Statistics 225 Bayesian Statistical Analysis (Part 4)

Hal Stern

Department of Statistics University of California, Irvine sternh@uci.edu

March 28, 2019

Model checking Introduction

- So far:
 - build probability models
 - compute/simulate posterior distn
- Now:
 - model checking (does the model fit the data)
 - sensitivity analysis (are conclusions sensitive to assumptions)

- model selection (which is the best model)
- robust analysis (are conclusions sensitive to data)

Model checking General ideas

- Don't ask if the model is true
- Does the model fit and provide useful inferences
- Remember the model includes
 - sampling distribution
 - prior distribution
 - hierarchical structure
 - explanatory variables
- More than one model can fit (sensitivity analysis)

Model checking: types of checks

- Classical ideas
 - Check whether parameter estimates make sense
 - Check whether predictions make sense
 - Does the model generate data like "my data" (simulation approach, residual analysis)
 - Embed in a larger model
- Bayesian ideas
 - Compare posterior distribution of parameters to substantive knowledge
 - Compare posterior predictive distribution of future data to substantive knowledge
 - Compare posterior predictive distribution of future data to observed data
 - Evaluate sensitivity of inferences to other model specifications (e.g., alternate priors or sampling distributions, embed in larger model)

- y^{rep} = replicate data that might have occurred
- Replicated under same model as original data (e.g., same covariate values) with same values for unknown parameters θ
- Posterior predictive distribution of y^{rep}

$$egin{aligned} p(y^{rep}|y) &= & \int p(y^{rep}, heta|y) \; d heta \ &= & \int p(y^{rep}| heta,y)p(heta|y)d heta \ &=? & \int p(y^{rep}| heta)p(heta|y)d heta \end{aligned}$$

- Last equality is generally (but not always) true
- Easy to obtain simulations of y^{rep} given posterior simulations of θ
- Other possible definitions of replications (more on this later)

- $T(y, \theta)$ is a test quantity or discrepancy measure
- Compare posterior predictive distribution of T(y^{rep}, θ) to posterior distribution of T(y, θ)
- One possible summary (but not the only one) is the posterior predictive P-value

$$P_b = \Pr(T(y^{rep}, \theta) > T(y, \theta)|y)$$

=
$$\int \int I_{[T(y^{rep}, \theta) > T(y, \theta)]} p(y^{rep}|\theta) p(\theta|y) dy^{rep} d\theta$$

• Special case $T(y, \theta) = T(y)$ is a test statistic

- compare posterior predictive distribution of T(y^{rep}) to observed T(y)
- Diagnostics such as plots of residuals are special cases of posterior predictive checks

Relation to traditional tests

- Example:
 - suppose y_1, \ldots, y_n are iid $N(\mu, \sigma^2)$
 - believe $\mu = 0$, so fit $N(0, \sigma^2)$ model
 - want to check fit of $N(0, \sigma^2)$ model
 - weak example because obvious model checking approach is to fit the "bigger" $N(\mu, \sigma^2)$ model and check whether $\mu = 0$ is plausible
- Frequentist approach
 - test statistic: $T(y) = \bar{y}$
 - begin by assuming σ^2 is fixed

$$\begin{array}{rcl} \text{p-value} & = & P(\overbrace{\mathcal{T}(y'^{rep})}^{r.v.} \geq \overbrace{\mathcal{T}(y)}^{\text{obs.value}} | \sigma^2) \\ & = & P(\overline{y'^{rep}} \geq \overline{y} | \sigma^2) \\ & = & P\left(\frac{\sqrt{n}\overline{y'^{rep}}}{S} \geq \frac{\sqrt{n}\overline{y}}{S} | \sigma^2\right) = P\left(t_{n-1} \geq \frac{\sqrt{n}\overline{Y}}{S}\right) \end{array}$$

- last equality because distn no longer depends on σ^2
- it is not always possible to get rid of nuisance parameters in this way

Posterior predictive model checking Relation to traditional tests (cont'd)

Posterior predictive approach

 $p-value = P(T(y^{rep}) \ge T(y)|y)$ $= \int \int I_{[T(Y^{rep}) \ge T(y)]} p(Y^{rep}|\sigma^2) p(\sigma^2|y) dy^{rep} d\sigma^2$ $= \int \underbrace{P(T(y^{rep}) \ge T(y)|\sigma^2)}_{\text{classical } p-value} p(\sigma^2|y) d\sigma^2$

▶ if the classical *p*-value is independent of σ², as for T(y) = ȳ in the example, then the posterior predictive *p*-value is equal to classical *p*-value

 if not, then formula above shows how the Bayesian approach handles nuisance parameters

Posterior predictive model checking Defining replications

- Defining replications y^{rep}
 - usually keep features of original data fixed (e.g., sample size)
 - different definitions are possible in hierarchical models
 - replications of the same units

$$p(\phi|y)
ightarrow p(heta|\phi,y)
ightarrow p(y^{rep}| heta)$$

replicate data for new units

$$p(\phi|y)
ightarrow p(heta|\phi)
ightarrow p(y^{rep}| heta)$$

Posterior predictive model checking Defining test measures

- Defining test statistics or discrepancies
 - ► measure features of data not directly included in the model (bad to use T(y) = ȳ if the model includes a location parameter)
 - may define a number of test measures
 - difficult to speak in general terms because good test measures depend on context
 - examples
 - to check for autocorrelation in a sequence of Bernoulli trials, use a count of the number of runs
 - to check for new predictor in regression model, use corr(y – Xβ, x_{new})
 - ► to check for asymmetry in a normal model, use $|y_{.9} \theta| |y_{.1} \theta|$
 - ► to check overall fix in a complex model, use $T(y; \theta) = \sum_{i=1}^{n} \left[(y_i - E(y_i|\theta))^2 / \text{Var}(y_i|\theta) \right]$ (Note: asympt χ^2 for known θ but here no reliance on asymptotic distn)

Related ideas

- Parametric bootstrap (e.g., Efron, 1979)
 - plug in point estimate $\hat{\theta}$
 - simulated replicate data sets from $p(y|\hat{\theta})$
- Marginal distribution (Box, 1980)
 - reference distribution is $p(y) = \int p(y|\theta)p(\theta)d\theta$

- note this is prior predictive distribution
- requires proper prior distribution

Criticisms of pp model checks

- Unobserved data $(y^{(rep)})$ is not relevant for Bayesian inference
- Posterior predictive checks are too conservative ("double-counting(?)" the data)
- Main concern is that posterior predictive *p*-values are not uniformly distributed under the null hypothesis
- Critics complain that it is difficult to interpret because of above ... what is an unusually high or low value in practice
- Alternatives have been proposed, e.g., conditional predictive distn or partial posterior predictive distn (Bayarri and Berger in JASA 2000)
 - avoid some of the criticisms by conditioning on "some" of the data but not all
 - can be hard to compute
- Counterpoint: Post. pred. p-values are posterior probabilities of relevant quantities and can be interpreted as probabilities

On the conservatism of pp model checks

- Suppose that $Y \sim \mathcal{N}(\mu, 1)$ and $\mu \sim \mathcal{N}(0, 9)$
- Observe $Y_{obs} = 10$. Is this unusual?
- Prior predictive approach
 - marginal distn of Y is N(0, 10)
 - *p*-value = $1 \Phi(10/\sqrt{10}) = .008$
 - don't believe model
 - the observed value 10 is not consistent with this prior distn and data model
- Posterior predictive approach
 - posterior distn of μ is $N(0.9Y_{obs}, 0.9) = N(9, .9)$

- posterior predictive distn of Y is N(9, 1.9)
- ▶ *p*-value = .23
- model cares about posterior fit (this minimizes the effect of the prior)
- would this approach ever reject the model (yes, Y_{obs} = 23)

- Easy to execute
- Analogous to usual model checking ideas
- Can be somewhat conservative in practice .. but can argue appropriately so because it does not reject a model that generates data like my data

Sensitivity analysis

- Generally true that many models can be fit to the same data
- Question is how sensitive the inferences we draw are to the different models
- Different types of inferences may have different sensitivity
 - posterior mean or median for parameter of interest is typically not sensitive
 - extreme percentiles are more sensitive
- Approaches
 - fit different models
 - expand model/embed model in larger family (more on this later)

 examp: consider normal distn as part of t_ν(μ, σ²) family (normal distn corresponds to ν = ∞)

Model comparison / Model Selection / Model Averaging

- Model checking assesses the fit of a single model
- Sensitivity analysis considers multiple models with a focus on whether the inference changes
- We next consider approaches the choose between (or average over) a set of models

- We address three topics
 - Comparing models
 - Model selection (via the Bayes factor)
 - Model averaging

- Given one or more models it is natural to assess performance in terms of predictive accuracy
- This also provides a mechanism for comparing models
- Goal is to predict new data y from the same data generating process
- How do we measure accuracy?
- Need a scoring rule that assesses the quality of the predictive density
- The log predictive density log $p(\tilde{y}|\theta)$ is a common choice
 - matches squared error in normal models
 - related to Kullback-Leibler information

- Ideal measure would be out-of-sample predictive performance (i.e., assess on new data from the same process)
- Let f be true data generating model, y be observed data and ỹ future data
- Out-of-sample predictive fit for a single new data point using logarithmic score is

$$\log p_{post}(\tilde{y}_i) = \log E_{post}(p(\tilde{y}_i|\theta)) = \log \int p(\tilde{y}_i|\theta) p_{post}(\theta) d\theta$$

where p_{post} is shorthand notation for the posterior distribution $p(\theta|y)$ (this notation keeps formulas a bit neater)

- Of course we don't have future data so ideally would average this over the distribution f
 - elpd = expected log predictive density for a new data point elpd = $E_f(\log p_{post}(\tilde{y}_i)) = \int (\log p_{post}(\tilde{y}_i))f(\tilde{y}_i)d\tilde{y}_i$

Recall

elpd = expected log predictive density for a new data point elpd = $E_f(\log p_{post}(\tilde{y}_i)) = \int (\log p_{post}(\tilde{y}_i))f(\tilde{y}_i)d\tilde{y}_i$

- There is a choice to be made between evaluating predictive performance for the joint distn of ỹ or evaluating predictive performance by considering the sum over individual points ỹ_i
 - These are the same if model for y is independent given parameters
 - Many common precedures use pointwise (so we will do that) elppd = exp. log pointwise predicitve density for new data set elppd = $\sum_{i=1}^{n} E_f(\log p_{post}(\tilde{y}_i))$
- As in model checking there is some ambiguity in defining what predictive performance means in hierarchical models (e.g., predictions at the same schools or at new schools from the population distn)
- Both are plausible and it will depend on context; we don't worry about this issue further
- So how do we estimate elppd or other relevant quantity?

Given that f is unknown and we only have our data set y, the most natural idea is to summarize the predictive accuracy of the fitted model by

Ippd = log pointwise predictive density
Ippd = log
$$\prod_{i=1}^{n} p_{post}(y_i) = \sum_{i=1}^{n} \log \int p(y_i|\theta) p_{post}(\theta) d\theta$$

Ippd $\approx \sum_{i=1}^{n} \log(\frac{1}{S} \sum_{s=1}^{S} p(y_i|\theta_s))$
where $\theta_s, s = 1, \dots, S$ are posterior simulations

- The lppd is an overestimate (biased high) of the target elppd
 - same data is used to fit the model and assess the model
 - bias likely to depend on number of parameters in the model
- We consider approaches to correcting for this bias

- For historical reasons measures of predictive accuracy are
 - described as information criteria
 - based on the deviance (log predictive density multiplied by -2)
- Akaike information criteria (AIC)
 - uses plug-in estimate (MLE) for θ rather than posterior distribution
 - applies penalty to predictive accuracy based on asymptotic normal posterior distribution

- $\hat{elpd}_{AIC} = \log p(y|\hat{\theta}_{mle}) k$
- $AIC = -2 \log p(y|\hat{\theta}_{mle}) + 2k$
- if iid data, then $\log p(y|\hat{\theta}_{mle}) = \sum_i \log p(y_i|\hat{\theta}_{mle})$
- number of parameters is not always well defined (e.g., strong prior distns, hierarchical models)

Deviance information criteria (DIC)

• Makes two changes to AIC: replaces MLE with posterior mean $\hat{\theta}_{Bayes} = E(\theta|y)$ replaces k with data-based bias correction

•
$$e\hat{p}d_{DIC} = \log p(y|\hat{\theta}_{Bayes}) - p_{DIC}$$

▶
$$p_{DIC}$$
 is effective number of parameters
 $p_{DIC} = 2(\log p(y|\hat{\theta}_{Bayes}) - E_{post}(\log p(y|\theta)))$
estimated as $p_{DIC} = 2(\log p(y|\hat{\theta}_{Bayes}) - \frac{1}{5}\sum_{s}\log p(y|\theta^{s}))$

•
$$DIC = -2 \log p(y|\hat{\theta}_{Bayes}) + 2p_{DIC}$$

Watanabe-Akaike information criteria (WAIC)

- More fully Bayesian approach
 - uses *lppd* = ∑_i log(¹/₅∑_s p(y_i|θ^s)) as starting point rather than plugging in an estimate
 - alternative definition(s) of estimated number of parameters
 - derived as approximation to cross-validation (discussed below)
- p_{WAIC} is effective number of parameters $p_{WAIC} = 2 \sum_{i=1}^{n} (\log(E_{post}p(y_i|\theta)) - E_{post}(\log p(y_i|\theta)))$ estimated as

$$p_{WAIC} = 2\sum_{i=1}^{n} \left(\log\left(\frac{1}{5}\sum_{s} p(y_i|\theta^s)\right) - \frac{1}{5}\sum_{s} \log p(y|\theta^s) \right)$$

- $elppd_{WAIC} = lppd p_{WAIC}$
- $WAIC = -2 \ Ippd + 2 \ p_{WAIC}$
- another (often better) expression for p_{WAIC} is in the text
- WAIC relies on pointwise calculations (others don't because they use point estimate for θ)

- Bayesian information criteria (BIC)
 - You may have heard of BIC (or SBC)
 - Often provided with AIC
 - $BIC = -2 \log p(y|\hat{\theta}) + k \log n$ (for some estimate, often MLE)

- Motivation is different
- ► BIC derived as an approximation to marginal probability density under the model, p(y), not predictive accuracy
- Relevant to Bayes factors (discussed below) but not here

Leave-one-out cross-validation (LOOCV)

- Cross validation
 - idea is to partition data into training y_{train} and holdout y_{holdout} data sets

- model is fit to training data yielding posterior distribution $p_{train}(\theta) = p(\theta|y_{train})$
- Fit evaluated by examining $\log p_{train}(y_{holdout}) = \log \int p(y_{holdout}|\theta) p_{train}(\theta) d\theta$
- typically estimated by simulations from $p_{train}(\theta)$
- LOOCV is the special case with n repetitions, each having holdout set equal to a single point
- More details on the next slide

- Leave-one-out cross-validation (LOOCV)
 - Define $p_{post(-i)} = p(\theta|y_{(-i)})$
 - Assume we have posterior simulations from each p_{post(-i)}, denoted θ^{is}, s = 1,..., S
 - ► $lppd_{loo-cv} = \sum_{i=1}^{n} \log p_{post(-i)}(y_i)$, calculated as $\sum_{i=1}^{n} \log(\frac{1}{5} \sum_{s=1}^{5} p(y_i | \theta^{is}))$
 - Slight bias because this estimates predictive accuracy of model based on *n*−1 observations (rather than *n*)
 - Bias correction addressed in text but not usually applied
 - ► Can define effective number of parameters (in analogy with other approaches), p_{loo-cv} = lppd lppd_{loo-cv}

• Then (trivially), $lppd_{loo-cv} = lppd - p_{loocv}$

Model selection / Bayes factors

- Model selection is a limiting case of model comparison in which the goal is to formally decide between the models
- Suppose there are two competings models M₁ and M₂ for a data set
 - different prior distns $p_1(\theta_1)$ and $p_2(\theta_2)$
 - different data models $p_1(y|\theta_1)$ and $p_2(y|\theta_2)$
 - note θ_1 and θ_2 may be of different dimension
- Consider a full Bayesian analysis
 - begin with prior probability $p(M_1) = 1 p(M_2)$
 - then posterior odds of M_1 relative to M_2 are

$$\frac{p(M_1|y)}{p(M_2|y)} = \frac{p(y|M_1)}{p(y|M_2)} \frac{p(M_1)}{p(M_2)}$$

- ▶ posterior odds are the product of prior odds and a form of likelihood ratio p(y|M₁)/p(y|M₂)
- the ratio $p(y|M_1)/p(y|M_2)$ is known as the Bayes factor
- ▶ it is a measure of how much the data changes the odds in favor of M_1 vs M_2

Bayes Factors

Bayes factor of model 1 relative to model 2

$$BF_{12} = \frac{p(y|M_1)}{p(y|M_2)} = \frac{\int p(y|\theta_1, M_1)p(\theta_1|M_1) \ d\theta_1}{\int p(y|\theta_2, M_2)p(\theta_2|M_2) \ d\theta_2}$$

- notation: M₁ and M₂ are not events they merely identify models
- Bayes factor is only defined when the marginal density of y under each model is proper (requires a proper prior distn)

Bayes Factor Computation

 To compute Bayes factors we need to be able to compute marginal likelihoods

$$p(y) = \int p(y|\theta)p(\theta) d\theta$$

- There are a number of approaches
- Simple Monte Carlo approach
 - simplest concept but doesn't work very well
 - draw G values of θ from $p(\theta)$, call them $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(G)}$
 - $\hat{p}(y) = \frac{1}{G} \sum_{g=1}^{G} p(y|\theta^{(g)})$
 - problem: prior distn may not have probability where p(y|θ) is substantial → poor estimate

Bayes Factor Computation (cont'd)

- Alternative Monte Carlo approach
 - consider the following identity (true for any pdf $h(\theta)$)

$$p(y)^{-1} = \int \frac{h(\theta)}{p(y|\theta)p(\theta)} p(\theta|y) d\theta$$

- draw G values of θ from $p(\theta|y)$
- $\blacktriangleright \hat{p}(y) = \left[\frac{1}{G}\sum_{g=1}^{G}\frac{h(\theta^{(g)})}{p(y|\theta^{(g)})p(\theta^{(g)})}\right]^{-1}$
- h(θ) could be prior distribution or normal approx to the posterior distn
- problem: not a stable calculation because of the possibility of small numbers in the denom

Bayes Factor Computation (cont'd)

- Chib's marginal likelihood method
 - note that $p(y) = p(y|\theta)p(\theta)/p(\theta|y)$
 - idea: evaluate above at one value of θ, say the posterior mean or the posterior mode
 - numerator terms are easy
 - \blacktriangleright need to estimate denominator at chosen θ
 - can use a density estimate derived from a posterior sample
 - Chib proposes an alternative approach using Gibbs sampling
 - suppose target is $p(\theta^*|y)$ with $\theta = (\theta_1, \theta_2)$
 - then $p(\theta_1^*, \theta_2^*|y) = p(\theta_1^*|y)p(\theta_2^*|\theta_1^*, y)$
 - we know the last term (since we have the density available for Gibbs samling)
 - we can estimate the first from available posterior draws as $\frac{1}{N} \sum_{i=1}^{N} p(\theta_1^* | \theta_2^{(i)}, y)$
 - \blacktriangleright Chib shows how to generalize this to more components of θ

Bayes Factor Improper prior distributions

• Consider $y| heta \sim N(heta, 1)$ with $p(heta) \propto 1$

$$p(y) \propto \int rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}(y- heta)^2} d heta = 1$$

- Looks OK but p(y) = 1 for y ∈ (-∞,∞) is not a valid marginal distn
- Ideas:
 - ▶ approx improper prior with proper prior (Unif(-c, c)) but BF is very sensitive to choice of c
 - partial Bayes factor: use part of the data to build a proper prior distn and then compute BF on the rest of the data, e.g., use y₁ and flat prior to define "new" prior

$$p(\theta) = N(\theta|y_1, 1)$$

and then can define a Bayes Factor for y_2, \ldots, y_n

fractional Bayes factor

Bayes Factor Asymptotic approximation

If sample size n is large, then

$$egin{aligned} \log(BF) &pprox & \log(p(y|\hat{ heta}_2,M_2)) - \log(p(y|\hat{ heta}_1,M_1)) \ &- rac{1}{2}(d_1-d_2)\log(n) \end{aligned}$$

where

- $\hat{\theta}_i$ = posterior mode under M_i (i = 1, 2)
- d_i = dimension of the parameter space of M_i
- Equivalent to ranking models based on the BIC (Bayes information criterion)

$$\mathsf{BIC} = -\log(p(y|\hat{\theta}, M) + \frac{1}{2}d \log(n))$$

Bayes Factors

Bayes factors and model averaging - I

- Given *m* models (M_1, \ldots, M_m) with parameter vectors $\theta_1, \ldots, \theta_M$ and prior probabilities $P(M_1), \ldots, P(M_m)$
- Suppose that each model is used to estimate a quantity of interest Δ (exists in all models)
- This could be a relevant summary for the scientific problem being studied or perhaps a prediction for a future observable quantity
- Then $P(\Delta|y) = \sum_{j=1}^{m} p(\Delta|M_j, y) p(M_j|y)$
- Posterior probability for model j is

$$p(M_j|y) = \frac{p(y|M_j)p(M_j)}{\sum_k p(y|M_k)p(M_k)}$$

Notes:

- numerator is just marginal likelihood for model j
- $p(M_j|y)/p(M_i|y) = BF_{ji} \frac{p(M_j)}{p(M_i)}$
- can write $p(M_j|y) = p(M_j)/(\sum_k BF_{kj}p(M_k))$

Bayes Factors

Bayes factors and model averaging - II

- The previous slide envisions fitting each model separately and is completely general
- If the models are related, e.g., regression models with different predictors from a fixed list, then one can average in a different way

- Build a single "super" model that includes (M_j, θ_j) as parameters and average over this model
- Computation a single MCMC incorporating all models (reversible jump MCMC)

- Model selection is closely related to traditional hypothesis testing
- Makes this a good time to check in on some classical ideas and their Bayesian counterparts
- Some general comments on classical/Bayesian
 - Bayesian = classical for some problems (large samples, small number of parameters with noninformative prior distns)
 - Standard methods often correspond to a Bayesian model for some prior (e.g., in hierarchical models we saw that complete pooling and no pooling correspond to specific (extreme) choices of the prior distribution on the random effects)
 - Big differences on some issues (e.g., p-values)
 - p-values are based on probability distribution over possible values of y
 - Bayesian ideas all condition on the single fixed observed y

Asymptotics

- $\hat{\theta}_{MLE}$ is asymptotic efficient and consistent
- $\hat{\theta}_{post.mode}$ is asymptotic efficient and consistent
- Point estimation
 - optimal Bayes point estimates depend on the specification of a loss function

- classical inference relies on MLE (or occasionally other estimation strategies)
- Bayes estimators are not generally unbiased but then again neither are MLEs (recall defn of unbiasedness: E(θ̂(y)|θ) = θ)

- Confidence intervals
 - interpretation of Bayes and frequentist intervals are very different
 - most people want the Bayesian interpretation
- Hypothesis testing
 - Frequentist setup:

$$H_0: \theta = \theta_0$$
 vs. $H_a: \theta > \theta_0$
p-value = $P(\bar{Y} \text{ is unusually large}|H_0 \text{ is true})$

- only assessing H₀ vs data
- p-value depends on unobserved values
- likelihood ratio tests work for nested models only

- Hypothesis testing (cont'd)
 - Bayesian view:
 - need a prior distn $p(\theta)$ under both hypotheses
 - ► Bayes factor $BF = p(y|H_0)/p(y|H_a)$ where $p(y|H) = \int p(y|\theta, H)p(\theta|H)d\theta$
 - alternative for simple situation (like previous slide), just compute Pr(θ > θ_o|y)

Classical ideas and Bayesian Inference Hypothesis testing - an interesting example

- Discussion due to Morris (JASA 1987)
- Consider binomial sampling: $y|\theta \sim Bin(n, \theta)$

$H_0: heta\leq 0.5$			$H_a) heta > 0.5$	
n	у	$\hat{ heta}$	t	p-value
20	15	0.750	2.03	0.02
200	115	0.575	2.05	0.02
2000	1064	0.523	2.03	0.02

- Simple Bayesian analysis
 - model: $\hat{\theta} \sim N(\theta, 0.25/n)$ (normal approximation to binomial)
 - prior: $\theta \sim N(0.5, (0.05)^2)$

$$p(\theta > 0.5|y) = \begin{cases} 0.796 & (n = 20) \\ 0.953 & (n = 200) \\ 0.976 & (n = 2000) \end{cases}$$

- Multiple comparisons
 - e.g., effect of performing many hypothesis tests
 - tempting to say that Bayesian's don't care about multiple comparisons but there is a price to modeling many parameters
- Stopping rules/data collections
 - recall binomial/neg.binomial example
 - more on this later
- Nonparametrics
 - many nonparametric tests/procedures have been developed
 - Bayesian non-parametrics is more and more popular (not covered here)