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Abstract

Supervisory signals can help topic models dis-
cover low-dimensional data representations
which are useful for a specific prediction task.
We propose a framework for training super-
vised latent Dirichlet allocation that balances
two goals: faithful generative explanations
of high-dimensional data and accurate pre-
diction of associated class labels. Existing
approaches fail to balance these goals by not
properly handling a fundamental asymmetry:
the intended application is always predict-
ing labels from data, not data from labels.
Our new prediction-constrained objective for
training generative models coherently inte-
grates supervisory signals even when only a
small fraction of training examples are labeled.
We demonstrate improved prediction quality
compared to previous supervised topic mod-
els, achieving results competitive with high-
dimensional logistic regression on text analy-
sis and electronic health records tasks while
simultaneously learning interpretable topics.

1 Introduction

Discrete count data are common: news articles can be
represented as word counts, patient records as diagnosis
counts, and images as visual descriptor counts. Topic
models such as latent Dirichlet allocation (LDA, Blei
et al. (2003)) are popular for finding cooccurance struc-
ture in datasets of count vectors, producing a small set
of learned topics which help users understand the core
themes of a corpus too large to comprehend manually.
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The low-dimensional feature space produced by LDA is
often used as the input to some predictive task, where
the user seeks to predict labels associated with each
count vector. For example, Paul and Dredze (2014)
use topics from Twitter to model flu trends, and Jiang
et al. (2015) use topics from image captions to make
travel recommendations. This approach balances two
distinct goals: building a reasonable density model of
observed data and making high-quality predictions of
target labels. If we only cared about modeling the data
well, we could simply apply standard topic models and
ignore the labels. If we only cared about prediction
performance, there are a host of well-studied super-
vised learning methods that we could apply directly to
the labeled count vectors. However, using LDA-based
dimensionality reduction as input to a predictor can
simultaneously achieve two useful goals: good predic-
tions of labels from count vectors and interpretable
low-dimensional data representations.

Unfortunately, the two-stage pipeline of training LDA
from count vectors alone and then training a super-
vised predictor from learned topic features often fails
to produce accurate predictions. This is especially true
when the count features are not carefully curated and
contain structure irrelevant to the target task. For
example, applying LDA to clinical records might find
topics about common conditions like diabetes or heart
disease, which may be irrelevant if the downstream
task is predicting depression outcomes. To address
this concern, many approaches have been developed
to supervise topic models (McAuliffe and Blei, 2008;
Lacoste-Julien et al., 2009; Zhu et al., 2012); the hope
is that including task-specific labels during training will
focus learned topics on the intended task, producing
better predictions and more interpretable topics which
ignore irrelevant parts of the data. However, a survey
by Halpern et al. (2012) finds that existing supervised
topic models offer little (if any) improvement in pre-
diction quality over the baseline two-stage pipeline
that trains topics without supervision, especially if the
number of topics is larger than ∼10.



Semi-Supervised Prediction-Constrained Topic Models

In this work, we expose and correct key deficiencies in
previous formulations of supervised topic models. We
introduce a learning objective that directly encourages
low-dimensional data representations to produce ac-
curate predictions. Unlike earlier work, our training
objective deliberately encodes the asymmetry of pre-
diction tasks: web analysts want to predict WiFi avail-
ability tags from restaurant review text, not text from
tags; clinicians want to predict medication outcomes
given medical records, not records given outcomes. Ap-
proaches like supervised LDA (sLDA, McAuliffe and
Blei (2008)) that optimize the joint likelihood of labels
and words ignore this crucial asymmetry.

Our prediction-constrained (PC) latent variable models
are tuned to maximize the marginal likelihood of the
observed data, subject to the constraint that prediction
accuracy (formalized as the conditional probability of
labels given data) exceeds some target threshold. The
PC objective addresses subtle but important limitations
in nearly a decade of prior work on sLDA. We see clear
empirical benefits from PC training: sometimes other
objectives also work well, but ours always does.

In many applications, bag-of-words documents (text
reviews, medical records, etc.) are plentiful and easy
to collect. In contrast, reliable labels for these docu-
ments are expensive to obtain. Thus, it is beneficial for
methods to be able to learn from datasets where only
a small fraction of documents are labeled. For such
semi-supervised learning, the difference between our
PC objective and other approaches becomes more dra-
matic, and we see corresponding gains in performance.

2 Background: Topic Models

Standard LDA. The LDA topic model finds struc-
ture in a collection of D documents, or more generally,
D examples of count vectors. Each document d is rep-
resented by a count vector xd of V discrete words or
features: xd ∈ Z

V
+. The LDA model generates these

counts via a document-specific mixture of K topics:

πd|α ∼ Dir(πd | α),

xd|πd, φ ∼ Mult(xd |
∑K

k=1 πdkφk, Nd). (1)

The random variable πd is a document-topic probabil-
ity vector, where πdk is the probability of topic k in
document d and

∑K
k=1 πdk = 1. The vector φk is a

topic-word probability vector, where φkv gives the prob-
ability of word v in topic k and

∑V
v=1 φkv = 1. Nd is

the (observed) size of document d: Nd =
∑

v xdv. LDA
assumes πd and φk have symmetric Dirichlet priors,
with hyperparameters α > 0 and τ > 0.

Topic-based Prediction of Binary Labels. Sup-
pose document d also has a binary label yd ∈
{0, 1}. Standard supervised topic models assume labels

and word counts are conditionally independent given
document-topic probabilities πd:

yd|πd, η ∼ Bern(yd | σ(
∑K

k=1 πdkηk)), (2)

where σ(z) = (1+ e−z)−1 is the logit function, and η ∈
R

K is a vector of real-valued regression weights with
a vague prior ηk ∼ N (0, σ2

η). Non-binary labels can
be predicted via a generalized linear model (McAuliffe
and Blei, 2008). In some experiments, we model vec-
tors of binary labels yd ∈ {0, 1}

L with L conditionally
independent logistic regressions.

The sLDA model of McAuliffe and Blei (2008) repre-
sents the count likelihood of Eq. (1) via Nd independent
assignments zdn ∼ Cat(πd) of word tokens to topics,

and generates labels yd ∼ Bern(yd | σ(
∑K

k=1 z̄dkηk)),
where z̄d = N−1

d

∑

n zdn and E[z̄d] = πd. To enable
more efficient inference algorithms, we analytically
marginalize the topic assignments zd away in Eq. (1,2).

There also exist “upstream” variants of supervised topic
models (Lacoste-Julien et al., 2009; Mimno and McCal-
lum, 2008) in which the document-topic probabilities
πd have a distribution that is conditioned on the la-
bel yd. We focus on “downstream” topic models as in
Eq. (2) because they are more easily learned from data
in which not all documents have labels yd.

3 Limitations of Existing Objectives

There are a host of training objectives and inference
algorithms for supervised LDA, including (McAuliffe
and Blei, 2008; Wang et al., 2009; Zhu et al., 2012;
Chen et al., 2015). One core contribution of this work
is to identify a fundamental shortcoming of all these
objectives: they do not actually optimize models to
perform well at the intended asymmetric prediction task
of labels from words. This fundamental shortcoming
arises due to model misspecification. If our count data
truly came from a topic model, and those topics truly
were the key to good predictions, then even a standard
unsupervised topic model would do well. Trouble arises
when we desire the dimensionality reduction provided
by a topic model, for interpretability or efficiency, but
the count data were not actually produced by the LDA
generative process.

Limitations of Joint Bayesian or Maximum-

Likelihood Training of the sLDA Model. The
original formulation of supervised LDA (McAuliffe and
Blei, 2008) and related work (Wang et al., 2009; Wang
and Zhu, 2014; Ren et al., 2017) assumes a graphical
model in which the target label yd can be viewed as
yet another output of document-topic probabilities πd.
When the number of counts in xd is significantly larger
than the cardinality of yd, as is typical in practice,
the likelihood associated with xd will be much larger
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in magnitude than the likelihood associated with yd.
That is, the correct application of Bayesian inference for
this joint likelihood model p(x, y | η, φ, α) will produce
learned topics that are indistinguishable from those
estimated from the data likelihood p(x|φ, α) alone.

Limitations of Label Replication. Many have ob-
served that standard sLDA is insufficiently discrimina-
tive. The Power-sLDA approach of Zhang and Kjell-
ström (2014) seeks to improve discriminative perfor-
mance by “observing” R > 1 artificial copies of the yd la-
bels. Bayesian inference then focuses on the replicated
likelihood p(x, y, y, . . . , y | η, φ, α). Unfortunately, the
posterior p(πd | x, φ) required to make predictions
at test time may be very different from the posterior
p(πd | x, y, . . . , y, φ, η) used at training; this can lead to
low-dimensional representations πd that fail to predict
well at test time, when only xd is observed. Fig. 1
demonstrates this issue on toy data: regardless of the
replication level, Power-sLDA (blue)’s preferred model
makes terrible predictions in a test setting using only xd,
even though the same model scores well at ‘predictions’
during training (when both xd and yd are observed).
In the supplement, we expose the formal differences be-
tween label replication and our prediction-constrained
objective in more detail.

Other Popular Objectives Reduce to Label

Replication. Posterior regularization (PR, Ganchev
et al. (2010); Graça et al. (2008)) enforces explicit per-
formance constraints on the posterior. The MedLDA
approach of Zhu et al. (2012, 2013, 2014) is derived from
a maximum entropy discrimination framework and uses
a hinge loss to penalize errors in the prediction of yd.
In the supplement, we show that after replacing the
hinge loss with a logistic loss and approximate posteri-
ors with point estimates, both MedLDA and PR can
be written as forms of label replication. Thus, both can
fail to learn topics that offer competitive predictions
of labels from words at test time.

Limitations of Fully Discriminative Learning.

Unlike all previous approaches, mirror-descent back-
propagation sLDA (BP-sLDA, Chen et al. (2015)) fo-
cuses entirely on the prediction of yd from xd. Topics
φ are trained to directly predict yd from xd via latent
document-topic probabilities πd, but no term in the ob-
jective ensures that topics φ accurately model xd. Our
objective can be seen as a generalization that balances
the explanation of data xd (which Chen et al. (2015)
ignores) and prediction of targets yd.

Partial Supervision. Many semi-supervised meth-
ods for general latent variable models optimize the
joint likelihood of data x and labels y by either im-
puting (Nigam et al., 1998; Chang et al., 2007) or
marginalizing (Kingma et al., 2014) missing labels. We
have shown joint likelihood training for supervised topic
models to have prediction quality similar to the un-

supervised case even when all examples are labeled;
accuracy will not improve when labels are rare. Other
semi-supervised methods (Mann and McCallum, 2010)
maximize conditional likelihood log p(y | x) only and
thus do not learn useful generative models as we do.

Previous work on semi-supervised training of topic

models seems to be scarce. Huh and Fienberg (2012)
regularize distances in the document-topic space, but
do not directly incorporate labels y in their objective
for training topics φ. Xiang and Zhou (2014) train
a naïve Bayes classifier using topics learned from a
larger, unlabeled corpus, but make no use of labels
when learning topics. Our semi-supervised approach
should thus be of broad interest, because it ensures
that labels y impact the learned topics φ even if they
are only present for a small subset of documents.

Finally, some semi-supervised learning methods spe-
cialized for text data respect word order (Johnson
and Zhang, 2015), unlike our bag-of-words approach.
However, unlike our method, such approaches are not
trained end-to-end and are not explicitly optimized to
balance generative and discriminative performance.

4 Prediction-Constrained sLDA

We propose a novel, prediction-constrained (PC) objec-
tive that finds the best generative model for words x,
while satisfying the constraint that topics φ must yield
accurate predictions about labels y given x alone:

min
φ,η
−
[

∑D
d=1 log p(xd | φ, α)

]

− log p(φ, η) (3)

subject to −
∑D

d=1 log p(yd | xd, φ, η, α) ≤ ǫ.

The scalar ǫ is the highest aggregate loss we are willing
to tolerate, and p(φ, η) = p(φ)p(η) are independent
priors used for regularization. There are many vari-
ations on this theme; for example, one could instead
use a hinge loss as in Zhu et al. (2012). The structure
of Eq. (3) matches the goals of a domain expert who
wishes to explain as much of the data x as possible,
while still making sufficiently accurate predictions of y.

Applying the Karush-Kuhn-Tucker conditions, we
transform the inequality constrained objective in Eq. (3)
to an equivalent unconstrained optimization problem:

min
φ,η
−

D
∑

d=1

[

log p(xd|φ) + λǫ log p(yd|xd, φ, η)
]

(4)

− log p(φ, η).

For any prediction tolerance ǫ, there exists a scalar
multiplier λǫ > 0 such that the optimum of Eq. (3)
is a minimizer of Eq. (4). The relationship between
λǫ and ǫ is monotonic, but does not have an analytic
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form; we must search over the one-dimensional space
of penalties λǫ for an appropriate value.

While our PC objective is superficially similar to Power-
sLDA (Zhang and Kjellström, 2014) and MedLDA (Zhu
et al., 2012), it is distinct: the multiplier λǫ rescales the
label posterior p(yd | xd), while label-replication only
upweights the label likelihood p(yd | πd). By “replicat-
ing” the entire y-from-x posterior, our PC objective
achieves our goal of accurately predicting targets from
words alone at test time. The constraint in Eq. (3) also
theoretically justifies the use of a replication weight.

Computing p(xd | φ) and p(yd | xd, φ, η) requires the
marginalization of πd over its simplex domain ∆K :

p(xd|φ) =

∫

Mult(xd|
∑K

k=1 πdkφk)Dir(πd|α)dπd, (5)

p(yd|xd, φ, η) =

∫

Bern(yd|σ(π
T
d η))p(πd|xd, φ, α)dπd.

Because p(yd | xd, φ, η) integrates over p(πd | xd, φ), the
posterior of πd given only words xd, our PC objective
encodes the asymmetry of label prediction tasks.

Unfortunately, these integrals are intractable. To gain
traction, we first contemplate an objective that instan-

tiates πd rather than marginalizing πd away:

min
π,φ,η

−
D
∑

d=1

[

log p(πd|α) + log p(xd|πd, φ) (6)

λ log p(yd|πd, η)
]

− log p(φ, η)

As discussed above, solutions to this objective would
lead to replicated joint training and its poor predic-
tions of yd given xd alone. Since we wish to train
under the same asymmetric conditions present at test
time, where we have xd but not yd, we fix πd to a
deterministic embedding of the words xd to the topic
simplex. We choose this mapping to produce the max-

imum a posteriori (MAP) estimate of πd given xd:
πd = argmaxπd∈∆K log p(πd|xd, φ, α). As we show in
Sec. 5, this MAP estimate can be found deterministi-
cally via a tractable function: πd ← MAP(xd, φ, α).

Our chosen MAP embedding is a feasible approximation
to the full posterior p(πd|xd, φ, α) needed in Eq. (5),
with approximation accuracy increasing as the number
of observed words Nd grows. We can now write a
tractable PC training objective for sLDA:

J (φ, η) = −
D
∑

d=1

[

log p(MAP(xd, φ, α)|α) (7)

+ log p(xd|MAP(xd, φ, α), φ)

+ λǫ log p(yd|MAP(xd, φ, α), η)
]

− log p(φ, η).

While this objective is similar to BP-sLDA (Chen et al.,
2015), the key difference is that the prediction con-
straint of Eq. (3) leads to a multiplier λǫ that balances
the generative and discriminative objectives. In con-
trast, Chen et al. (2015) consider only a fully unsu-
pervised objective (labels y are ignored) and a fully
supervised objective (the distribution of x is ignored).
If documents are partially labeled, the objectives of
Eq. (3) and (7) can be naturally generalized to only
include prediction constraints for observed labels.

5 Inference & Learning for PC-sLDA

We first show how to evaluate the PC objective of
Eq. (7) by describing an algorithm that computes
the embedding MAP(xd, φ, α). We then differenti-
ate through the entire objective to allow gradient-
based optimization of the topic-word probability vec-
tors {φk}

K
k=1 and regression coefficients {ηk}

K
k=1.

MAP via Exponentiated Gradient. Sontag and
Roy (2011) define the document-topic MAP estimation
problem for LDA as maxπd∈∆K ℓ(πd;xd, φ, α), where

ℓ(πd; . . .) = logMult(xd | π
T
d φ) + logDir(πd | α). (8)

This problem is convex for α ≥ 1 and non-convex other-
wise. For the convex case, they apply an exponentiated

gradient algorithm (Kivinen and Warmuth, 1997) that
iteratively rescales elements of the probability vector
with exponentiated derivatives of the objective ℓ:

init: π0
d ←

[

1
K

. . . 1
K

]

, (9)

repeat: πt
dk ←

pt
dk∑

K
j=1

pt
dj

, ptdk = πt−1
dk · e

ν∇ℓ(πt−1

dk
).

With small enough step size ν > 0, exponentiated
gradient (EG) converges to the MAP solution. We
define our embedding function πd ← MAP(xd, φ, α) to
be the deterministic outcome of T EG iterations. In
experiments, we use T ≈ 100 and ν ≈ 0.005.

When α < 1, the sparsity-promoting Dirichlet prior
may lead to multimodal posteriors on the simplex πd ∈
∆K . But as noted by Taddy (2012), if we instead use
a softmax (MacKay, 1997) representation of πd (the
natural parameters of the corresponding exponential
family), the posterior is log-concave with a single mode.
Elegantly, the softmax-basis MAP for a particular α < 1
equals the simplex MAP estimate under a modified
Dirichlet prior, p(πd | xd, φ, α + 1). Using this “add
one” trick, exponentiated gradient gives optimal natural

parameter MAP estimates even when α < 1.

Parameter Learning via SGD. To optimize the
objective in Eq. (7), we realize first that the iterative
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MAP embedding in Eq. (9) is differentiable with respect
to the parameters φ and η. This means the entire ob-
jective J is differentiable and modern gradient descent
methods may be applied to learn φ, η from data, using
standard transformations of constrained parameters φ

from the simplex to the reals. Once the loss function
is specified via unconstrained parameters, we perform
automatic differentiation to compute gradients and
then optimize via the Adam algorithm (Kingma and
Ba, 2014). For scalability, we can perform stochastic
updates from minibatches of data. We have developed
Python implementations using both Autograd (Maclau-
rin et al., 2015) and Tensorflow (Abadi et al., 2015)
which are available online.1

Previously, Chen et al. (2015) optimized a purely dis-
criminative objective via mirror descent directly on
the constrained parameters φ, using a C# implementa-
tion with manually-derived gradient computations. In
contrast, our approach allows many useful extensions
(such as multi-label binary classification) without need
to derive and implement gradient calculations by hand.

Hyperparameter selection. The key hyperparame-
ter for our PC-sLDA algorithm is the multiplier λǫ. For
topic models of count data, λǫ usually should be on the
order of the number of tokens in the average document,
though it may need to be larger if tension exists between
the unsupervised and supervised terms of the objective.
As in our experiments, we suggest trying a logarithmi-
cally spaced range of values λǫ ∈ {10, 100, 1000, . . .}.
From this grid search, we select the value that mini-
mizes a score defined later in Eq. (10) which assesses
the model’s combined discriminative and generative
performance. The cost of multiple runs can be miti-
gated by using the final parameters at one λǫ value as
the initial parameters for the next run, although this
may not escape to new preferred basins of attraction
in the overall non-convex objective.

6 Experimental Results

We now assess how well our proposed PC training of
sLDA (PC-sLDA) achieves its simultaneous goals of
accurate prediction of labels y given x while maintain-
ing faithful explanations of words x. Full descriptions
of all datasets and procedures are in the supplement.

Tasks. We consider one toy and three real-world bag-
of-words prediction tasks. For each non-toy dataset,
we partition documents into three sets (training/valida-
tion/test). We tune hyperparameters on the validation
set and report results on the test set.

• Toy 3× 3 Bars task. To study trade-offs between
models of p(x) and p(y|x), we built a toy dataset

1https://github.com/dtak/
prediction-constrained-topic-models

that is deliberately misspecified : neither the unsu-
pervised LDA maximum likelihood solution nor the
supervised sLDA maximum likelihood solution per-
forms better than chance at label prediction. We
look at 500 training documents, each with V = 9
possible vocabulary words that can be arranged in a
3-by-3 grid to indicate bar-like co-occurrence struc-
ture, as illustrated in Fig. 1. Each binary label yd
is unrelated to the observed xd vector except for a
rare signal word (top-left corner).

• Movie task. Each of the 4004/500/501 docu-
ments is a published movie review by a professional
critic (Pang and Lee, 2005), with V = 5338 terms.
Each review has one binary label, where yd = 1
means the critic gave the film more than 2 of 4 stars.

• Yelp task. Each of the 23159/2895/2895 documents
(Yelp Dataset Challenge, 2016) aggregates all text
reviews for a single restaurant, using V = 10, 000
vocabulary terms. Each document also has 7 possible
binary labels yd: takes-reservations, delivery, alcohol,
good-for-kids, expensive, outdoor-patio, and wifi.

• Antidepressant task. Finally, we predict which
subset of 11 common antidepressants would success-
fully treat an individual’s major depressive disorder
given a count vector xd of the patient’s electronic
health record (EHR) code history. These are real de-
identified data from tertiary care hospitals, split into
29774/3721/3722 documents (one per patient) with
V = 5126 codewords which represent past diagnoses
(ICD-9), procedures (CPT), and medications.

Baselines. Our discriminative baselines include lo-
gistic regression, the fully supervised BP-sLDA algo-
rithm of Chen et al. (2015), the unsupervised Gibbs
sampler for LDA (Griffiths and Steyvers, 2004) from
the Mallet toolbox (McCallum, 2002), and the super-
vised MED-sLDA Gibbs sampler (Zhu et al., 2013)
which is reported to improve on an earlier variational
method (Zhu et al., 2012). To be fair to all meth-
ods, we tune relevant hyperparameters (L2 regulariza-
tion strength for regression, MED-sLDA regularization
weight, step sizes, etc.) on validation data. For our
toy example, we also compare to a coordinate ascent
algorithm for the maximum-likelihood sLDA objective
in Eq. (6) (Power-sLDA), across different values of the
label replication factor λ ≥ 0. Power-sLDA λ = 0 is
equivalent to unsupervised LDA; Power-sLDA λ = 1 is
the standard sLDA of McAuliffe and Blei (2008).

All baselines support documents with one binary label
yd ∈ {0, 1}. Third-party MED-sLDA and BP-sLDA
code does not support multiple binary labels per docu-
ment, but our PC-sLDA does. In these cases, we either
train MED-sLDA on only one label (e.g., only wifi for
the Yelp task) or omit it.

https://github.com/dtak/prediction-constrained-topic-models
https://github.com/dtak/prediction-constrained-topic-models
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Figure 1: 3× 3 bars task: The advantages of PC training under misspecification. Given only K = 4 topics, the goal is to
simultaneously model the bar-like topic structure (as in Griffiths and Steyvers (2004)) of observed counts while making
accurate binary label predictions using learned topic features. Top Left: Illustration of the true generative process for 5
example documents. Each document d has a binary label yd and a count vector xd over 9 possible vocabulary symbols
arranged in a 3× 3 square grid. To generate document d, we first draw xd as a mixture of 4 true “bar” topics, as in LDA.
Next, we draw yd ∼ Bern(0.2), so it is independent of xd and thus any sLDA model is misspecified. Finally, if yd = 1 we
set the top-left word xd0 = 1, otherwise xd0 = 0. Thus, there is a clear signal to predict yd well given xd but it relies
on none of the bar topics. Top Right: Each method’s best solution (as ranked by its training objective) is located on a
2-dimensional fitness landscape. The x-axis is negative log likelihood of data x averaged per token (lower is better). The
y-axis is the negative log likelihood of labels y averaged per document (lower is better). These metrics are computed on
the training set. We show these scores under two possible modes for estimating the document-topic vector πd. Train mode
finds the supervised MAP estimate maxπd

log p(πd|xd, yd, φ, η, α). Predict mode finds the unsupervised MAP estimate
maxπd

log p(πd|xd, φ, α). This distinction highlights the key difference between PC-sLDA with λ > 1, which deliberately
trains topics to be good at labels-from-data prediction, and label replication (Power-sLDA with λ > 1), which trains
models that do well in training mode but fail in a predictive setting (even on the same training data). Bottom Rows:
Learned topic-word parameters for each method, labeled with regression coefficient ηk for each topic.

Partial Supervision. On Movie and Yelp tasks, we
artificially include only a small fraction (0.05, 0.10, or
0.20) of available training labels, chosen at random.
Fully supervised methods (e.g. BP-sLDA, MED-sLDA)
are only given documents (xd, yd) from this subset,
because third-party code does not allow using unlabeled
data at training. Our PC-sLDA as well as Gibbs-LDA
uses the entire partially-labeled training set.

Protocol. All topic models are run from multiple
random initializations of φ, η (for fairness, all methods
use same predefined initializations of these parameters).
We record point estimates of topic-word parameters φ

and regression weights η at defined intervals throughout
training. For all methods, at each parameter snapshot
φ, η we evaluate discriminative prediction quality via
area-under-the-ROC-curve (AUC) using the predicted
probability Pr(yd = 1|xd) = σ(ηTMAP(xd, φ, α)). We

evaluate generative model quality via a variational evi-
dence lower bound on heldout per-token log likelihood:
(
∑

d Nd)
−1

∑D
d=1 log p(xd|φ, α). For all methods, we

select the best snapshot on the validation set (early
stopping) by minimizing the score:

−10 ∗AUC(y, x, φ, η)− PerTokELBO(x|φ, α). (10)

From-Gibbs Initializations. Our stochastic gradi-
ent descent algorithm for PC-sLDA is vulnerable to
poor exploration of the non-convex space. To remedy
this, we augment the randomly-initialized runs of PC-
sLDA with separate initializations which start at the
best parameter snapshot (φ, η) produced by unsuper-
vised Gibbs-LDA. We then select the best PC-sLDA
result among both from-random and from-Gibbs runs.
This lets us assess the value of our new training objec-
tive without confounding due to poor initialization.
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Figure 2: Movie and Yelp tasks: Performance metrics vs. fraction of labeled training documents used for 25 and 100 topics.
An extended version is in the supplement. Top row: Heldout generative performance (negative likelihood, lower is better).
Bottom row: Heldout discriminative performance (AUC, higher is better). Note that improvements over supervised learning
algorithms, including logistic regression, are particularly large when the fraction of labeled documents is small.

Hyperparameters. For non-toy tasks, we show
performance across several model sizes K ∈
{10, 25, 50, 100} (full results are in the supplement).
We set the topic-word prior concentration τ = 0.01
and grid search the document-topic prior concentra-
tion α ∈ {0.1, 0.01} and the regression weight variance
σ2
η ∈ {5, 500}.

Results. Across all tasks, our major findings are:

PC-sLDA has high-quality label prediction.

When datasets are fully labeled, we sensibly find that
purely discriminative methods like logistic regression
(LR) or BP-sLDA often achieve the highest AUC values.
But our PC-sLDA is consistently competitive, match-
ing LR on the Movie task in Fig. 2, beating it slightly
on the large-scale Antidepressant task in Fig. 3.

PC-sLDA is the only method robust to misspec-

ification. In the toy bars task in Fig. 1, we see that
our PC-sLDA with λ ≥ 10 is the only method to find
a topic with high probability on the signal word (top
left corner), which is key to good discrimination. Most
other methods, such as sLDA or MED-sLDA, are in-
distinguishable from the unsupervised LDA solution.
Label replication (Power-sLDA λ > 1) suffers the most
under misspecification, yielding solutions with terrible
generalization performance. Purely discriminative BP-
sLDA discriminates well but learns very poor generative
models with no useful bar structure.

PC-sLDA predictions remain good when few

documents have labels. For the Movie task in
Fig. 2(a), PC-sLDA dominates the AUC metric for
small fractions of labels (0.05, 0.1), beating even LR
when K=100. In this regime, unsupervised Gibbs-LDA
with K = 100 topics has better AUC than BP-sLDA
and MED-sLDA, demonstrating the value of unlabeled
data for prediction. On Yelp, PC-sLDA predictions at
small fractions are better than all but BP-sLDA.

PC-sLDA recovers better heldout data likeli-

hoods than BP-sLDA. Both Fig. 2 (top row) and
Fig. 3 show trends in heldout data negative log like-
lihood (lower is better). As expected, unsupervised
Gibbs-LDA consistently achieves the best scores, be-
cause explaining data is its sole objective. MED-sLDA
also does reasonably, in some cases better than PC-
sLDA, but usually in these cases MED-sLDA has worse
AUC than PC-sLDA. BP-sLDA is consistently poor,
having per-token likelihoods about 0.1-1.0 nats higher
than others on full training sets. These results show
that the solely discriminative approach of BP-sLDA
cannot explain the data well. In contrast, our PC-
sLDA can capture essential data properties while still
predicting labels accurately.

PC-sLDA’s learned topic-word probabilities φ

are interpretable for prediction. A key point of
our work is that our PC training estimates topic-word
parameters φ to focus more on the label prediction than
unsupervised training would. On the Antidepressant
task, Fig. 3 shows that PC-sLDA initialized from Gibbs
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0.013 flu vaccine
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0.999 routine physical age5 -11
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0.029 routine physical exam
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0.015 other malaise & fatigue
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0.987 test for strep throat

0.982 hidradenitis skin cond

0.963 preventive counsel >=45min

0.963 need for typhoid vaccine

Figure 3: Antidepressant prediction task. Left: Heldout negative likelihood (generative performance, lower is better).
Center: Heldout AUC (discriminative, higher is better). We use our own implementation of BP-sLDA for this multiple
binary label prediction task. Both PC-sLDA and BP-sLDA numbers here are the results of runs initialized from Gibbs.
While BP-sLDA exhibits severe overfitting (see supplement), our PC-sLDA improves on the baseline Gibbs predictions
reliably. Right: Comparison of topic #11 of K = 25 for both Gibbs-LDA and our PC-sLDA when initialized from Gibbs.
We show the regression coefficient ηk for this topic when predicting patient success with drug citalopram. The top row is
ranked by p(word|topic). The bottom row is ranked by p(topic|word), indicating potential anchor words. The original
Gibbs topic is mostly about routine preventative care and vaccination. PC-sLDA training evolves the topic to emphasize
longer duration encounters focused on counseling or behavior change, mixed together with a few infection words.

indeed causes an original Gibbs topic to significantly
evolve its regression weight ηk and associated top words.
The original Gibbs topic is mostly about routine out-
patient preventative care and vaccination. The evolved
PC-sLDA topic prefers long-duration primary care en-
counters focused on behavior change (“counseling”).
With clinical collaborators, we hypothesize that this
more focused topic leads to a positive ηk value because
the drug citalopram is often a treatment of choice for
such patients (i.e., uncomplicated MDD diagnosed and
treated in primary care). The supplement contains
browseable HTML visualizations of trained topic-word
parameters for all datasets.

7 Discussion

Despite nearly a decade of work on supervised topic
models, to our knowledge our prediction-constrained
formulation is the only one that coherently manages
the trade-off between modeling words and predicting la-
bels. We demonstrate consistent advantages over base-
lines based on label replication, as these approaches
fail to handle the asymmetry of the label prediction
task. Discussing their original supervised LDA, Blei
and McAuliffe (2010) say that a semi-supervised ex-
tension would be “straightforward,” but caution that
“care must be taken that the response [label] data exert
sufficient influence on the fit.” We have provided strong
theoretical and empirical evidence that standard train-
ing of sLDA does not lead to effective semi-supervised
learning nor good predictions, while PC-sLDA does.

Training. Prediction-constrained training of sLDA
deviates from classical Bayesian methods due to the
external requirement of good prediction performance.
While this deviation may be unsettling, Liu et al. (2009)
and Molitor et al. (2009) describe situations in which it

is sensible to incorporate asymmetric inference strate-
gies (cut distributions), which Plummer (2015) proves
result in principled probability distributions that are
not the posterior of any graphical model. The core ques-
tion is what constraints should be introduced to solve
the problem at hand. Ganchev et al. (2010), Graça
et al. (2008), and Zhu et al. (2012, 2014) introduce
distinct constraints that strengthen the link between
document-topic vectors πd and labels yd. But as we
showed in Sec. 3, such constraints do not necessarily
improve label predictions from xd alone.

Algorithm extensions. Deviating from the
Bayesian framework means that many traditional
inference tools are no longer applicable. We found
that carefully-tuned gradient-based optimization could
usually evolve to a good balance of generative and
discriminative performance, especially given a good ini-
tialization from an LDA Gibbs sampler. Alternatively,
continuation or homotopy methods (Corduneanu and
Jaakkola, 2002) find a spectrum of models by smoothly
varying λǫ; in our case this means starting from an
unsupervised model (λǫ = 0) and gradually increasing
λǫ while re-optimizing φ, η. From our preliminary
experiments, it appears that the non-convex landscape
across {φ, η} and λǫ has sharp barriers: small changes
in λǫ can cause large changes in the optimal parameters
{φ, η} which may not be reachable via gradual warm
restarts. The development of improved inference
algorithms is an exciting research direction.

Model extensions. In this paper, we have focused
our algorithm design and experiments on the semi-
supervised training of topic models. But by design, our
prediction-constrained framework is directly applicable
to an enormous range of latent variable models. We
expect it to prove useful in many application domains.
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