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Model checking
Introduction

I So far:
I build probability models
I compute/simulate posterior distn

I Now:
I model checking (does the model fit the data)
I sensitivity analysis (are conclusions sensitive to assumptions)
I model selection (which is the best model)
I robust analysis (are conclusions sensitive to data)



Model checking
General ideas

I Don’t ask if the model is true

I Does the model fit and provide useful inferences
I Remember the model includes

I sampling distribution
I prior distribution
I hierarchical structure
I explanatory variables

I More than one model can fit (sensitivity analysis)



Model checking: types of checks

I Classical ideas
I Check whether parameter estimates make sense
I Check whether predictions make sense
I Does the model generate data like “my data” (simulation

approach, residual analysis)
I Embed in a larger model

I Bayesian ideas
I Compare posterior distribution of parameters to substantive

knowledge
I Compare posterior predictive distribution of

future data to substantive knowledge
I Compare posterior predictive distribution of

future data to observed data
I Evaluate sensitivity of inferences to other model specifications

(e.g., alternate priors or sampling distributions, embed in larger
model)



Posterior predictive model checking

I y rep = replicate data that might have occurred

I Replicated under same model as original data (e.g., same
covariate values) with same values for unknown parameters θ

I Posterior predictive distribution of y rep

p(y rep|y) =

∫
p(y rep, θ|y) dθ

=

∫
p(y rep|θ, y)p(θ|y)dθ

=?

∫
p(y rep|θ)p(θ|y)dθ

I Last equality is generally (but not always) true

I Easy to obtain simulations of y rep given posterior simulations
of θ

I Other possible definitions of replications
(more on this later)



Posterior predictive model checking

I T (y , θ) is a test quantity or discrepancy measure

I Compare posterior predictive distribution of T (y rep, θ) to
posterior distribution of T (y , θ)

I One possible summary (but not the only one) is the posterior
predictive P-value

Pb = Pr(T (y rep, θ) > T (y , θ)|y)

=

∫ ∫
I[T (y rep ,θ)>T (y ,θ)]p(y rep|θ)p(θ|y)dy repdθ

I Special case T (y , θ) = T (y) is a test statistic
I compare posterior predictive distribution of T (y rep) to

observed T (y)

I Diagnostics such as plots of residuals are special cases of
posterior predictive checks



Posterior predictive model checking
Relation to traditional tests

I Example:
I suppose y1, . . . , yn are iid N(µ, σ2)
I believe µ = 0, so fit N(0, σ2) model
I want to check fit of N(0, σ2) model
I weak example because obvious model checking approach is to

fit the “bigger” N(µ, σ2) model and check whether µ = 0 is
plausible

I Frequentist approach
I test statistic: T (y) = ȳ
I begin by assuming σ2 is fixed

p-value = P(

r .v .︷ ︸︸ ︷
T (y rep) ≥

obs.value︷ ︸︸ ︷
T (y) |σ2)

= P(ȳ rep ≥ ȳ |σ2)

= P
(√

nȳ rep

S ≥
√
nȳ
S |σ

2
)

= P
(
tn−1 ≥

√
nȲ
S

)
I last equality because distn no longer depends on σ2

I it is not always possible to get rid of nuisance parameters in
this way



Posterior predictive model checking
Relation to traditional tests (cont’d)

I Posterior predictive approach

p-value = P(T (y rep) ≥ T (y)|y)

=
∫ ∫

I[T (Y rep)≥T (y)]p(Y rep|σ2)p(σ2|y)dy repdσ2

=
∫
P(T (y rep) ≥ T (y)|σ2)︸ ︷︷ ︸

classical p-value

p(σ2|y)dσ2

I if the classical p-value is independent of σ2, as for T (y) = ȳ in
the example, then the posterior predictive p-value is equal to
classical p-value

I if not, then formula above shows how the
Bayesian approach handles nuisance parameters



Posterior predictive model checking
Defining replications

I Defining replications y rep

I usually keep features of original data fixed (e.g., sample size)
I different definitions are possible in hierarchical models

I replications of the same units

p(φ|y)→ p(θ|φ, y)→ p(y rep|θ)

I replicate data for new units

p(φ|y)→ p(θ|φ)→ p(y rep|θ)



Posterior predictive model checking
Defining test measures

I Defining test statistics or discrepancies
I measure features of data not directly included in the model

(bad to use T (y) = ȳ if the model includes a location
parameter)

I may define a number of test measures
I difficult to speak in general terms because good test measures

depend on context
I examples

I to check for autocorrelation in a sequence of Bernoulli trials,
use a count of the number of runs

I to check for new predictor in regression model, use
corr(y − Xβ, xnew )

I to check for asymmetry in a normal model, use
|y.9 − θ| − |y.1 − θ|

I to check overall fix in a complex model,

use T (y ; θ) =
∑[

(yi − E(yi |θ))2/Var(yi |θ)
]

(Note: asympt χ2 for known θ but here no reliance on
asymptotic distn)



Related ideas

I Parametric bootstrap (e.g., Efron, 1979)
I plug in point estimate θ̂
I simulated replicate data sets from p(y |θ̂)

I Marginal distribution (Box, 1980)
I reference distribution is p(y) =

∫
p(y |θ)p(θ)dθ

I note this is prior predictive distribution
I requires proper prior distribution



Criticisms of pp model checks

I Unobserved data (y (rep)) is not relevant for Bayesian inference

I Posterior predictive checks are too conservative
(“double-counting(?)” the data)

I Main concern is that posterior predictive p-values are not
uniformly distributed under the null hypothesis

I Critics complain that it is difficult to interpret because of
above ... what is an unusually high or low value in practice

I Alternatives have been proposed, e.g., conditional predictive
distn or partial posterior predictive distn (Bayarri and Berger
in JASA 2000)

I avoid some of the criticisms by conditioning on “some” of the
data but not all

I can be hard to compute

I Counterpoint: Post. pred. p-values are posterior probabilities
of relevant quantities and can be interpreted as probabilities



On the conservatism of pp model checks

I Suppose that Y ∼ N(µ, 1) and µ ∼ N(0, 9)

I Observe Yobs = 10. Is this unusual?
I Prior predictive approach

I marginal distn of Y is N(0, 10)
I p-value = 1− Φ(10/

√
10) = .008

I don’t believe model
I the observed value 10 is not consistent with this

prior distn and data model

I Posterior predictive approach
I posterior distn of µ is N(0.9Yobs , 0.9) = N(9, .9)
I posterior predictive distn of Y is N(9, 1.9)
I p-value = .23
I model cares about posterior fit

(this minimizes the effect of the prior)
I would this approach ever reject the model

(yes, Yobs = 23)



Posterior predictive model checking

I Easy to execute

I Analogous to usual model checking ideas

I Can be somewhat conservative in practice .. but can argue
appropriately so because it does not reject a model that
generates data like my data



Sensitivity analysis

I Generally true that many models can be fit to the same data

I Question is how sensitive the inferences we draw are to the
different models

I Different types of inferences may have different sensitivity
I posterior mean or median for parameter of

interest is typically not sensitive
I extreme percentiles are more sensitive

I Approaches
I fit different models
I expand model/embed model in larger family (more on this

later)
I examp: consider normal distn as part of tν(µ, σ2)

family (normal distn corresponds to ν =∞)



Model comparison / Model Selection / Model Averaging

I Model checking assesses the fit of a single model

I Sensitivity analysis considers multiple models with a focus on
whether the inference changes

I We next consider approaches the choose between (or average
over) a set of models

I We address three topics
I Comparing models
I Model selection (via the Bayes factor)
I Model averaging



Model comparison

I Given one or more models it is natural to assess performance
in terms of predictive accuracy

I This also provides a mechanism for comparing models

I Goal is to predict new data ỹ from the same data generating
process

I How do we measure accuracy?

I Need a scoring rule that assesses the quality of the predictive
density

I The log predictive density log p(ỹ |θ) is a common choice
I matches squared error in normal models
I related to Kullback-Leibler information



Model comparison

I Ideal measure would be out-of-sample predictive performance
(i.e., assess on new data from the same process)

I Let f be true data generating model, y be observed data and
ỹ future data

I Out-of-sample predictive fit for a single new data point using
logarithmic score is

log ppost(ỹi ) = log Epost(p(ỹi |θ)) = log

∫
p(ỹi |θ)ppost(θ)dθ

where ppost is shorthand notation for the posterior distribution
p(θ|y) (this notation keeps formulas a bit neater)

I Of course we don’t have future data so ideally would average
this over the distribution f
elpd = expected log predictive density for a new data point
elpd = Ef (log ppost(ỹi ) =

∫
(log ppost(ỹi ))f (ỹi )dỹi



Model comparison

I Recall
elpd = expected log predictive density for a new data point
elpd = Ef (log ppost(ỹi ) =

∫
(log ppost(ỹi ))f (ỹi )dỹi

I There is a choice to be made between evaluating predictive
performance for the joint distn of ỹ or evaluating predictive
performance by considering the sum over individual points ỹi

I These are the same if model for y is independent given
parameters

I Many common precedures use pointwise (so we will do that)

elppd = exp. log pointwise predicitve density for new data set
elppd =

∑n
i=1 Ef (log ppost(ỹi )

I As in model checking there is some ambiguity in defining
what predictive performance means in hierarchical models
(e.g., predictions at the same schools or at new schools from
the population distn)

I Both are plausible and it will depend on context; we don’t
worry about this issue further

I .... So how do we estimate elppd or other relevant quantity?



Model comparison

I Given that f is unknown and we only have our data set y , the
most natural idea is to summarize the predictive accuracy of
the fitted model by
lppd = log pointwise predictive density
lppd = log

∏n
i=1 ppost(yi ) =

∑n
i=1 log

∫
p(yi |θ)ppost(θ)dθ

lppd ≈
∑n

i=1 log( 1
S

∑S
s=1 p(yi |θs))

where θs , s = 1, . . . ,S are posterior simulations
I The lppd is an overestimate (biased high) of the target elppd

I same data is used to fit the model and assess the model
I bias likely to depend on number of parameters in the model

I We consider approaches to correcting for this bias



Model Comparison Measures

I For historical reasons measures of predictive accuracy are
I described as information criteria
I based on the deviance (log predictive density multiplied by -2)

I Akaike information criteria (AIC)
I uses plug-in estimate (MLE) for θ rather than posterior

distribution
I applies penalty to predictive accuracy based on asymptotic

normal posterior distribution
I ˆelpdAIC = log p(y |θ̂mle)− k
I AIC = −2 log p(y |θ̂mle) + 2k
I if iid data, then log p(y |θ̂mle) =

∑
i log p(yi |θ̂mle)

I number of parameters is not always well defined
(e.g., strong prior distns, hierarchical models)



Model Comparison Measures

I Deviance information criteria (DIC)
I Makes two changes to AIC:

replaces MLE with posterior mean θ̂Bayes = E (θ|y)
replaces k with data-based bias correction

I ˆelpdDIC = log p(y |θ̂Bayes)− pDIC

I pDIC is effective number of parameters
pDIC = 2(log p(y |θ̂Bayes)− Epost(log p(y |θ)))

estimated as pDIC = 2(log p(y |θ̂Bayes)− 1
S

∑
s log p(y |θs))

I DIC = −2 log p(y |θ̂Bayes) + 2pDIC



Model Comparison Measures

I Watanabe-Akaike information criteria (WAIC)
I More fully Bayesian approach

I uses lppd =
∑

i log( 1
S

∑
s p(yi |θs)) as starting point rather

than plugging in an estimate
I alternative definition(s) of estimated number of parameters
I derived as approximation to cross-validation (discussed below)

I pWAIC is effective number of parameters
pWAIC = 2

∑n
i=1(log(Epostp(yi |θ))− Epost(log p(yi |θ)))

estimated as
pWAIC = 2

∑n
i=1(log( 1

S

∑
s p(yi |θs))− 1

S

∑
s log p(y |θs))

I ˆelppdWAIC = lppd − pWAIC

I WAIC = −2 lppd + 2 pWAIC

I another (often better) expression for pWAIC is in the text

I WAIC relies on pointwise calculations
(others don’t because they use point estimate for θ)



Model Comparison Measures

I Bayesian information criteria (BIC)
I You may have heard of BIC (or SBC)
I Often provided with AIC
I BIC = −2 log p(y |θ̂) + k log n (for some estimate, often MLE)
I Motivation is different
I BIC derived as an approximation to marginal probability

density under the model, p(y), not predictive accuracy
I Relevant to Bayes factors (discussed below) but not here



Model Comparison Measures

I Leave-one-out cross-validation (LOOCV)
I Cross validation

I idea is to partition data into training ytrain and holdout yholdout
data sets

I model is fit to training data yielding posterior distribution
ptrain(θ) = p(θ|ytrain)

I fit evaluated by examining
log ptrain(yholdout) = log

∫
p(yholdout |θ)ptrain(θ)dθ

I typically estimated by simulations from ptrain(θ)

I LOOCV is the special case with n repetitions, each having
holdout set equal to a single point

I More details on the next slide



Model Comparison Measures

I Leave-one-out cross-validation (LOOCV)
I Define ppost(−i) = p(θ|y(−i))
I Assume we have posterior simulations from each ppost(−i),

denoted θis , s = 1, . . . ,S
I lppdloo−cv =

∑n
i=1 log ppost(−i)(yi ), calculated as∑n

i=1 log( 1
S

∑S
s=1 p(yi |θis))

I Slight bias because this estimates predictive accuracy of model
based on n − 1 observations (rather than n)

I Bias correction addressed in text but not usually applied
I Can define effective number of parameters (in analogy with

other approaches), ploo−cv = lppd − lppdloo−cv
I Then (trivially), lppdloo−cv = lppd − ploocv



Model selection / Bayes factors

I Model selection is a limiting case of model comparison in
which the goal is to formally decide between the models

I Suppose there are two competings models M1 and M2 for a
data set

I different prior distns p1(θ1) and p2(θ2)
I different data models p1(y |θ1) and p2(y |θ2)
I note θ1 and θ2 may be of different dimension

I Consider a full Bayesian analysis
I begin with prior probability p(M1) = 1− p(M2)
I then posterior odds of M1 relative to M2 are

p(M1|y)

p(M2|y)
=

p(y |M1)

p(y |M2)

p(M1)

p(M2)

I posterior odds are the product of prior odds and a form of
likelihood ratio p(y |M1)/p(y |M2)

I the ratio p(y |M1)/p(y |M2) is known as the Bayes factor
I it is a measure of how much the data changes the odds in

favor of M1 vs M2



Bayes Factors

I Bayes factor of model 1 relative to model 2

BF12 =
p(y |M1)

p(y |M2)
=

∫
p(y |θ1,M1)p(θ1|M1) dθ1∫
p(y |θ2,M2)p(θ2|M2) dθ2

I notation: M1 and M2 are not events they merely identify
models

I Bayes factor is only defined when the marginal density of y
under each model is proper
(requires a proper prior distn)



Bayes Factor
Computation

I To compute Bayes factors we need to be able to compute
marginal likelihoods

p(y) =

∫
p(y |θ)p(θ) dθ

I There are a number of approaches
I Simple Monte Carlo approach

I simplest concept but doesn’t work very well
I draw G values of θ from p(θ), call them θ(1), θ(2), . . . , θ(G)

I p̂(y) = 1
G

∑G
g=1 p(y |θ(g))

I problem: prior distn may not have probability where p(y |θ) is
substantial → poor estimate



Bayes Factor
Computation (cont’d)

I Alternative Monte Carlo approach
I consider the following identity (true for any pdf h(θ))

p(y)−1 =

∫
h(θ)

p(y |θ)p(θ)
p(θ|y)dθ

I draw G values of θ from p(θ|y)

I p̂(y) =
[

1
G

∑G
g=1

h(θ(g))
p(y |θ(g))p(θ(g))

]−1

I h(θ) could be prior distribution or normal approx to the
posterior distn

I problem: not a stable calculation because of the possibility of
small numbers in the denom



Bayes Factor
Computation (cont’d)

I Chib’s marginal likelihood method
I note that p(y) = p(y |θ)p(θ)/p(θ|y)
I idea: evaluate above at one value of θ, say the posterior mean

or the posterior mode
I numerator terms are easy
I need to estimate denominator at chosen θ
I can use a density estimate derived from a posterior sample
I Chib proposes an alternative approach using Gibbs sampling

I suppose target is p(θ∗|y) with θ = (θ1, θ2)
I then p(θ∗1 , θ

∗
2 |y) = p(θ∗1 |y)p(θ∗2 |θ∗1 , y)

I we know the last term (since we have the density available for
Gibbs samling)

I we can estimate the first from available posterior draws as
1
N

∑N
i=1 p(θ∗1 |θ

(i)
2 , y)

I Chib shows how to generalize this to more components of θ



Bayes Factor
Improper prior distributions

I Consider y |θ ∼ N(θ, 1) with p(θ) ∝ 1

p(y) ∝
∫

1√
2π

e−
1
2

(y−θ)2
dθ = 1

I Looks OK but p(y) = 1 for y ∈ (−∞,∞)
is not a valid marginal distn

I Ideas:
I approx improper prior with proper prior (Unif(−c , c)) but

BF is very sensitive to choice of c
I partial Bayes factor: use part of the data to build a proper

prior distn and then compute BF on the rest of the data, e.g.,
use y1 and flat prior to define “new” prior

p(θ) = N(θ|y1, 1)

and then can define a Bayes Factor for y2, . . . , yn
I fractional Bayes factor



Bayes Factor
Asymptotic approximation

I If sample size n is large, then

log(BF ) ≈ log(p(y |θ̂2,M2))− log(p(y |θ̂1,M1))

− 1

2
(d1 − d2)log(n)

where
I θ̂i = posterior mode under Mi (i = 1, 2)
I di = dimension of the parameter space of Mi

I Equivalent to ranking models based on the BIC
(Bayes information criterion)

BIC = −log(p(y |θ̂,M) +
1

2
d log(n)



Bayes Factors
Bayes factors and model averaging - I

I Given m models (M1, . . . ,Mm) with parameter vectors
θ1, . . . , θM) and prior probabilities P(M1), . . . ,P(Mm)

I Suppose that each model is used to estimate a quantity of
interest ∆ (exists in all models)

I This could be a relevant summary for the scientific problem
being studied or perhaps a prediction for a future observable
quantity

I Then P(∆|y) =
∑m

j=1 p(∆|Mj , y)p(Mj |y)
I Posterior probability for model j is

p(Mj |y) =
p(y |Mj)p(Mj)∑
k p(y |Mk)p(Mk)

I Notes:
I numerator is just marginal likelihood for model j
I p(Mj |y)/p(Mi |y) = BFji

p(Mj )
p(Mi )

I can write p(Mj |y) = p(Mj)/ (
∑

k BFkjp(Mk))



Bayes Factors
Bayes factors and model averaging - II

I The previous slide envisions fitting each model separately and
is completely general

I If the models are related, e.g., regression models with different
predictors from a fixed list, then one can average in a different
way

I Build a single ”super” model that includes (Mj , θj) as
parameters and average over this model

I Computation - a single MCMC incorporating all models
(reversible jump MCMC)



Classical ideas and Bayesian Inference

I Model selection is closely related to traditional hypothesis
testing

I Makes this a good time to check in on some classical ideas
and their Bayesian counterparts

I Some general comments on classical/Bayesian
I Bayesian = classical for some problems

(large samples, small number of parameters with
noninformative prior distns)

I Standard methods often correspond to a Bayesian model for
some prior (e.g., in hierarchical models we saw that complete
pooling and no pooling correspond to specific (extreme)
choices of the prior distribution on the random effects)

I Big differences on some issues (e.g., p-values)
I p-values are based on probability distribution over possible

values of y
I Bayesian ideas all condition on the single fixed observed y



Classical ideas and Bayesian Inference

I Asymptotics
I θ̂MLE is asymptotic efficient and consistent
I θ̂post.mode is asymptotic efficient and consistent

I Point estimation
I optimal Bayes point estimates depend on the specification of a

loss function
I classical inference relies on MLE (or occasionally other

estimation strategies)
I Bayes estimators are not generally unbiased ....

but then again neither are MLEs
(recall defn of unbiasedness: E (θ̂(y)|θ) = θ)



Classical ideas and Bayesian Inference

I Confidence intervals
I interpretation of Bayes and frequentist intervals are very

different
I most people want the Bayesian interpretation

I Hypothesis testing
I Frequentist setup:

H0 : θ = θ0 vs. Ha : θ > θ0

p-value = P(Ȳ is unusually large|H0 is true)

I only assessing H0 vs data
I p-value depends on unobserved values
I likelihood ratio tests work for nested models only



Classical ideas and Bayesian Inference

I Hypothesis testing (cont’d)
I Bayesian view:

I need a prior distn p(θ) under both hypotheses
I Bayes factor BF = p(y |H0)/p(y |Ha) where

p(y |H) =
∫
p(y |θ,H)p(θ|H)dθ

I alternative for simple situation (like previous slide), just
compute Pr(θ > θo |y)



Classical ideas and Bayesian Inference
Hypothesis testing - an interesting example

I Discussion due to Morris (JASA 1987)

I Consider binomial sampling: y |θ ∼ Bin(n, θ)

H0 : θ ≤ 0.5 Ha)θ > 0.5

n y θ̂ t p-value

20 15 0.750 2.03 0.02
200 115 0.575 2.05 0.02

2000 1064 0.523 2.03 0.02

I Simple Bayesian analysis
I model: θ̂ ∼ N(θ, 0.25/n) (normal approximation to binomial)
I prior: θ ∼ N(0.5, (0.05)2)

p(θ > 0.5|y) =

 0.796 (n = 20)
0.953 (n = 200)
0.976 (n = 2000)



Classical ideas and Bayesian Inference

I Multiple comparisons
I e.g., effect of performing many hypothesis tests
I tempting to say that Bayesian’s don’t care about multiple

comparisons but there is a price to modeling many parameters

I Stopping rules/data collections
I recall binomial/neg.binomial example
I more on this later

I Nonparametrics
I many nonparametric tests/procedures have been developed
I Bayesian non-parametrics is more and more popular (not

covered here)


