Statistics 225 Bayesian Statistical Analysis (Part 5)

Hal Stern

Department of Statistics University of California, Irvine sternh@uci.edu

March 28, 2019

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Models for robust inference and sensitivity analysis

- \triangleright Assume we have completed an analysis (i.e., we have obtained posterior simulations from a specified model)
- \triangleright Often want to assess:
	- \triangleright sensitivity of inferences (do the results change under other reasonable models)
	- \triangleright robustness to outliers by considering overdispersed alternatives to our model (e.g., t rather than normal)
	- \triangleright overdispersed version of model to address heterogeneity
	- \triangleright effect of other small changes (e.g., deleting an observation)
- \blacktriangleright Computational approaches
	- \triangleright exact posterior inference under new model (may be quite time consuming)

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

 \blacktriangleright approximate posterior inference using importance ratios

Models for robust inference and sensitivity analysis Example

 \triangleright Recall SAT coaching example:

 \triangleright data: $y = (28, 8, -3, 7, -1, 1, 18, 12)$

$$
\begin{array}{ll}\n\text{model:} & y_j | \theta_j \sim N(\theta_j, \sigma_j^2) \\
\theta_j | \mu, \tau^2 \sim N(\mu, \tau^2) \\
p(\mu, \tau) \propto 1\n\end{array}
$$

- \triangleright What happens if we replace 12 for 100?
	- **Exerche in** estimate of τ^2 gets bigger
	- **Exercise standards** v_i
	- \triangleright if school 8 is an outlier, this affects conclusions for other seven schools

KORK ERKER ADE YOUR

 \triangleright Would a *t*-model at one or both stages of the model help?

Models for robust inference and sensitivity analysis Overdispersed models

- \triangleright We have seen that allowing for heterogeneity among units leads to "new" overdispersed models
- \triangleright Binomial and Beta-Binomial
	- Standard model: y_i ∼ Binomial(*n*, *p*) $E(y_i) = np$ $V(y_i) = np(1 - p)$
	- Overdispersed model: $\Big\}$ ⇒ y_i \sim Beta-Binomial (n, α, β) $y_i \sim$ Binomial (n, p_i) ρ_i \sim Beta (α, β) $E(y_i) = n \left(\frac{\alpha}{\alpha + 1} \right)$ \setminus $\alpha+\beta$ $\frac{1}{p}$ $V(y_i) = n \left(\frac{\alpha}{\alpha + 1} \right)$ \bigwedge β $\left(\frac{\alpha+\beta+n}{\alpha+\beta+1}\right)$ $\alpha + \beta$ $\alpha + \beta$ \overline{p} $\frac{1}{1-p}$ (x) p $(*) =$ overdispersion factor .
◆ ロ ▶ → *덴* ▶ → 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

Models for robust inference and sensitivity analysis Overdispersed models (cont'd)

- **Poisson and Negative Binomial Poisson**
	- \blacktriangleright Poisson: variance equals to mean
	- \triangleright Negative Binomial: two-parameter distn allows the mean and variance to be fitted separately, with variance as least as great as the mean
	- \triangleright Overdispersed model:

$$
\left. \begin{array}{rcl} y_i & \sim & \textsf{Poisson}(\lambda_i) \\ \lambda_i & \sim & \textsf{Gamma}(\alpha, \beta) \end{array} \right\} \Rightarrow y_i \sim \textsf{Neg-Bin}(\alpha, \beta)
$$

$$
E(y_i) = \frac{\alpha}{\beta} \quad V(y_i) = \frac{\alpha}{\beta} \underbrace{\left(\frac{\beta+1}{\beta}\right)}_{(*)}
$$

KORK STRATER STRAKER

 $(*)$ = overdispersion factor

Models for robust inference and sensitivity analysis Overdispersed models (cont'd)

 \blacktriangleright Normal and *t*-distribution

t has a longer tail than the normal and can be used for accommodating:

- (a) occasional unusual observations in the data distribution
- (b) occasional extreme parameters in the prior distribution or hierarchical model

Overdispersed model:

$$
y_i \sim N(\mu, V_i)
$$

\n
$$
V_i \sim Inv_{\chi^2}(\nu, \sigma^2) \rightarrow y_i \sim t_{\nu}(\mu, \sigma^2)
$$

\n
$$
E(y_i) = \mu \qquad V(y_i) = \sigma^2 \underbrace{\left(\frac{\nu}{\nu - 2}\right)}_{(*)} \text{ for } \nu > 2
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

 $(*)$ = overdispersion factor

Models for robust inference and sensitivity analysis

 \triangleright Overdispersed (robust) models are "safer" in the sense that they include the non-robust models as a special case (e.g., normal is t with infinite d.f.)

- \triangleright Why not start with robust (expanded) models?
	- \triangleright non-robust models have special justification
		- \triangleright normal justified by CLT
		- **Poisson justified by Poisson process**
	- \triangleright non-robust models often computationally convenient

Models for robust inference and sensitivity analysis Notation for model expansion

- $p_o(y|\theta)$ = sampling distribution for original model
- \blacktriangleright $p(y|\theta, \phi)$ = expanded sampling model for y
- $\bullet \phi =$ hyperparameter defining expanded model
- \blacktriangleright Normal/t example

►
$$
y|\mu, \sigma^2, \nu \sim t_{\nu}(\mu, \sigma^2)
$$
 [i.e., $\theta = (\mu, \sigma^2)$
\nand $\phi = \nu$]
\n► $p_o(y|\mu, \sigma^2) = N(y|\mu, \sigma^2)$ [$\nu = \infty$]

 \triangleright Can be applied to data model (as above) or prior distribution for θ in a hierarchical model

KORKAR KERKER EL VOLO

Models for robust inference and sensitivity analysis Computation

- \blacktriangleright Possible inferences
	- In fit the model for one or more fixed ϕ 's

 $p(\theta|y, \phi) \propto p(\theta|\phi)p(y|\theta, \phi)$

KORK ERKER ADE YOUR

e.g., $\phi = 4$ d.f. for *t*-distribution.

- **Examine joint posterior of** θ **and** ϕ $p(\theta, \phi | y) = p(\phi | y) p(\theta | y, \phi)$
- \blacktriangleright Computational approaches:
	- \blacktriangleright redo analysis for expanded model (use MCMC, especially Gibbs sampling)
	- \triangleright approximations based on importance weights
	- \blacktriangleright approximations based on importance resampling

Models for robust inference and sensitivity analysis Computation: complete analysis

Consider t_v distribution (ν specified) as a robust alternative to normal model

 \blacktriangleright Model:

$$
y_i|\mu, Vi, \sigma^2 \sim N(\mu, V_i \sigma^2)
$$
 $V_i \sim Inv-\chi^2(\nu, 1)$
 $p(\mu, \sigma^2) \propto \sigma^{-2}$

 \blacktriangleright Posterior distribution

$$
p(\mu, \sigma^2, V | y, \nu) \propto \frac{1}{\sigma^2} \prod_{i=1}^n \left[\frac{e^{-\nu/(2V_i)}}{V_i^{\nu/2+1}} \right] \times \prod_{i=1}^n \frac{e^{-\frac{1}{2} \frac{(y_i - \mu)^2}{V_i \sigma^2}}}{\sqrt{\sigma^2 V_i}}
$$

 \triangleright Computation via Gibbs sampler

►
$$
\mu | V_i, \sigma^2, y \sim N \left(\frac{\sum_{i=1}^{n} y_i / \dot{V}_i}{\sum_{i=1}^{n} 1 / V_i}, \frac{\sigma^2}{\sum_{i=1}^{n} 1 / V_i} \right)
$$

\n▶ $\sigma^2 | V_i, \mu, y \sim \ln \sqrt{2} \left(n, \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - \mu)^2}{V_i} \right)$

\n▶ $V_i | \mu, \sigma^2, y \sim \ln \sqrt{2} \left(\nu + 1, \frac{\nu + \frac{(y_i - \mu)^2}{\sigma^2}}{\nu + 1} \right)$

Models for robust inference and sensitivity analysis Computation: complete analysis (cont'd)

- What if ν is unknown? Give it a prior distn $p(\nu)$ and include in the model as a parameter
- \blacktriangleright Posterior distribution

$$
p(\mu, \sigma^2, V, \nu | y) \propto \frac{p(\nu)}{\sigma^2} \prod_{i=1}^n \left[\frac{e^{-\nu/(2V_i)}(\nu/2)^{\nu/2}}{\Gamma(\nu/2) V_i^{\nu/2+1}} \right] \times \prod_{i=1}^n \frac{e^{-\frac{1}{2} \frac{(y_i - \mu)^2}{V_i \sigma^2}}}{\sqrt{\sigma^2 V_i}}
$$

 \sim

- \blacktriangleright First three Gibbs steps are same as on previous slide
- \triangleright Metropolis step to draw from conditional distn of ν , that is $p(\nu|\sigma^2, \mu, V, y)$

- \triangleright Want to consider robust model without redoing the analysis
- **In** Suppose interested in quantity of the form $E[h(\theta)|\phi, y]$
	- \blacktriangleright importance sampling review:

$$
E(g) = \int g(y)f(y)dy = \int \frac{g(y)f(y)}{p(y)}p(y)dy
$$

$$
\approx \frac{1}{N} \sum_{i=1}^{N} \frac{g(y)f(y_i)}{p(y_i)}
$$

where y_i 's are sampled from $p(y)$

 \blacktriangleright importance sampling approach (sometimes called importance weighting here)

$$
\mathcal{F}[h(\theta)|\phi,y] = \int h(\theta)p(\theta|\phi,y)d\theta
$$

=
$$
\underbrace{\frac{p_o(y)}{p(y|\phi)}}_{\phi(\theta)p_o(y|\theta)} \int \frac{h(\theta)p(\theta|\phi)p(y|\theta,\phi)}_{p_o(\theta)p_o(y|\theta)} p_o(\theta|y)d\theta
$$

unknown

- \triangleright initial unknown term makes things slightly different
- ightharpoonup use draws θ^l , $l = 1, \ldots, L$ from $p_o(\theta|y)$ but not the usual importance sampling estimate4 D > 4 P + 4 B + 4 B + B + 9 Q O

- Importance sampling (weighting) (cont'd)
	- ► estimate $E[h(\theta)|\phi, y]$ with

$$
\hat{h} = \frac{\frac{1}{L} \sum_{l=1}^{L} \frac{h(\theta^l) \rho(\theta^l | \phi) p(y | \theta^l, \phi)}{p_o(\theta^l) p_o(y | \theta^l)} \frac{p_o(y)}{p(y | \phi)}}{\frac{1}{L} \sum_{l=1}^{L} \frac{p(\theta^l | \phi) p(y | \theta^l, \phi)}{p_o(\theta^l) p_o(y | \theta^l)} \frac{p_o(y)}{p(y | \phi)}}
$$

i.e.

$$
\hat{h} = \frac{\frac{1}{L} \sum_{l=1}^{L} \omega_l h(\theta^l)}{\frac{1}{L} \sum_{l=1}^{L} \omega_l} = \frac{\sum_{l=1}^{L} \omega_l h(\theta^l)}{\sum_{l=1}^{L} \omega_l}
$$

where

$$
\omega_I = \frac{p(\theta'|\phi)p(\mathbf{y}|\theta',\phi)}{p_o(\theta')p_o(\mathbf{y}|\theta')}
$$

ightharpoonting in \hat{h} is same as numerator with $h = 1$ **Example 12** is the stimates reciprocal of un[kno](#page-11-0)[wn constant\)](#page-0-0)

- \blacktriangleright Importance resampling
	- \triangleright may be interested in quantities that are not posterior expectations
	- \triangleright related idea of importance resampling is to obtain an "approximate sample" from $p(\theta|\phi, y)$
		- \blacktriangleright sample θ^l , $l=1,\ldots,L$ from $p_o(\theta|{\mathsf{y}})$ with <code>L</code> large
		- \blacktriangleright calculate importance ratios

$$
\frac{\rho(\theta'|\phi)\rho(\textcolor{black}{y}|\theta',\phi)}{p_o(\theta')p_o(\textcolor{black}{y}|\theta')}
$$

- \blacktriangleright check distribution of importance ratios
- \triangleright subsample *n* draws without replacement from *L* draws with probability proportional to importance ratio.
- \blacktriangleright why without replacement? to provide protection against the worst case scenario where one θ has enormous "importance"

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \blacktriangleright Importance sampling and importance resampling

- **F** importance sampling estimates $E(h(\theta)|y, \phi)$, importance resampling obtains approximate posterior sample
- \triangleright if there a small number of large importance weights, then both approximations are suspect

- \triangleright Accuracy and efficiency of importance sampling estimates
	- \triangleright no method exists for assessing how accurate the importance resampling (or reweighted) draws are as an approximation of the posterior distribution
	- \triangleright check distribution of importance ratios to assess quality of estimate
	- \triangleright performance depends on variability in importance ratios
	- \triangleright estimates will often be poor if the largest ratios are too large relative to the others

KORK STRATER STRAKER

 \triangleright note small importance ratios are not a problem (they have little influence on $E[h(\theta)|\phi, y]$)

- \blacktriangleright Notation Given a sample of size n
	- y_i response or outcome variable for unit i

$$
\blacktriangleright y = (y_1, \ldots, y_n)'
$$

 $x_i = (x_{i1}, \ldots, x_{ik})$ - explanatory variables for unit *i*; usually $x_{i1} \equiv 1 \ \forall i$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 $X = n \times k$ matrix of predictors

Justification of conditional modeling

$$
\blacktriangleright
$$
 Full model for (y, X)

$$
p(y, X | \theta, \psi) = p(X | \psi) p(y | X, \theta)
$$

Posterior distribution for (θ, ψ)

 $p(\psi, \theta | X, y) \propto p(X|\psi)p(y|X, \theta)p(\psi, \theta)$

If ψ and θ are independent in their prior distribution, i.e. $p(\psi, \theta) = p(\psi)p(\theta)$, then

$$
p(\psi, \theta | X, y) = p(\psi | X) p(\theta | X, y)
$$

 \triangleright We can analyze the second factor by itself with no loss of information

$$
\rho(\theta|X,y) \propto \rho(\theta) \rho(y|X,\theta)
$$

 \triangleright Note: If the explanatory variables X are set by experimenter, then $p(X)$ is known, and there are no parameters ψ ; this also justifies conditional modeling4 D > 4 P + 4 B + 4 B + B + 9 Q O

Goal: statistical inference for the parameters θ , conditional on X and y

- \triangleright Since everything is conditional on X, we'll suppress it in subsequent notation
- \blacktriangleright Modeling issues
	- 1. defining X and y so that the conditional expectation of y given X is reasonably linear as a function of X
	- 2. setting up a prior distribution on the model parameters that acccurately reflects substantive knowledge,

Normal ordinary linear regression model

 \blacktriangleright Assumptions

$$
y|\beta,\sigma^2\sim N(X\beta,\sigma^2 I)
$$

where *I* is the $n \times n$ identity matrix

ighthrought the distribution of y given X is a normal r.v. whose mean is a linear function of X

$$
E(y_i|\beta, X) = (X\beta)_i = \beta_1x_{i1} + \ldots + \beta_kx_{ik}
$$

KORKA SERKER ORA

$$
\blacktriangleright \; \text{Var}(y|\beta, \sigma^2) = \sigma^2 I
$$

- ► can think of $y X\beta$ as "errors"
- \triangleright observation errors are independent
- \triangleright observation errors are constant variance

Normal ordinary linear regression model

 \triangleright Standard noninformative prior distribution

$$
p(\beta,\sigma^2|X)\propto \sigma^{-2}
$$

 \blacktriangleright Posterior distribution

$$
p(\beta, \sigma^2 | y) \propto p(y | \beta, \sigma^2) p(\beta, \sigma^2)
$$

$$
\propto \left[\frac{1}{\sigma}\right]^n \exp\left\{-\frac{1}{2} \frac{(y - X\beta)'(y - X\beta)}{\sigma^2}\right\} \frac{1}{\sigma^2}
$$

=
$$
\left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}+1} \exp\left\{-\frac{\beta' X' X \beta - 2\beta' X' y + y' y}{2\sigma^2}\right\}
$$

Completing the square gives

$$
p(\beta, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{p}{2}+1} \exp\left\{-\frac{(\beta - (X'X)^{-1}X'y)'(X'X)(\beta - (X'X)^{-1}X'y)}{2\sigma^2}\right\}
$$

$$
\times \exp\left\{-\frac{y'y - y'X(X'X)^{-1}X'y}{2\sigma^2}\right\}
$$

K □ ▶ K @ ▶ K 할 X K 할 X T 할 X 1 9 Q Q *

Normal ordinary linear regression model

 \triangleright Posterior distribution (cont'd) Completing the square gives

$$
p(\beta, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}+1} \exp\left\{-\frac{(\beta - (X'X)^{-1}X'y)'(X'X)(\beta - (X'X)^{-1}X'y)}{2\sigma^2}\right\}
$$

$$
\times \exp\left\{-\frac{y'y - y'X(X'X)^{-1}X'y}{2\sigma^2}\right\}
$$

Thus

$$
p(\beta, \sigma^2 | y) = \underbrace{p(\beta | \sigma^2, y)}_{N(\beta | \hat{\beta}, \sigma^2(X'X)^{-1})} \times \underbrace{p(\sigma^2 | y)}_{\text{Inv-}\chi^2(\sigma^2 | n-k, s^2)}
$$

where

$$
\hat{\beta} = (X'X)^{-1}X'y \text{ and } s^2 = \frac{(y - X\hat{\beta})'(y - X\hat{\beta})}{n - k}
$$

Normal ordinary linear regression model

- ► Posterior distribution, $p(\beta, \sigma^2 | y)$, is proper as long as:
	- 1. $n > k$
	- 2. rank $(X) = k$

Sampling from the posterior distribution of (β, σ^2) Recall:

$$
\hat{\beta} = (X'X)^{-1}X'y \text{ and } s^2 = \frac{(y-\hat{\beta}X)'(y-\hat{\beta}X)}{n-k}
$$

Also let $V_{\beta} = (X'X)^{-1}$

1. compute $\hat{\beta}$ and V_{β} (note: these calculations are not usually done with traditional matrix calculations)

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

- 2. compute s^2
- 3. draw σ^2 from $p(\sigma^2|y) = \ln y \chi^2(\sigma^2|n-k, s^2)$
- 4. draw β from $p(\beta|\sigma^2, y) = N(\beta|\hat{\beta}, \sigma^2 V_{\beta})$

Normal ordinary linear regression model

- \triangleright Posterior predictive distribution for new data
	- \triangleright consider new data to be collected with observed predictor matrix \tilde{X} ; we wish to predict the outcomes, \tilde{y}
	- \blacktriangleright posterior predictive simulation
		- ► first draw (β, σ^2) from their joint posterior distn
		- ► then draw $\tilde{y} \sim N(\tilde{X}\beta, \sigma^2 I)$
	- \triangleright posterior predictive distribution is

$$
\tilde{y}|\sigma^2, y \sim N(\tilde{X}\hat{\beta}, (I + \tilde{X}V_{\beta}\tilde{X}')\sigma^2),
$$

averaging over σ^2 gives

$$
\tilde{y}|y \sim t_{n-k}(\hat{\beta}, (I + \tilde{X}V_{\beta}\tilde{X}')s^2)
$$

KORKAR KERKER EL VOLO

Model checking

- \blacktriangleright Diagnostics
	- \triangleright residual plots (traditional or Bayesian versions)
	- \blacktriangleright posterior predictive checks
- \blacktriangleright Problems/solutions
	- \blacktriangleright nonlinearity
		- \triangleright wrong model so all inferences are suspect
		- \blacktriangleright fix by transformation and/or adding predictors (or polynomial terms)
	- \blacktriangleright nonnormality
		- \triangleright inferences are not quite right (usually not terribly important since posterior distn can be nearly normal even if data are not)
		- \triangleright fix by transformation or by using robust models

Regression Models Model checking (cont'd)

- \blacktriangleright Problems/solutions (cont'd)
	- \blacktriangleright unequal variances
		- \triangleright bad inferences (variance is the problem)
		- \blacktriangleright fix by generalizing the model $(\mathsf{GLS}\colon y|\beta, \Sigma_y \sim \mathsf{N}(X\beta, \Sigma_y)$ with $\Sigma_y \neq \sigma^2 I)$
		- \triangleright can be solved by adding missing predictor
	- \triangleright correlations
		- \triangleright bad inferences (variance is the problem)
		- \triangleright fix by generalizing the model (GLS)
		- \triangleright can be solved by adding missing predictor (time, space)

Generalized Least Squares Model

$$
y|\beta, \Sigma_y \sim N(X\beta, \Sigma_y)
$$

Possible choices for Σ_v

$$
\blacktriangleright \Sigma_{y} \text{ known}
$$

$$
\blacktriangleright \Sigma_y = \sigma^2 Q_y \text{ with } Q_y \text{ known}
$$

- $\blacktriangleright \;\sum_y = f\big(\sigma^2,\phi\big)$ i.e. a function of some unknown parameters beyond σ^2
- **Posterior distribution for special case** Σ_y **known** Let $y^* = \sum_{y}^{-1/2} y$ then

$$
y^*|\beta \sim N(\Sigma_y^{-1/2}X\beta, I)
$$

Hence

$$
p(\beta|y) = N(\hat{\beta}, V_{\beta}) \text{ where } \hat{\beta} = (X'\Sigma_y^{-1}X)^{-1}X'\Sigma_y^{-1}y
$$

$$
V_{\beta} = (X'\Sigma_y^{-1}X)^{-1}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Generalized Least Squares Model

 \blacktriangleright Special case: $\Sigma_{y}=Q_{y}\sigma^{2}$ (with Q_{y} known) $p(\beta, \sigma^2 | y) = p(\sigma^2 | y) p(\beta | y, \sigma^2)$ $p(\sigma^2|y) = \ln y - \chi^2$ $n - k$, $(y - X\hat{\beta})'Q_y^{-1}(y - X\hat{\beta})$ $n - k$ \setminus $p(\beta|y,\sigma^2)=N(\hat{\beta},\sigma^2V_{\beta})$

where

$$
\hat{\beta} = (X'Q_y^{-1}X)^{-1}X'Q_y^{-1}y
$$

and

$$
V_\beta=(X'Q_y^{-1}X)^{-1}
$$

 \triangleright Note: prediction can be harder in this case since must account for possible correlation between \tilde{y} and y in $Q_{v,\tilde{y}}$

Generalized Least Squares Model

- \blacktriangleright General case $(\sigma^2$ included inside $\Sigma_{\rm y}$ perhaps with other parameters also)
	- \blacktriangleright prior distn: $p(\beta, \Sigma_y) = p(\Sigma_y) p(\beta | \Sigma_y) \propto p(\Sigma_y)$ \overline{f} flat \blacktriangleright joint posterior distn: $p(\beta, \Sigma_{\nu}|y) \propto p(\Sigma_{\nu})N(y|X\beta, \Sigma_{\nu})$ \blacktriangleright factor joint posterior distn: $p(\beta, \Sigma_y | y) = p(\Sigma_y | y) \underbrace{p(\beta | \Sigma_y, y)}$ $N(\beta|\hat{\beta}, V_{\beta})$ where $\hat{\beta} = (X'\Sigma_y^{-1}X)^{-1}X'\Sigma_y^{-1}y$ and $V_\beta = (X'\Sigma_y^{-1}X)^{-1}$ **►** the hard part here is $p(\sum_{y} |y)$:

$$
p(\Sigma_y|y) = \frac{p(\beta, \Sigma_y|y)}{p(\beta|\Sigma_y, y)} \propto \frac{p(\Sigma_y)N(y|X\beta, \Sigma_y)}{N(\beta|\hat{\beta}, V_{\beta})}\Big|_{\beta=\hat{\beta}}
$$

= $|V_{\beta}|^{-\frac{1}{2}}p(\Sigma_y)|\Sigma_y|^{-\frac{1}{2}}e^{-\frac{1}{2}(y-X\hat{\beta})'\Sigma_y^{-1}(y-X\hat{\beta})}$

Prior information

- ► Suppose $y|\beta, \sigma^2 \sim N(X\beta, \sigma^2 I)$
- \blacktriangleright Conjugate analysis
	- \triangleright conjugate prior distribution

 $p(\beta,\sigma^2)=p(\sigma^2)p(\beta|\sigma^2)=\mathsf{Inv}\text{-}\chi^2(\sigma^2|n_0,\sigma_0^2)\times\mathsf{N}(\beta|\beta_0,\sigma^2\Sigma_0)$

 \blacktriangleright posterior distribution

$$
p(\beta|\sigma^2, y) = N(\beta|\tilde{\beta}, V_{\beta})
$$

$$
p(\sigma^2|y) = \ln v \cdot \chi^2(\sigma^2|n + n_0, \phi)
$$

where

$$
\tilde{\beta} = (\Sigma_0^{-1} + X'X)^{-1}(\Sigma_0^{-1}\beta_0 + (X'X)\hat{\beta})
$$
\n
$$
V_{\beta} = \sigma^2(\Sigma_0^{-1} + X'X)^{-1}
$$
\n
$$
\phi = (n - k)s^2 + n_0\sigma_0^2
$$
\n
$$
+ (\hat{\beta} - \beta_0)' \Sigma_0^{-1} (\Sigma_0^{-1} + X'X)^{-1} X'X (\hat{\beta} - \beta_0)
$$
\n
$$
\hat{\beta} = (X'X)^{-1} (X'y)
$$
\n
$$
s^2 = (y - X\hat{\beta})'(y - X\hat{\beta})/(n - k)
$$

Prior information

- ► Suppose $y|\beta, \sigma^2 \sim N(X\beta, \sigma^2 I)$
- \blacktriangleright Semi-conjugate analysis
	- \blacktriangleright prior distribution

$$
p(\beta, \sigma^2) = p(\sigma^2)p(\beta) = \ln v \cdot \chi^2(\sigma^2 | n_0, \sigma_0^2) \times N(\beta | \beta_0, \Sigma_0)
$$

 \blacktriangleright posterior distribution

$$
p(\beta|\sigma^2, y) = N(\beta|\tilde{\beta}, V_{\beta})
$$

\n
$$
p(\sigma^2|y) = p(\beta, \sigma^2|y)/p(\beta|\sigma^2, y) \text{ (a 1-dim grid)}
$$

where

$$
\tilde{\beta} = (\Sigma_0^{-1} + \sigma^{-2}X'X)^{-1}(\Sigma_0^{-1}\beta_0 + \sigma^{-2}(X'X)\hat{\beta})
$$

\n
$$
V_{\beta} = (\Sigma_0^{-1} + \sigma^{-2}X'X)^{-1}
$$

New view of prior information

- ► Consider prior information for a single regression coefficient β_i of the form $\beta_j \sim {\mathsf N}(\beta_{j0}, \sigma_{\beta_j}^2)$ with β_{j0} and $\sigma_{\beta_j}^2$ known
- ► Mathematically equivalent to $\beta_{j0} \sim \mathsf{N}(\beta_j, \sigma^2_{\beta_j})$
- \blacktriangleright Prior can be viewed as "additional data"
- ► Can write $y^* | \beta, \Sigma^* \sim N(X^* \beta, \Sigma^*)$ with

$$
y^* = \begin{pmatrix} y \\ \beta_{j0} \end{pmatrix} \quad X^* = \begin{bmatrix} X \\ J \end{bmatrix} \quad \Sigma^* = \begin{bmatrix} \Sigma_y & 0 \\ 0 & \sigma_{\beta_j}^2 \end{bmatrix}
$$

where $J=(0,\ldots,0,\mathbin{\ldotp} 1)$ $\bigg| \bigg|$ j $, 0, \ldots, 0)$

- ► Posterior distn is $p(\beta, \Sigma^*|y) \propto p(\Sigma_y) N(y^*|\beta, \Sigma^*)$ (last term is product of two normal distns)
- \blacktriangleright If $\sigma_{\beta_j}^2\to +\infty$, the added "data point" has no effect on inference
- \blacktriangleright If $\sigma_{\beta_j}^2=0$, the added "data point" fixs β_j exactly to β_{j0}

New view of prior information

- \triangleright Same idea works for prior distn for the whole vector β if $\beta \sim N(\beta_0, \Sigma_\beta)$ with β_0, Σ_β known
- \blacktriangleright Treat the prior distribution as k prior "data points"
- ► Write $y_* \sim N(X_*\beta, \Sigma_*)$ with

$$
y_* = \left(\begin{array}{c} y \\ \beta_0 \end{array}\right) \quad X_* = \left[\begin{array}{c} X \\ I_k \end{array}\right] \quad \Sigma_* = \left[\begin{array}{cc} \Sigma_y & 0 \\ 0 & \Sigma_\beta \end{array}\right]
$$

 \blacktriangleright Posterior distn is

$$
p(\beta, \Sigma_{*}|y) \propto p(\Sigma_{y}) \times \underbrace{\mathcal{N}(y_{*}|X_{*}\beta, \Sigma_{*})}_{\mathcal{N}(y|X\beta, \Sigma_{y})\mathcal{N}(\beta|\beta_{0}, \Sigma_{\beta})}
$$

- If some of the components of β have infinite variance (i.e. noninformative prior distributions), they should be excluded from these added "prior" data points
- **If** The joint prior distribution for β is proper if all k components have proper prior distributions; i.e. $rank(\Sigma_{\beta}) = k$ $rank(\Sigma_{\beta}) = k$ $rank(\Sigma_{\beta}) = k$ $rank(\Sigma_{\beta}) = k$

- \triangleright Motivation - combine hierarchical modeling ideas with regression framework
- \blacktriangleright Useful way to handle
	- \blacktriangleright random effects
	- \triangleright units that can be considered at two or more levels (students in classes in schools)
- \blacktriangleright General Notation
	- \blacktriangleright Likelihood for *n* data points

$$
y|\beta, \Sigma_y \sim N(X\beta, \Sigma_y)
$$

(often $\Sigma_y = \sigma^2 I$)

 \triangleright Prior distn on J regression coefficients

$$
\beta|\alpha,\Sigma_\beta\sim \mathsf{N}(X_\beta\alpha,\Sigma_\beta)
$$

(often $X_{\beta}=1$ and $\Sigma_{\beta}=\sigma_{\beta}^2I$)

• Hyperprior distribution on K parameters α

$$
\alpha|\alpha_0,\Sigma_\alpha\sim\textit{N}(\alpha_0,\Sigma_\alpha)
$$

with α_0, Σ_α known (often assume $p(\alpha) \propto 1$ $p(\alpha) \propto 1$ $p(\alpha) \propto 1$)

Hierarchical Linear Models Example: J regression expts

- ► Model for j th experiment is $y_j|\underline{\beta}_j,\sigma_j^2\sim \mathsf{N}(X_j\underline{\beta}_j,\sigma_j^2I)$ where $y_j = (y_{1j}, y_{2j}, \ldots, y_{n_jj})$
- \triangleright The regressions can be viewed as a single model

$$
y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_J \end{pmatrix} X = \begin{pmatrix} X_1 & 0 & \cdots & 0 \\ 0 & X_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & X_J \end{pmatrix} \beta = \begin{pmatrix} \frac{\beta_1}{\beta_2} \\ \vdots \\ \frac{\beta_J}{\beta_J} \end{pmatrix}
$$

- \blacktriangleright Hierarchy involves setting a prior distn for $\underline{\beta}_j$'s, often $\underline{\beta}_j|\underline{\alpha},\Sigma_\beta\sim \mathsf{N}(\underline{\alpha},\Sigma_\beta)$
- ► Also need hyperpriors, e.g., $p(\underline{\alpha},\Sigma_{\beta})\propto 1,\,\sigma_j^2\sim \mathsf{Inv}\text{-}\chi^2(\textsf{c},\textsf{d})$
- \blacktriangleright Implied model is

$$
y_j | \underline{\alpha}, \sigma_j^2, \Sigma_\beta \sim N(X_j \underline{\alpha}, \sigma_j^2 I + X_j' \Sigma_\beta X_j)
$$

In The hierarchy introduces correlation in [th](#page-33-0)e [distn of](#page-0-0) y_j y_j y_j

Hierarchical Linear Models Other examples

 \triangleright SAT coaching example (a.k.a. 8 schools)

$$
y|\underline{\beta}, \sigma^2 \sim N\left[I_8 \underline{\beta}, \begin{pmatrix} \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_8^2 \end{pmatrix} \right]
$$

$$
\underline{\beta}|\alpha, \sigma_\beta^2 \sim N(\underline{1}\alpha, \sigma_\beta^2 I_8)
$$

 \blacktriangleright Animal breeding

$$
y|\beta, u, \sigma^2 \sim N\left(\frac{\chi\beta + Zu}{Z}\right), \sigma^2 I\right)
$$

$$
\left(\frac{\chi}{Z}\right) \left(\frac{\beta}{u}\right)
$$

$$
u|\sigma^2 \sim N(0, \sigma^2 \land A) \qquad \rho(\beta) \propto 1
$$

Random effects to introduce correlation

- \triangleright More about how random effects introduce correlation by considering two models
- \triangleright Model 1 introduces correlation directly
- \triangleright Model 2 introduces correlation through hierarchical model

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Random effects to introduce correlation (cont'd)

- \blacktriangleright Model 1
	- \blacktriangleright n_i obs from group/cluster j
	- \triangleright expect objects in a group to be correlated
	- ► assume $y_j = (y_{1j}, y_{2j}, \ldots, y_{n_jj})'|\alpha, A_j \sim \mathcal{N}(\alpha \underline{1}, A_j)$ where

$$
A_j = \begin{pmatrix} \sigma^2 & \rho \sigma^2 & \cdots & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 & \cdots & \rho \sigma^2 \\ \vdots & & \ddots & \vdots \\ \rho \sigma^2 & \rho \sigma^2 & & \sigma^2 \end{pmatrix}_{n_j \times n_j}
$$

 \triangleright combine data into single model with correlated observations so that $y = (y_1, y_2, \dots, y_J)' | \alpha, \Sigma_y \sim N(\alpha \underline{1}, \Sigma_y)$ where $\Sigma_{\mathsf y} =$ $\sqrt{ }$ $\overline{}$ A_1 0 \cdots 0 0 A_2 \cdots 0 .
.
. $0 \t 0 \t A_J$ \setminus $\Bigg\}$

Random effects to introduce correlation (cont'd) \blacktriangleright Model 2 – Let

$$
X = \left(\begin{array}{cccc}1_{n_1} & 0 & \cdots & 0 \\0 & 1_{n_2} & \cdots & 0 \\ & & \ddots & \vdots \\ & & & 1_{n_J}\end{array}\right) \quad \text{and} \quad \beta = \left(\begin{array}{c}\beta_1 \\ \vdots \\ \beta_J\end{array}\right)
$$

and assume

$$
y|\beta, \tau^2 \sim N(X\beta, \tau^2 I) \}\n\beta|\alpha, \tau_{\beta}^2 \sim N(\alpha \underline{1}, \tau_{\beta}^2 I) \right\} \Rightarrow y|\alpha, \tau^2, \tau_{\beta}^2 \sim N\left(\alpha \underline{1}, \begin{pmatrix} B_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & B_J \end{pmatrix}\right)
$$

where

$$
B_j = \begin{pmatrix} \tau^2 + \tau_\beta^2 & \cdots & \tau_\beta^2 \\ \vdots & \ddots & \vdots \\ \tau_\beta^2 & \cdots & \tau^2 + \tau_\beta^2 \end{pmatrix}_{n_j \times n_j}
$$

\n
$$
\blacktriangleright \text{ Model 1} = \text{Model 2 (with } \sigma^2 = \tau^2 + \tau_\beta^2 \text{ and } \rho = \frac{\tau_\beta^2}{\tau_\beta^2 + \tau_\beta^2} \text{ and } \tau_\beta = \frac{\tau_\beta^2}{\tau_\beta^2 + \tau_\beta^2} \text{ and } \tau
$$

Hierarchical Linear Models Computation

 \blacktriangleright Recall

"likelihood" "population distribution" "hyperprior distribution"

$$
\begin{array}{l} y|\beta, \Sigma_y \sim \mathsf{N}(X\beta, \Sigma_y) \\ \beta|\alpha, \Sigma_\beta \sim \mathsf{N}(X_\beta\alpha, \Sigma_\beta) \\ \alpha|\alpha_0, \Sigma_\alpha \sim \mathsf{N}(\alpha_0, \Sigma_\alpha) \end{array}
$$

Interpretation as a single linear regression

$$
y_*|X_*,\gamma,\Sigma_* \sim \textit{N}(X_*\gamma,\Sigma_*)
$$

where

$$
y_* = \begin{pmatrix} y \\ 0 \\ \alpha_0 \end{pmatrix} \quad X_* = \begin{pmatrix} X & 0 \\ I & -X_\beta \\ 0 & I \end{pmatrix} \quad \gamma = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}
$$

$$
\Sigma_* = \begin{pmatrix} \Sigma_y & 0 & 0 \\ 0 & \Sigma_\beta & 0 \\ 0 & 0 & \Sigma_\alpha \end{pmatrix}
$$

$$
p(\alpha, \beta, \Sigma_y, \Sigma_\beta | y) = N(y | X\beta, \Sigma_y) N(\beta | X_\beta \alpha, \Sigma_\beta) N(\alpha | \alpha_0, \Sigma_\alpha)
$$

Hierarchical Linear Models Computation (cont'd)

Interpretation on previous slide builds on the fact that the two sides of each equality below are the same distn statement

$$
\mathcal{N}(\alpha|\alpha_0,\Sigma_\alpha)=\mathcal{N}(\alpha_0|\alpha,\Sigma_\alpha)
$$

$$
\mathsf{N}(\beta|X_{\beta}\alpha,\Sigma_{\beta})=\mathsf{N}(0|\beta-X_{\beta}\alpha,\Sigma_{\beta})
$$

- \triangleright Drawing samples from the posterior distribution
	- \blacktriangleright $p(\alpha, \beta | \Sigma_{\nu}, \Sigma_{\beta}, y)$ is the posterior distn for a linear regression model with known error variance matrix which is

$$
N((X'_{*}\Sigma_{*}^{-1}X_{*})^{-1}(X'_{*}\Sigma_{*}^{-1}y_{*}), (X'_{*}\Sigma_{*}^{-1}X_{*})^{-1})
$$

KORK (FRAGE) EL POLO

- rian need $p(\Sigma_v, \Sigma_\beta | y)$ to complete the joint posterior distribution $p(\Sigma_{v}, \Sigma_{\beta}|\alpha, \beta, y)$ for Gibbs sampling
- \triangleright hard to describe this last step in general because of the many possible models
- \blacktriangleright Presidential Election example

Study design in Bayesian analysis

- \triangleright Naive view: data collection doesn't matter for Bayesian inference
- \blacktriangleright Example where data collection doesn't matter
	- \triangleright observe 9 successes in 24 trials design 1: 24 Bernoulli trials design 2: sample until you get 9 successes
	- $\blacktriangleright~~ p(\theta|y)\propto \theta^9(1-\theta)^{15}p(\theta)$ is the same for both designs

- \blacktriangleright Example where data collection does matter
	- \triangleright observe 9 successes, unknown number of trials design 1: 24 Bernoulli trials design 2: wait for 100 failures
	- \blacktriangleright $p(\theta|\mathsf{y})$ surely depends on design

Study design in Bayesian analysis

- \triangleright Study design is important
	- \triangleright pattern of what is observed can be informative
	- \triangleright ignorable designs (studies where design doesn't effect inference) are likely to be less sensitive to assumptions. note: randomization is useful to Bayesians as a tool for producing ignorable designs
	- \triangleright data one could have observed can help us to build models (causality)

Study design in Bayesian analysis General framework

 \triangleright View the world in terms of observed data and complete data, where complete data includes observed and "missing" values

つへへ

Formal models for data collection Notation

\blacktriangleright Data

$$
\boldsymbol{y} = (y_1, \ldots, y_N)
$$

where $y_i = (y_{i1}, y_{i2}, \ldots, y_{in}) =$ data for the *i*th unit.

 \blacktriangleright Indicators for observed values

$$
\mathbf{\mathit{I}}=(\mathit{I}_1,\ldots,\mathit{I}_N)
$$

where

$$
I_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } y_{ij} \text{ is observed} \\ 0 & \text{otherwise} \end{array} \right.
$$

where y_{ii} is the *j*th variable for the *i*th unit. Let $obs = \{i, j : I_{ii} = 1\}$ index the observed components of y and $mis = \{i, j : I_{ii} = 0\}$ index the unobserved components of y. Then y can be writen as $y = (y_{obs}, y_{mis})$. **A O A G A 4 O A C A G A G A 4 O A C A**

Formal models for data collection

\blacktriangleright Stability assumption

Measurement process (I) doesn't effect the data (y) (this assumption fails if, for example, there are carryover effects or treatments in soil leak out)

- \blacktriangleright Fully observed covariates x We use the notation x for variables that are fully observed for all units. We might want to include x in an analysis for the following reasons:
	- \triangleright we may be interested in some aspect of the joint distribution of (x, y)
	- ighthrow we may be interested in some of the distribution of y , but x provides information about y
	- riation even if we are only interested in y, we must include x in the analysis if x is involved in the data collection mechanism

Formal models for data collection

 \blacktriangleright Complete-data model

$$
p(y, I|x, \theta, \phi) = p(y|x, \theta)p(I|x, y, \phi)
$$

- \blacktriangleright $p(y|x, \theta)$ models the underlying data without reference to the data collection process
- \blacktriangleright The estimands of primary interest are
	- \blacktriangleright functions of the complete data y (finite-population estimands)
	- In functions of the parameters θ (superpopulation estimands)
- \triangleright The parameters ϕ that index the missingness are not generally of scientific interest
- $\rightarrow \theta$ and ϕ can be related but this is rare

Formal models for data collection

- \triangleright We don't observe all of y
- \triangleright Observed-data likelihood

$$
p(y_{obs}, I|x, \theta, \phi) = \int p(y, I|x, \theta, \phi) d y_{mis}
$$

=
$$
\int p(y|x, \theta)p(I|x, y, \phi) d y_{mis}
$$

- \blacktriangleright Posterior distributions
	- ightharpoonterior distribution of (θ, ϕ)

$$
p(\theta, \phi | x, y_{obs}, I) \propto p(\theta, \phi | x) p(y_{obs}, I | x, \theta, \phi)
$$

= $p(\theta, \phi | x) \int p(y, I | x, \theta, \phi) d y_{mis}$
= $p(\theta, \phi | x) \int p(y | x, \theta) p(I | x, y, \phi) d y_{mis}$

F marginal posterior distribution of θ

$$
p(\theta | x, y_{obs}, I) = p(\theta | x) \int \int p(\phi | x, \theta) p(y | x, \theta) p(I | x, y, \phi) d y_{mis} d \phi
$$

Note: We don't have to perform the integrals above; as usual we can simulate treating y_{mis} , θ , and ϕ as unk[no](#page-46-0)[wns](#page-0-0)

Ignorability

It is tempting to ignore data collection issues I and focus on

$$
p(\theta | x, y_{obs}) = p(\theta | x) p(y_{obs} | x, \theta)
$$

$$
= p(\theta | x) \int p(y | x, \theta) d y_{mis}
$$

When the missing data pattern supplies no information; that is, when

$$
p(\theta | x, y_{obs}) = p(\theta | x, y_{obs}, I)
$$

we say that the study design or data collection mechanism is ignorable (with respect to the proposed model)

KORKAR KERKER E VOOR

Ignorability

When do we get ignorability?

First, some terminology

 \blacktriangleright Missing at random (MAR)

$$
p(I|x, y, \phi) = p(I|x, y_{obs}, \phi)
$$

- \triangleright whether a value is missing doesn't depend on value it would have had
- \triangleright the state of being missing is allowed to depend on observed values but not on unobserved values
- \triangleright Missing completely at random (MCAR)

$$
p(I|x, y, \phi) = p(I|\phi)
$$

 \blacktriangleright Distinct parameters

$$
p(\phi|\theta, x) = p(\phi|x)
$$

Ignorability

If MAR and distinct parameters, then $p(\theta | \text{x}, \text{y}_{\text{obs}}, I)$ = $p(\theta | \text{x}) \int \int p(\phi | \text{x}, \theta) p(\text{y} | \text{x}, \theta) p(I | \text{x}, \text{y}, \theta)$ d y_{mis} d ϕ

$$
= \rho(\theta|x) \int p(y|x,\theta) dy_{\text{mis}} \int p(\phi|x) p(I|x,y_{\text{obs}},\phi) d\phi
$$

 $\overline{}$ no info about θ

KORK STRAIN A BAR SHOP

 \propto $p(\theta|x)p(y_{obs}|x, \theta)$ \propto p($\theta|y_{obs}$, x) we get ignorability

Formal models for data collection Example 1

Weigh object 100 times with $y|\theta \sim N(\theta, 1)$ Scale works with probability ϕ so that $p(I_i = 1 | y, \phi) = \phi$

 \blacktriangleright Complete data

$$
\rho(y,I|\theta,\phi) = \prod_{i=1}^{100} N(y|\theta,1) \, \prod_{i=1}^{100} \phi^h (1-\phi)^{1-h}
$$

 \triangleright Observed data

$$
p(y_{obs}, l | \theta, \phi) = \int \prod_{i=1}^{100} N(y | \theta, 1) \prod_{i=1}^{100} \phi^{l_i} (1 - \phi)^{1 - l_i} d y_{mis}
$$

=
$$
\phi^{\sum_i l_i} (1 - \phi)^{100 - \sum_i l_i} \prod_{i=1}^{100} N(y_i | \theta, 1) \chi(\{l_i = 1\})
$$

where $\chi(A)$ is the indicator function of the event A.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Formal models for data collection Example 1 (cont'd)

 \triangleright Observed data

$$
p(y_{obs}, I | \theta, \phi) = \int \prod_{i=1}^{100} N(y | \theta, 1) \prod_{i=1}^{100} \phi^{l_i} (1 - \phi)^{1 - l_i} d y_{mis}
$$

$$
= \phi^{\sum_i l_i} (1-\phi)^{100-\sum_i l_i} \prod_{i=1}^{100} N(y_i|\theta,1)\chi(\{l_i=1\})
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

because

$$
\prod_{i=1}^{100} \int N(y_i|\theta,1) \, \chi(\{l_i=0\}) \, dy_i = 1
$$

where $\chi(A)$ is the indicator function of the event A.

 \blacktriangleright The data collection mechanism is ignorable

Formal models for data collection Example 2

Weigh object 100 times with $y|\theta \sim N(\theta, 1)$ Scale fails if weight $> \phi$ with ϕ unknown

 \blacktriangleright Complete data

$$
p(y, I | \theta, \phi) = \prod_{i=1}^{100} N(y_i | \theta, 1) \prod_{i=1}^{100} \chi(A_i)
$$

where $A_i = \{\{I_i = 1\} \cap \{y_i < \phi\}\} \cup \{\{I_i = 0\} \cap \{y_i > \phi\}\}\$
• Observed data

$$
p(y_{obs}, I | \theta, \phi) = \int p(y, I | \theta, \phi) d y_{mis}
$$

$$
= \prod_{i=1}^{100} N(y_i | \theta, 1) \chi(\{I_i = 1\})
$$

$$
\times \prod_{i=1}^{100} \chi(\{I_i = 0\}) \underbrace{\int N(y_i | \theta, 1) \chi(\{y_i > \phi\}) d y_i}_{\Phi(\theta - \phi) = P(y_i > \phi)}
$$

 \blacktriangleright This censored data collection mechani[sm](#page-52-0) [is not ignorable](#page-0-0)

Þ

 $2Q$

Bayesian Statistics - Summary

- \blacktriangleright Model building
	- \triangleright basic probability distns as building blocks
	- \blacktriangleright hierarchical structure
	- \triangleright condition on covariates to get ignorable designs
- \blacktriangleright Posterior inference
	- \blacktriangleright the power of simulation
	- \blacktriangleright flexible inference for any quantity of interest
	- \triangleright use of decision for formal problem-solving
- \blacktriangleright Model checking
	- \blacktriangleright model checking/model selection
	- \triangleright importance of checking with all available info

KORK ERKER ADE YOUR

 \blacktriangleright sensitivity analysis

Bayesian Statistics - Pro/Con

 \blacktriangleright Advantages

- \blacktriangleright account for uncertainty
- \triangleright combine information from multiple sources
- \triangleright probability is the language of uncertainty
- \blacktriangleright usual straightforward how to proceed with model development

- \blacktriangleright flexible inference and model extensions
- \triangleright Disadvantages
	- \triangleright need for prior distn (importance of sensitivity analysis)
	- \blacktriangleright always requires a formal model (except for Bayesian nonparametrics)
	- \blacktriangleright high dimensional nuisance parameters (e.g., in survival analysis)
	- \triangleright communication with practitioners

Bayesian Statistics - Final thoughts

- \blacktriangleright There are differences between Bayesian methods and traditional procedures
- \triangleright Both will give reasonable data analyses in good hands
- \triangleright Bayesians can be interested in frequency properties of procedures
- \triangleright No need to declare as a Bayesian or Frequentist now (or ever)

KORK ERKER ADE YOUR

 \triangleright Goal of course has been exposure to the fundamental concepts and methods of Bayesian data analysis