support the architecture and to satisfy the
requirements.”

Software Architecture
(Garlan & Shaw 93)
“Software architecture is a level of design that goes

beyond the algorithms and data structures of the
computation; designing and specifying the overall
system structure emerges as a new kind of problem.
Structural issues include gross organization and
global control structure; protocols for communication,
synchronization, and data access; assignment of
functionality to design elements; physical
distribution; composition of design elements; scaling
and performance; and selection among design
alternatives.”

Software Architecture
(Shaw & Garlan 96)
“The architecture of a software system defines

that system in terms of computational
components and interactions among those
components. … In addition to specifying the
structure and topology of the system, the
architecture shows the correspondence
between the requirements and elements of
the constructed system, thereby providing
some rationale for the design decisions.”

Analogies with
Civil Architecture

! Multiple views
! Civil: Artist renderings, elevations, floor plans, blueprints
! Software: Code, object design, boxes-and-arrows, GUI

! Architectural styles
! Civil: Classical, Romanesque, Gothic, Renaissance, Baroque,

Art Deco
! Software: Pipe-and-filter, client/server, layered system

! Influence of style on engineering principle
! Influence of style on choice of materials

Civil Engineering and Civil Architecture
are concerned with the engineering and design of

civic structures (roads, buildings, bridges, etc.)

Differences Between Civil and
Software Architecture

! Physical vs. conceptual
! Static vs. dynamic
! Little evolution vs. frequent evolution
! Different mathematical and scientific bases

“Software systems are like cathedrals—first we
build them and then we pray.”

— Sam Redwine

ICS 221, Winter 2001 Software Architecture

© 2001 David S. Rosenblum 2

Elements of
Software Architecture

! Medvidovic & Taylor
! Architectural Elements: Components, Connectors,

Configurations
! Tool Support

" Perry & Wolf
" Structural Elements

" Processing
" Data
" Connecting (“glue”)

" Form: Weighted Properties and
Relationships

" Rationale

" Shaw & Garlan:
" Components
" Interconnections
" Rules of Composition
" Rules of Behavior

Components
! A component is a building block that is

…
! A unit of computation or a data store, with

an interface specifying the services it
provides

! A unit of deployment
! A unit of reuse

The Difference Between
Components and Objects
! Objects have a unique identity

! Objects have a persistent state

! Objects are instances of a class, with classes
arranged in hierarchies according to
inheritance relationships (object-oriented
design and programming)

! Components vary more dramatically in size

Connectors
! A connector is a building block that enables

interaction among components
! Shared variables
! Procedure calls (local or remote)
! Messages and message buses
! Events
! Pipes
! Client/server middleware

! Connectors may be implicit or explicit

The Difference Between
Components and Connectors
! A component is (or should) independent

of the context in which it is used to
provide functionality

! A connector is (or should be)
completely dependent on the context in
which it is used to connect components

Configurations
! A configuration is …

! The overall structure of a software architecture
! The topological arrangement of components and

connectors
! A framework for checking for compatibility

between interfaces, communication protocols,
semantics, …

! Usually constructed according to an
architectural style

ICS 221, Winter 2001 Software Architecture

© 2001 David S. Rosenblum 3

Example:
Architectures for a Compiler

Scanner Parser Semantic
Analyzer

Code
Generator

File File File

Parse Tree

Scanner1 Parser Semantic
Analyzer

Code
Generator

Component ConnectorLegend:

Architecture Description
Languages
! An architecture description language (or architecture

definition language, or ADL) is a formal notation for
describing the structure and behavior of a software
architecture

! ADLs provide
! a concrete syntax
! a formal semantics
! a conceptual framework
! for explicitly modeling the conceptual architecture of a

system
! A programming language is used to define the

implementation architecture of a system

Why ADLs?
! The problem of software architectural

design can be viewed as a language
problem

! Informal notations (boxes and arrows)
are ambiguous, imprecise,
unanalyzable, …

Putting ADLs to Use
Representation

Traceability

Design Process
Support

E
v
o
l
u
t
i
o
n

Analysis

Simulation and
Execution

Refinement

Architectural Styles
! An architectural style is …

! A set of rules for arranging the
components and connectors of a system

! A family of architectures sharing a common
pattern of structural organization

The Classical Style
of Civil Architecture

The Pantheon
Rome, Italy

ICS 221, Winter 2001 Software Architecture

© 2001 David S. Rosenblum 4

The Gothic Style

Nôtre-Dame Cathedral
Paris, France

The Mediterranean Style

Irvine, California

Common Software
Architectural Styles
! Dataflow Systems

! Batch sequential
! Pipes and filters

! Call-and-Return Systems
! Main program and subroutines
! Object-oriented systems
! Hierarchical layers (onion layers)

! Independent Components
! Communicating processes (client/server and peer-

to-peer)
! Event systems
! Implicit invocation

Common Software
Architectural Styles (Cont.)
! Virtual Machines

! Interpreters
! Rule-based systems

! Data-Centered Systems (Repositories)
! Databases
! Hypertext systems
! Blackboards

The Vision: Architecture-
Based Composition & Reuse
! A framework for design and implementation

of large-scale software systems
! A basis for early analysis of software system

properties
! A framework for selection and composition of

reusable off-the-shelf components
! A basis for controlled evolution of software
! A basis for runtime evolution of software

The Reality:
Architectural Mismatch
! Architectural mismatch refers to a

mismatch between assumptions made
by different components about the
structure of the system and the nature
of the environment in which they
operate

ICS 221, Winter 2001 Software Architecture

© 2001 David S. Rosenblum 5

Assumptions Leading to
Architectural Mismatch (I)
! Assumptions about the nature of the

components
! substrate on which component is built
! control model
! data model

! Assumptions about the nature of the
connectors
! protocols
! data model

Assumptions Leading to
Architectural Mismatch (II)
! Assumptions about the global configuration

! topology
! presence of certain components or connectors
! absence of certain components or connectors

! Assumptions about the system construction
process
! order in which elements are instantiated
! order in which elements are combined

Standards: The Solution?
! Standards define a set of “assumptions” that

all components must adhere to
! Component interface standards (e.g., JavaBeans,

ActiveX, Netscape Plug-in API)
! Component interoperability standards (e.g.,

CORBA, DCOM, Java RMI)
! Standard component frameworks (e.g., Microsoft

Foundation Classes)
! Domain-Specific Software Architectures (DSSAs)

! But standards also reduce design flexibility

