
Statistics 225
Bayesian Statistical Analysis (Part 5)

Hal Stern

Department of Statistics
University of California, Irvine

sternh@uci.edu

March 28, 2019



Models for robust inference and sensitivity analysis

I Assume we have completed an analysis
(i.e., we have obtained posterior simulations
from a specified model)

I Often want to assess:
I sensitivity of inferences (do the results change under other

reasonable models)
I robustness to outliers by considering overdispersed alternatives

to our model (e.g., t rather than normal)
I overdispersed version of model to address heterogeneity
I effect of other small changes (e.g., deleting an observation)

I Computational approaches
I exact posterior inference under new model (may be quite time

consuming)
I approximate posterior inference using importance ratios



Models for robust inference and sensitivity analysis
Example

I Recall SAT coaching example:
I data: y = (28, 8,−3, 7,−1, 1, 18, 12)
I model: yj |θj ∼ N(θj , σ

2
j )

θj |µ, τ 2 ∼ N(µ, τ 2)
p(µ, τ) ∝ 1

I What happens if we replace 12 for 100?
I estimate of τ 2 gets bigger
I estimate of θj moves towards yj
I if school 8 is an outlier, this affects conclusions for other seven

schools

I Would a t-model at one or both stages of the model help?



Models for robust inference and sensitivity analysis
Overdispersed models

I We have seen that allowing for heterogeneity among units
leads to “new” overdispersed models

I Binomial and Beta-Binomial
– Standard model: yi ∼ Binomial(n, p)

E (yi ) = np V (yi ) = np(1− p)

– Overdispersed model:
yi ∼ Binomial(n, pi )
pi ∼ Beta(α, β)

}
⇒ yi ∼ Beta-Binomial(n, α, β)

E (yi ) = n

(
α

α + β

)
︸ ︷︷ ︸

p

V (yi ) = n

(
α

α + β

)
︸ ︷︷ ︸

p

(
β

α + β

)
︸ ︷︷ ︸

1−p

(
α + β + n

α + β + 1

)
︸ ︷︷ ︸

(∗)

(∗) = overdispersion factor



Models for robust inference and sensitivity analysis
Overdispersed models (cont’d)

I Poisson and Negative Binomial Poisson
I Poisson: variance equals to mean
I Negative Binomial: two-parameter distn allows

the mean and variance to be fitted separately,
with variance as least as great as the mean

I Overdispersed model:

yi ∼ Poisson(λi )
λi ∼ Gamma(α, β)

}
⇒ yi ∼ Neg-Bin(α, β)

E (yi ) =
α

β
V (yi ) =

α

β

(
β + 1

β

)
︸ ︷︷ ︸

(∗)

(∗) = overdispersion factor



Models for robust inference and sensitivity analysis
Overdispersed models (cont’d)

I Normal and t-distribution
t has a longer tail than the normal and can be used for
accommodating:

(a) occasional unusual observations in the data distribution
(b) occasional extreme parameters in the prior distribution or

hierarchical model

Overdispersed model:

yi ∼ N(µ,Vi )
Vi ∼ Inv-χ2(ν, σ2)

}
⇒ yi ∼ tν(µ, σ2)

E (yi ) = µ V (yi ) = σ2

(
ν

ν − 2

)
︸ ︷︷ ︸

(∗)

for ν > 2

(∗) = overdispersion factor



Models for robust inference and sensitivity analysis

I Overdispersed (robust) models are “safer” in the sense that
they include the non-robust models as a special case (e.g.,
normal is t with infinite d.f.)

I Why not start with robust (expanded) models?
I non-robust models have special justification

I normal justified by CLT
I Poisson justified by Poisson process

I non-robust models often computationally
convenient



Models for robust inference and sensitivity analysis
Notation for model expansion

I po(y |θ) = sampling distribution for original model

I p(y |θ, φ) = expanded sampling model for y

I φ = hyperparameter defining expanded model
I Normal/t example

I y |µ, σ2, ν ∼ tν(µ, σ2) [i.e., θ = (µ, σ2)
and φ = ν]

I po(y |µ, σ2) = N(y |µ, σ2) [ν =∞]

I Can be applied to data model (as above) or prior distribution
for θ in a hierarchical model



Models for robust inference and sensitivity analysis
Computation

I Possible inferences
I fit the model for one or more fixed φ’s

p(θ|y , φ) ∝ p(θ|φ)p(y |θ, φ)

e.g., φ = 4 d.f. for t-distribution.
I examine joint posterior of θ and φ

p(θ, φ|y) = p(φ|y)p(θ|y , φ)

I Computational approaches:
I redo analysis for expanded model

(use MCMC, especially Gibbs sampling)
I approximations based on importance weights
I approximations based on importance resampling



Models for robust inference and sensitivity analysis
Computation: complete analysis

I Consider tν distribution (ν specified) as a robust alternative to
normal model

I Model:

yi |µ,Vi , σ2 ∼ N(µ,Viσ
2) Vi ∼ Inv-χ2(ν, 1)

p(µ, σ2) ∝ σ−2

I Posterior distribution

p(µ, σ2,V |y , ν) ∝ 1

σ2

n∏
i=1

[
e−ν/(2Vi )

V
ν/2+1
i

]
×

n∏
i=1

e
− 1

2

(yi−µ)2

Viσ
2√

σ2Vi

I Computation via Gibbs sampler
I µ|Vi , σ

2, y ∼ N
(∑n

i=1 yi/Vi∑n
i=1 1/Vi

, σ2∑n
i=1 1/Vi

)
I σ2|Vi , µ, y ∼ Inv-χ2

(
n, 1

n

∑n
i=1

(yi−µ)2

Vi

)
I Vi |µ, σ2, y ∼ Inv-χ2

(
ν + 1,

ν+
(yi−µ)2

σ2

ν+1

)



Models for robust inference and sensitivity analysis
Computation: complete analysis (cont’d)

I What if ν is unknown? Give it a prior distn p(ν) and include
in the model as a parameter

I Posterior distribution

p(µ, σ2,V , ν|y) ∝ p(ν)

σ2

n∏
i=1

[
e−ν/(2Vi )(ν/2)ν/2

Γ(ν/2)V
ν/2+1
i

]
×

n∏
i=1

e
− 1

2

(yi−µ)2

Viσ
2

√
σ2Vi

I First three Gibbs steps are same as
on previous slide

I Metropolis step to draw from conditional distn of ν, that is
p(ν|σ2, µ,V , y)



Models for robust inference and sensitivity analysis
Approximation based on importance weights

I Want to consider robust model without redoing the analysis
I Suppose interested in quantity of the form E [h(θ)|φ, y ]

I importance sampling review:

E (g) =
∫
g(y)f (y)dy =

∫ g(y)f (y)
p(y) p(y)dy

≈ 1
N

N∑
i=1

g(yi )f (yi )
p(yi )

where yi ’s are sampled from p(y)
I importance sampling approach

(sometimes called importance weighting here)
I E [h(θ)|φ, y ] =

∫
h(θ)p(θ|φ, y)dθ

=
po(y)

p(y |φ)︸ ︷︷ ︸
unknown

∫ h(θ)p(θ|φ)p(y|θ,φ)
po (θ)po (y|θ)

po(θ|y)dθ

I initial unknown term makes things slightly different
I use draws θl , l = 1, . . . , L from po(θ|y) but not the usual

importance sampling estimate



Models for robust inference and sensitivity analysis
Approximation based on importance weights

I Importance sampling (weighting) (cont’d)
I estimate E [h(θ)|φ, y ] with

ĥ =

1
L

L∑
l=1

h(θl )p(θl |φ)p(y |θl ,φ)
po(θl )po(y |θl )

po(y)
p(y |φ)

1
L

L∑
l=1

p(θl |φ)p(y |θl ,φ)
po(θl )po(y |θl )

po(y)
p(y |φ)

i.e.

ĥ =

1
L

L∑
l=1

ωlh(θl)

1
L

L∑
l=1

ωl

=

L∑
l=1

ωlh(θl)

L∑
l=1

ωl

where

ωl =
p(θl |φ)p(y |θl , φ)

po(θl)po(y |θl)
I note: denominator in ĥ is same as numerator with h = 1

(essentially estimates reciprocal of unknown constant)



Models for robust inference and sensitivity analysis
Approximation based on importance weights

I Importance resampling
I may be interested in quantities that are not posterior

expectations
I related idea of importance resampling is to

obtain an “approximate sample” from p(θ|φ, y)
I sample θl , l = 1, . . . , L from po(θ|y) with L large
I calculate importance ratios

p(θl |φ)p(y |θl , φ)

po(θl)po(y |θl)

I check distribution of importance ratios
I subsample n draws without replacement from L draws with

probability proportional to importance ratio.
I why without replacement?

to provide protection against the worst case scenario where
one θ has enormous “importance”



Models for robust inference and sensitivity analysis
Approximation based on importance weights

I Importance sampling and importance resampling
I importance sampling estimates E (h(θ)|y , φ),

importance resampling obtains approximate posterior sample
I if there a small number of large importance weights, then both

approximations are suspect



Models for robust inference and sensitivity analysis
Approximation based on importance weights

I Accuracy and efficiency of importance sampling estimates
I no method exists for assessing how accurate the importance

resampling (or reweighted) draws are as an approximation of
the posterior distribution

I check distribution of importance ratios to assess quality of
estimate

I performance depends on variability in importance ratios
I estimates will often be poor if the largest ratios are too large

relative to the others
I note small importance ratios are not a problem

(they have little influence on E [h(θ)|φ, y ])



Regression Models

I Notation
Given a sample of size n

I yi - response or outcome variable for unit i
I y = (y1, . . . , yn)′

I xi = (xi1, . . . , xik) - explanatory variables for unit i ; usually
xi1 ≡ 1 ∀i

I X = n × k matrix of predictors



Regression Models
Justification of conditional modeling

I Full model for (y ,X )

p(y ,X |θ, ψ) = p(X |ψ)p(y |X , θ)

I Posterior distribution for (θ, ψ)

p(ψ, θ|X , y) ∝ p(X |ψ)p(y |X , θ)p(ψ, θ)

I If ψ and θ are independent in their prior
distribution, i.e. p(ψ, θ) = p(ψ)p(θ), then

p(ψ, θ|X , y) = p(ψ|X )p(θ|X , y)

I We can analyze the second factor by itself with no loss of
information

p(θ|X , y) ∝ p(θ)p(y |X , θ)

I Note: If the explanatory variables X are set by experimenter,
then p(X ) is known, and there are no parameters ψ; this also
justifies conditional modeling



Regression Models

I Goal: statistical inference for the parameters θ, conditional on
X and y

I Since everything is conditional on X , we’ll suppress it in
subsequent notation

I Modeling issues

1. defining X and y so that the conditional
expectation of y given X is reasonably linear
as a function of X

2. setting up a prior distribution on the model
parameters that acccurately reflects
substantive knowledge,



Regression Models
Normal ordinary linear regression model

I Assumptions
y |β, σ2 ∼ N(Xβ, σ2I )

where I is the n × n identity matrix
I the distribution of y given X is a normal r.v. whose mean is a

linear function of X

E (yi |β,X ) = (Xβ)i = β1xi1 + . . .+ βkxik

I Var(y |β, σ2) = σ2I
I can think of y − Xβ as “errors”
I observation errors are independent
I observation errors are constant variance



Regression Models
Normal ordinary linear regression model

I Standard noninformative prior distribution

p(β, σ2|X ) ∝ σ−2

I Posterior distribution

p(β, σ2|y) ∝ p(y |β, σ2)p(β, σ2)

∝
[

1
σ

]n
exp

{
− 1

2
(y−Xβ)′(y−Xβ)

σ2

}
1
σ2

=
(

1
σ2

) n
2 +1

exp
{
−β

′X ′Xβ−2β′X ′y+y ′y
2σ2

}
Completing the square gives

p(β, σ2|y) ∝
(

1
σ2

) n
2 +1

exp
{
− (β−(X ′X )−1X ′y)′(X ′X )(β−(X ′X )−1X ′y)

2σ2

}
× exp

{
− y ′y−y ′X (X ′X )−1X ′y

2σ2

}



Regression Models
Normal ordinary linear regression model

I Posterior distribution (cont’d)
Completing the square gives

p(β, σ2|y) ∝
(

1
σ2

) n
2

+1
exp

{
− (β−(X ′X )−1X ′y)′(X ′X )(β−(X ′X )−1X ′y)

2σ2

}
× exp

{
− y ′y−y ′X (X ′X )−1X ′y

2σ2

}
Thus

p(β, σ2|y) = p(β|σ2, y)︸ ︷︷ ︸
N(β|β̂,σ2(X ′X )−1)

× p(σ2|y)︸ ︷︷ ︸
Inv-χ2(σ2|n−k,s2)

where

β̂ = (X ′X )−1X ′y and s2 =
(y − X β̂)′(y − X β̂)

n − k



Regression Models
Normal ordinary linear regression model

I Posterior distribution, p(β, σ2|y), is proper as long as:

1. n > k
2. rank(X ) = k

I Sampling from the posterior distribution of (β, σ2) Recall:

β̂ = (X ′X )−1X ′y and s2 = (y−β̂X )′(y−β̂X )
n−k

Also let Vβ = (X ′X )−1

1. compute β̂ and Vβ
(note: these calculations are not usually done with traditional
matrix calculations)

2. compute s2

3. draw σ2 from p(σ2|y) = Inv-χ2(σ2|n − k , s2)
4. draw β from p(β|σ2, y) = N(β|β̂, σ2Vβ)



Regression Models
Normal ordinary linear regression model

I Posterior predictive distribution for new data
I consider new data to be collected with observed predictor

matrix X̃ ; we wish to predict the outcomes, ỹ
I posterior predictive simulation

I first draw (β, σ2) from their joint posterior distn
I then draw ỹ ∼ N(X̃β, σ2I )

I posterior predictive distribution is

ỹ |σ2, y ∼ N(X̃ β̂, (I + X̃VβX̃
′)σ2),

averaging over σ2 gives

ỹ |y ∼ tn−k(β̂, (I + X̃VβX̃
′)s2)



Regression Models
Model checking

I Diagnostics
I residual plots (traditional or Bayesian versions)
I posterior predictive checks

I Problems/solutions
I nonlinearity

I wrong model so all inferences are suspect
I fix by transformation and/or adding

predictors (or polynomial terms)

I nonnormality
I inferences are not quite right (usually not

terribly important since posterior distn
can be nearly normal even if data are not)

I fix by transformation or by using robust
models



Regression Models
Model checking (cont’d)

I Problems/solutions (cont’d)
I unequal variances

I bad inferences (variance is the problem)
I fix by generalizing the model

(GLS: y |β,Σy ∼ N(Xβ,Σy ) with Σy 6= σ2I )
I can be solved by adding missing predictor

I correlations
I bad inferences (variance is the problem)
I fix by generalizing the model (GLS)
I can be solved by adding missing predictor (time,space)



Generalized Least Squares Model

y |β,Σy ∼ N(Xβ,Σy )

I Possible choices for Σy

I Σy known
I Σy = σ2Qy with Qy known
I Σy = f (σ2, φ) i.e. a function of some unknown parameters

beyond σ2

I Posterior distribution for special case Σy known

Let y∗ = Σ
−1/2
y y then

y∗|β ∼ N(Σ
−1/2
y Xβ, I )

Hence

p(β|y) = N(β̂,Vβ) where β̂ = (X ′Σ−1
y X )−1X ′Σ−1

y y
Vβ = (X ′Σ−1

y X )−1



Generalized Least Squares Model

I Special case: Σy = Qyσ
2 (with Qy known)

p(β, σ2|y) = p(σ2|y)p(β|y , σ2)

p(σ2|y) = Inv-χ2

(
n − k ,

(y − X β̂)′Q−1
y (y − X β̂)

n − k

)
p(β|y , σ2) = N(β̂, σ2Vβ)

where
β̂ = (X ′Q−1

y X )−1X ′Q−1
y y

and
Vβ = (X ′Q−1

y X )−1

I Note: prediction can be harder in this case since must account
for possible correlation between ỹ and y in Qy ,ỹ



Generalized Least Squares Model

I General case (σ2 included inside Σy perhaps with other
parameters also)

I prior distn:
p(β,Σy ) = p(Σy ) p(β|Σy )︸ ︷︷ ︸

flat

∝ p(Σy )

I joint posterior distn:
p(β,Σy |y) ∝ p(Σy )N(y |Xβ,Σy )

I factor joint posterior distn:
p(β,Σy |y) = p(Σy |y) p(β|Σy , y)︸ ︷︷ ︸

N(β|β̂,Vβ)

where β̂=(X ′Σ−1
y X )−1X ′Σ−1

y y and Vβ=(X ′Σ−1
y X )−1

I the hard part here is p(Σy |y):

p(Σy |y) =
p(β,Σy |y)

p(β|Σy ,y)
∝ p(Σy )N(y|Xβ,Σy )

N(β|β̂,Vβ )

∣∣∣
β=β̂

= |Vβ |−
1
2 p(Σy )|Σy |−

1
2 e−

1
2

(y−X β̂)′Σ−1
y (y−X β̂)



Prior information

I Suppose y |β, σ2 ∼ N(Xβ, σ2I )
I Conjugate analysis

I conjugate prior distribution

p(β, σ2) = p(σ2)p(β|σ2) = Inv-χ2(σ2|n0, σ
2
0)× N(β|β0, σ

2Σ0)

I posterior distribution

p(β|σ2, y) = N(β|β̃,Vβ)

p(σ2|y) = Inv-χ2(σ2|n + n0, φ)

where

β̃ = (Σ−1
0 + X ′X )−1(Σ−1

0 β0 + (X ′X )β̂)

Vβ = σ2(Σ−1
0 + X ′X )−1

φ = (n − k)s2 + n0σ
2
0

+(β̂ − β0)′Σ−1
0 (Σ−1

0 + X ′X )−1X ′X (β̂ − β0)

β̂ = (X ′X )−1(X ′y)

s2 = (y − X β̂)′(y − X β̂)/(n − k)



Prior information

I Suppose y |β, σ2 ∼ N(Xβ, σ2I )
I Semi-conjugate analysis

I prior distribution

p(β, σ2)=p(σ2)p(β)=Inv-χ2(σ2|n0, σ
2
0)× N(β|β0,Σ0)

I posterior distribution

p(β|σ2, y) = N(β|β̃,Vβ)

p(σ2|y) = p(β, σ2|y)/p(β|σ2, y) (a 1-dim grid)

where

β̃ = (Σ−1
0 + σ−2X ′X )−1(Σ−1

0 β0 + σ−2(X ′X )β̂)

Vβ = (Σ−1
0 + σ−2X ′X )−1



New view of prior information

I Consider prior information for a single regression coefficient βj
of the form βj ∼ N(βj0, σ

2
βj

) with βj0 and σ2
βj

known

I Mathematically equivalent to βj0 ∼ N(βj , σ
2
βj

)

I Prior can be viewed as “additional data”

I Can write y∗|β,Σ∗ ∼ N(X ∗β,Σ∗) with

y∗ =

(
y

βj0

)
X ∗ =

[
X
J

]
Σ∗ =

[
Σy 0
0 σ2

βj

]
where J = (0, . . . , 0, 1︸︷︷︸

j

, 0, . . . , 0)

I Posterior distn is p(β,Σ∗|y) ∝ p(Σy )N(y∗|β,Σ∗)
(last term is product of two normal distns)

I If σ2
βj
→ +∞, the added “data point” has no effect on

inference

I If σ2
βj

= 0, the added “data point” fixs βj exactly to βj0



New view of prior information

I Same idea works for prior distn for the whole vector β if
β ∼ N(β0,Σβ) with β0,Σβ known

I Treat the prior distribution as k prior “data points”
I Write y∗ ∼ N(X∗β,Σ∗) with

y∗ =

(
y
β0

)
X∗ =

[
X
Ik

]
Σ∗ =

[
Σy 0
0 Σβ

]
I Posterior distn is

p(β,Σ∗|y) ∝ p(Σy )× N(y∗|X∗β,Σ∗)︸ ︷︷ ︸
N(y |Xβ,Σy )N(β|β0,Σβ)

I If some of the components of β have infinite variance (i.e.
noninformative prior distributions), they should be excluded
from these added “prior” data points

I The joint prior distribution for β is proper if all k components
have proper prior distributions; i.e. rank(Σβ) = k



Hierarchical Linear Models

I Motivation - combine hierarchical modeling ideas with
regression framework

I Useful way to handle
I random effects
I units that can be considered at two or more levels

(students in classes in schools)
I General Notation

I Likelihood for n data points

y |β,Σy ∼ N(Xβ,Σy )

(often Σy = σ2I )
I Prior distn on J regression coefficients

β|α,Σβ ∼ N(Xβα,Σβ)

(often Xβ = 1 and Σβ = σ2
β I )

I Hyperprior distribution on K parameters α

α|α0,Σα ∼ N(α0,Σα)

with α0,Σα known (often assume p(α) ∝ 1)



Hierarchical Linear Models
Example: J regression expts

I Model for jth experiment is yj |βj , σ
2
j ∼ N(Xjβj , σ

2
j I ) where

yj = (y1j , y2j , . . . , ynj j)
I The regressions can be viewed as a single model

y =


y1

y2
...
yJ

 X =


X1 0 · · · 0
0 X2 · · · 0
...

. . .
...

0 · · · · · · XJ

 β =


β

1
β

2
...
β
J


I Hierarchy involves setting a prior distn for β

j
’s, often

β
j
|α,Σβ ∼ N(α,Σβ)

I Also need hyperpriors, e.g., p(α,Σβ) ∝ 1, σ2
j ∼ Inv-χ2(c , d)

I Implied model is

yj |α, σ2
j ,Σβ ∼ N(Xjα, σ

2
j I + X ′j ΣβXj)

I The hierarchy introduces correlation in the distn of yj



Hierarchical Linear Models
Other examples

I SAT coaching example (a.k.a. 8 schools)

y |β, σ2 ∼ N

I8β,
 σ2

1
. . .

σ2
8




β|α, σ2
β ∼ N(1α, σ2

βI8)

I Animal breeding

y |β, u, σ2 ∼ N( Xβ + Zu︸ ︷︷ ︸ X
Z

′ β
u


, σ2I )

u|σ2
α ∼ N(0, σ2

αA) p(β) ∝ 1



Hierarchical Linear Models
Random effects to introduce correlation

I More about how random effects introduce
correlation by considering two models

I Model 1 - introduces correlation directly

I Model 2 - introduces correlation through hierarchical model



Hierarchical Linear Models
Random effects to introduce correlation (cont’d)

I Model 1
I nj obs from group/cluster j
I expect objects in a group to be correlated
I assume yj = (y1j , y2j , . . . , ynj j)

′|α,Aj ∼ N(α1,Aj) where

Aj =


σ2 ρσ2 · · · ρσ2

ρσ2 σ2 · · · ρσ2

...
. . .

...
ρσ2 ρσ2 σ2


nj×nj

I combine data into single model with
correlated observations so that
y = (y1, y2, . . . , yJ)′|α,Σy ∼ N(α1,Σy ) where

Σy =


A1 0 · · · 0
0 A2 · · · 0
...

. . .
...

0 0 AJ





Hierarchical Linear Models
Random effects to introduce correlation (cont’d)

I Model 2 – Let

X =


1n1 0 · · · 0
0 1n2 · · · 0

. . .
...

1nJ

 and β =

 β1
...
βJ


and assume

y |β, τ 2 ∼ N(Xβ, τ 2I )

β|α, τ 2
β ∼ N(α1, τ 2

β I )

⇒ y |α, τ 2, τ 2
β ∼ N

α1,

 B1 · · · 0
...

. . .
...

0 · · · BJ




where

Bj =

 τ2 + τ2
β · · · τ2

β
...

. . .
...

τ2
β · · · τ2 + τ2

β


nj×nj

I Model 1 = Model 2 (with σ2 = τ2 + τ2
β and ρ =

τ2
β

τ2+τ2
β

)



Hierarchical Linear Models
Computation

I Recall

“likelihood” y |β,Σy ∼ N(Xβ,Σy )
“population distribution” β|α,Σβ ∼ N(Xβα,Σβ)
“hyperprior distribution” α|α0,Σα ∼ N(α0,Σα)

I Interpretation as a single linear regression

y∗|X∗, γ,Σ∗ ∼ N(X∗γ,Σ∗)

where

y∗ =

 y
0
α0

 X∗ =

 X 0
I −Xβ
0 I

 γ =

(
β
α

)

Σ∗ =

 Σy 0 0
0 Σβ 0
0 0 Σα


p(α, β,Σy ,Σβ |y) = N(y |Xβ,Σy )N(β|Xβα,Σβ)N(α|α0,Σα)



Hierarchical Linear Models
Computation (cont’d)

I Interpretation on previous slide builds on the fact that the two
sides of each equality below are the same distn statement

N(α|α0,Σα) = N(α0|α,Σα)

N(β|Xβα,Σβ) = N(0|β − Xβα,Σβ)

I Drawing samples from the posterior distribution
I p(α, β|Σy ,Σβ , y) is the posterior distn for a linear regression

model with known error variance matrix which is

N((X ′∗Σ
−1
∗ X∗)

−1(X ′∗Σ
−1
∗ y∗), (X

′
∗Σ
−1
∗ X∗)

−1)

I need p(Σy ,Σβ |y) to complete the joint posterior distn or
p(Σy ,Σβ |α, β, y) for Gibbs sampling

I hard to describe this last step in general
because of the many possible models

I Presidential Election example



Study design in Bayesian analysis

I Naive view: data collection doesn’t matter for Bayesian
inference

I Example where data collection doesn’t matter
I observe 9 successes in 24 trials

design 1: 24 Bernoulli trials
design 2: sample until you get 9 successes

I p(θ|y) ∝ θ9(1− θ)15p(θ) is the same for both designs

I Example where data collection does matter
I observe 9 successes, unknown number of trials

design 1: 24 Bernoulli trials
design 2: wait for 100 failures

I p(θ|y) surely depends on design



Study design in Bayesian analysis

I Study design is important
I pattern of what is observed can be informative
I ignorable designs (studies where design doesn’t effect

inference) are likely to be less sensitive to assumptions.
note: randomization is useful to Bayesians as a tool for
producing ignorable designs

I data one could have observed can help us to build models
(causality)



Study design in Bayesian analysis
General framework

I View the world in terms of observed data and
complete data, where complete data includes
observed and “missing” values

“Observed data” “Complete data”

Sampling Values for the n Values for all N
units in the sample units in the population

Experiment Outcomes under the observed Outcomes under all
treatment for each unit treated treatments for all units

Rounded data Rounded observations Precise values of
all observations

Unintentional Observed data values Complete data, both
missing data observed and missing



Formal models for data collection
Notation

I Data
y = (y1, . . . , yN)

where yi = (yi1, yi2, . . . , yin) = data for the ith unit.

I Indicators for observed values

I = (I1, . . . , IN)

where

Iij =

{
1 if yij is observed
0 otherwise

where yij is the jth variable for the ith unit.
Let obs = {i , j : Iij = 1} index the observed components of y
and mis = {i , j : Iij = 0} index the unobserved components of
y . Then y can be writen as y = (yobs , ymis).



Formal models for data collection

I Stability assumption
Measurement process (I ) doesn’t effect the data (y) (this
assumption fails if, for example, there are carryover effects or
treatments in soil leak out)

I Fully observed covariates x
We use the notation x for variables that are fully observed for
all units. We might want to include x in an analysis for the
following reasons:

I we may be interested in some aspect of the joint distribution
of (x , y)

I we may be interested in some of the distribution of y , but x
provides information about y

I even if we are only interested in y , we must include x in the
analysis if x is involved in the data collection mechanism



Formal models for data collection

I Complete-data model

p(y , I |x , θ, φ) = p(y |x , θ)p(I |x , y , φ)

I p(y |x , θ) models the underlying data without
reference to the data collection process

I The estimands of primary interest are
I functions of the complete data y

(finite-population estimands)
I functions of the parameters θ

(superpopulation estimands)

I The parameters φ that index the missingness are not generally
of scientific interest

I θ and φ can be related but this is rare



Formal models for data collection

I We don’t observe all of y
I Observed-data likelihood

p(yobs , I |x , θ, φ) =
∫

p(y , I |x , θ, φ) d ymis

=
∫
p(y |x , θ)p(I |x , y , φ) d ymis

I Posterior distributions
I joint posterior distribution of (θ, φ)

p(θ, φ|x , yobs , I ) ∝ p(θ, φ|x)p(yobs , I |x , θ, φ)
= p(θ, φ|x)

∫
p(y , I |x , θ, φ) d ymis

= p(θ, φ|x)
∫
p(y |x , θ)p(I |x , y , φ) d ymis

I marginal posterior distribution of θ

p(θ|x , yobs , I ) = p(θ|x)

∫ ∫
p(φ|x , θ)p(y |x , θ)p(I |x , y , φ) d ymis d φ

Note: We don’t have to perform the integrals above; as usual we

can simulate treating ymis , θ, and φ as unknowns



Ignorability

It is tempting to ignore data collection issues I and focus on

p(θ|x , yobs) = p(θ|x)p(yobs |x , θ)

= p(θ|x)
∫
p(y |x , θ) d ymis

When the missing data pattern supplies no information;
that is, when

p(θ|x , yobs) = p(θ|x , yobs , I )

we say that the study design or data collection mechanism is
ignorable (with respect to the proposed model)



Ignorability

When do we get ignorability?

First, some terminology
I Missing at random (MAR)

p(I |x , y , φ) = p(I |x , yobs , φ)

I whether a value is missing doesn’t depend on value it would
have had

I the state of being missing is allowed to depend on observed
values but not on unobserved values

I Missing completely at random (MCAR)

p(I |x , y , φ) = p(I |φ)

I Distinct parameters

p(φ|θ, x) = p(φ|x)



Ignorability

I If MAR and distinct parameters, then
p(θ|x , yobs , I ) = p(θ|x)

∫ ∫
p(φ|x , θ)p(y |x , θ)p(I |x , y , θ)d ymis d φ

= p(θ|x)
∫
p(y |x , θ)d ymis

∫
p(φ|x)p(I |x , yobs , φ)d φ︸ ︷︷ ︸

no info about θ
∝ p(θ|x)p(yobs |x , θ)
∝ p(θ|yobs , x)

we get ignorability



Formal models for data collection
Example 1

Weigh object 100 times with y |θ ∼ N(θ, 1)
Scale works with probability φ so that p(Ii = 1|y , φ) = φ

I Complete data

p(y , I |θ, φ) =
100∏
i=1

N(y |θ, 1)
100∏
i=1

φIi (1− φ)1−Ii

I Observed data

p(yobs , I |θ, φ) =
∫ 100∏

i=1

N(y |θ, 1)
100∏
i=1

φIi (1− φ)1−Iid ymis

= φ
∑

i Ii (1− φ)100−
∑

i Ii
100∏
i=1

N(yi |θ, 1)χ({Ii = 1})

where χ(A) is the indicator function of the event A.



Formal models for data collection
Example 1 (cont’d)

I Observed data

p(yobs , I |θ, φ) =
∫ 100∏

i=1

N(y |θ, 1)
100∏
i=1

φIi (1− φ)1−Iid ymis

= φ
∑

i Ii (1− φ)100−
∑

i Ii
100∏
i=1

N(yi |θ, 1)χ({Ii = 1})

because
100∏
i=1

∫
N(yi |θ, 1)χ({Ii = 0}) dyi = 1

where χ(A) is the indicator function of the event A.

I The data collection mechanism is ignorable



Formal models for data collection
Example 2

Weigh object 100 times with y |θ ∼ N(θ, 1)
Scale fails if weight > φ with φ unknown

I Complete data

p(y , I |θ, φ) =
100∏
i=1

N(yi |θ, 1)
100∏
i=1

χ(Ai )

where Ai = {{Ii = 1} ∩ {yi < φ}} ∪ {{Ii = 0} ∩ {yi > φ}}
I Observed data

p(yobs , I |θ, φ) =

∫
p(y , I |θ, φ)d ymis

=
100∏
i=1

N(yi |θ, 1)χ({Ii = 1})

×
100∏
i=1

χ({Ii = 0})
∫

N(yi |θ, 1)χ({yi > φ})d yi︸ ︷︷ ︸
Φ(θ−φ)=P(yi>φ)

I This censored data collection mechanism is not ignorable



Bayesian Statistics - Summary

I Model building
I basic probability distns as building blocks
I hierarchical structure
I condition on covariates to get ignorable designs

I Posterior inference
I the power of simulation
I flexible inference for any quantity of interest
I use of decision for formal problem-solving

I Model checking
I model checking/model selection
I importance of checking with all available info
I sensitivity analysis



Bayesian Statistics - Pro/Con

I Advantages
I account for uncertainty
I combine information from multiple sources
I probability is the language of uncertainty
I usual straightforward how to proceed with model development
I flexible inference and model extensions

I Disadvantages
I need for prior distn (importance of sensitivity analysis)
I always requires a formal model (except for Bayesian

nonparametrics)
I high dimensional nuisance parameters

(e.g., in survival analysis)
I communication with practitioners



Bayesian Statistics - Final thoughts

I There are differences between Bayesian methods
and traditional procedures

I Both will give reasonable data analyses
in good hands

I Bayesians can be interested in frequency
properties of procedures

I No need to declare as a Bayesian or Frequentist now (or ever)

I Goal of course has been exposure to the
fundamental concepts and methods of
Bayesian data analysis


