Statistics 225 Bayesian Statistical Analysis (Part 4)

Hal Stern

Department of Statistics University of California, Irvine sternh@uci.edu

March 28, 2019

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Model checking Introduction

- \blacktriangleright So far:
	- \blacktriangleright build probability models
	- \triangleright compute/simulate posterior distn
- \blacktriangleright Now:
	- \triangleright model checking (does the model fit the data)
	- \triangleright sensitivity analysis (are conclusions sensitive to assumptions)

- \triangleright model selection (which is the best model)
- \triangleright robust analysis (are conclusions sensitive to data)

Model checking General ideas

- \triangleright Don't ask if the model is true
- \triangleright Does the model fit and provide useful inferences
- \blacktriangleright Remember the model includes
	- \blacktriangleright sampling distribution
	- \blacktriangleright prior distribution
	- \blacktriangleright hierarchical structure
	- \blacktriangleright explanatory variables
- \triangleright More than one model can fit (sensitivity analysis)

Model checking: types of checks

- \blacktriangleright Classical ideas
	- \blacktriangleright Check whether parameter estimates make sense
	- \triangleright Check whether predictions make sense
	- \triangleright Does the model generate data like "my data" (simulation approach, residual analysis)
	- \blacktriangleright Embed in a larger model
- \blacktriangleright Bayesian ideas
	- \triangleright Compare posterior distribution of parameters to substantive knowledge
	- \triangleright Compare posterior predictive distribution of future data to substantive knowledge
	- \triangleright Compare posterior predictive distribution of future data to observed data
	- \triangleright Evaluate sensitivity of inferences to other model specifications (e.g., alternate priors or sampling distributions, embed in larger model)

- y^{rep} = replicate data that might have occurred
- \triangleright Replicated under same model as original data (e.g., same covariate values) with same values for unknown parameters θ
- \blacktriangleright Posterior predictive distribution of y^{rep}

$$
p(y^{rep}|y) = \int p(y^{rep}, \theta|y) d\theta
$$

=
$$
\int p(y^{rep}|\theta, y)p(\theta|y)d\theta
$$

=
$$
\int p(y^{rep}|\theta)p(\theta|y)d\theta
$$

- \blacktriangleright Last equality is generally (but not always) true
- Easy to obtain simulations of y^{rep} given posterior simulations of θ
- \triangleright Other possible definitions of replications (more on this later)4 D > 4 P + 4 B + 4 B + B + 9 Q O

- \blacktriangleright $\mathcal{T}(\gamma, \theta)$ is a test quantity or discrepancy measure
- **Compare posterior predictive distribution of** $T(y^{rep}, \theta)$ to posterior distribution of $T(y, \theta)$
- \triangleright One possible summary (but not the only one) is the posterior predictive P-value

$$
P_b = Pr(T(y^{rep}, \theta) > T(y, \theta)|y)
$$

=
$$
\int \int I_{[T(y^{rep}, \theta) > T(y, \theta)]} p(y^{rep}|\theta) p(\theta | y) dy^{rep} d\theta
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

If Special case $T(y, \theta) = T(y)$ is a test statistic

- **Exercise** compare posterior predictive distribution of $T(y^{rep})$ to observed $T(y)$
- \triangleright Diagnostics such as plots of residuals are special cases of posterior predictive checks

Relation to traditional tests

- \blacktriangleright Example:
	- **E** suppose y_1, \ldots, y_n are iid $N(\mu, \sigma^2)$
	- \blacktriangleright believe $\mu=0$, so fit $\mathcal{N}(0,\sigma^2)$ model
	- ightharpoonup want to check fit of $N(0, \sigma^2)$ model
	- \triangleright weak example because obvious model checking approach is to fit the "bigger" $\mathcal{N}(\mu, \sigma^2)$ model and check whether $\mu = 0$ is plausible
- \blacktriangleright Frequentist approach
	- ightharpoontrianglengies that the test statistic: $T(y) = \overline{y}$
	- begin by assuming σ^2 is fixed

p-value =
$$
P(T(y^{rep}) \geq T(y) | \sigma^2)
$$

\n= $P(\bar{y}^{rep} \geq \bar{y} | \sigma^2)$
\n= $P(\frac{\sqrt{n}\bar{y}^{rep}}{S} \geq \frac{\sqrt{n}\bar{y}}{S} | \sigma^2) = P(t_{n-1} \geq \frac{\sqrt{n}\bar{Y}}{S})$

- In last equality because distn no longer depends on σ^2
- \triangleright it is not always possible to get rid of nuisance parameters in this way**K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

Posterior predictive model checking Relation to traditional tests (cont'd)

 \blacktriangleright Posterior predictive approach

p-value = $P(T(y^{rep}) \ge T(y)|y)$ $\;\;=\;\; \int\int \mathsf{1}_{[\mathcal{T}(\mathsf{Y}^{\mathsf{rep}}) \geq \mathcal{T}(y)]} \rho(\mathsf{Y}^{\mathsf{rep}} |\sigma^{2}) \rho(\sigma^{2}|y) d y^{\mathsf{rep}} d\sigma^{2}$ $= \int P(T(y^{rep}) \geq T(y)|\sigma^2) p(\sigma^2|y) d\sigma^2$ classical p-value

 \blacktriangleright if the classical p -value is independent of σ^2 , as for $\varGamma(y) = \bar{y}$ in the example, then the posterior predictive p -value is equal to classical p-value

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \triangleright if not, then formula above shows how the Bayesian approach handles nuisance parameters

Posterior predictive model checking Defining replications

- \blacktriangleright Defining replications y^{rep}
	- \triangleright usually keep features of original data fixed (e.g., sample size)
	- \blacktriangleright different definitions are possible in hierarchical models
		- \blacktriangleright replications of the same units

$$
p(\phi|y) \to p(\theta|\phi, y) \to p(y^{rep}|\theta)
$$

 \blacktriangleright replicate data for new units

$$
p(\phi|y) \to p(\theta|\phi) \to p(y^{rep}|\theta)
$$

Posterior predictive model checking Defining test measures

- \triangleright Defining test statistics or discrepancies
	- \triangleright measure features of data not directly included in the model (bad to use $T(y) = \overline{y}$ if the model includes a location parameter)
	- \blacktriangleright may define a number of test measures
	- \triangleright difficult to speak in general terms because good test measures depend on context
	- \blacktriangleright examples
		- \triangleright to check for autocorrelation in a sequence of Bernoulli trials, use a count of the number of runs
		- \triangleright to check for new predictor in regression model, use $corr(y - X\beta, x_{new})$
		- \triangleright to check for asymmetry in a normal model, use $|y_{.9} - \theta| - |y_{.1} - \theta|$
		- \triangleright to check overall fix in a complex model, use $\mathcal{T}(y; \theta) = \sum \left[(y_i - \mathcal{E}(y_i|\theta))^2 / \textsf{Var}(y_i|\theta) \right]$ (Note: asympt χ^2 for known θ but here no reliance on asymptotic distn)**KORK (FRAGE) EL POLO**

Related ideas

- ▶ Parametric bootstrap (e.g., Efron, 1979)
	- \blacktriangleright plug in point estimate $\hat{\theta}$
	- **F** simulated replicate data sets from $p(y|\theta)$
- \blacktriangleright Marginal distribution (Box, 1980)
	- \blacktriangleright reference distribution is $p(y) = \int p(y|\theta)p(\theta)d\theta$

- \triangleright note this is prior predictive distribution
- \blacktriangleright requires proper prior distribution

Criticisms of pp model checks

- \blacktriangleright Unobserved data $(y^{(rep)})$ is not relevant for Bayesian inference
- \blacktriangleright Posterior predictive checks are too conservative ("double-counting(?)" the data)
- \triangleright Main concern is that posterior predictive p-values are not uniformly distributed under the null hypothesis
- \triangleright Critics complain that it is difficult to interpret because of above ... what is an unusually high or low value in practice
- \triangleright Alternatives have been proposed, e.g., conditional predictive distn or partial posterior predictive distn (Bayarri and Berger in JASA 2000)
	- \triangleright avoid some of the criticisms by conditioning on "some" of the data but not all
	- \triangleright can be hard to compute
- \triangleright Counterpoint: Post. pred. p-values are posterior probabilities of relevant quantities and can be interpreted as probabilities

On the conservatism of pp model checks

- ► Suppose that $Y \sim N(\mu, 1)$ and $\mu \sim N(0, 9)$
- \triangleright Observe $Y_{obs} = 10$. Is this unusual?
- \blacktriangleright Prior predictive approach
	- ► marginal distn of Y is $N(0, 10)$
	- \blacktriangleright $p\text{-value} = 1 \Phi(10/\sqrt{10}) = .008$
	- **In don't believe model**
	- \triangleright the observed value 10 is not consistent with this prior distn and data model
- \blacktriangleright Posterior predictive approach
	- posterior distn of μ is $N(0.9Y_{obs}, 0.9) = N(9, .9)$

- posterior predictive distn of Y is $N(9, 1.9)$
- \blacktriangleright p-value = .23
- \triangleright model cares about posterior fit (this minimizes the effect of the prior)
- \triangleright would this approach ever reject the model (yes, $Y_{\text{obs}} = 23$)

- \blacktriangleright Easy to execute
- \triangleright Analogous to usual model checking ideas
- \triangleright Can be somewhat conservative in practice .. but can argue appropriately so because it does not reject a model that generates data like my data

KORKA SERKER ORA

Sensitivity analysis

- \triangleright Generally true that many models can be fit to the same data
- \triangleright Question is how sensitive the inferences we draw are to the different models
- \triangleright Different types of inferences may have different sensitivity
	- \triangleright posterior mean or median for parameter of interest is typically not sensitive
	- \triangleright extreme percentiles are more sensitive
- \blacktriangleright Approaches
	- \blacktriangleright fit different models
	- \triangleright expand model/embed model in larger family (more on this later)

KORKA SERKER ORA

Examp: consider normal distn as part of $t_\nu(\mu,\sigma^2)$ family (normal distn corresponds to $\nu = \infty$)

Model comparison / Model Selection / Model Averaging

- \triangleright Model checking assesses the fit of a single model
- \triangleright Sensitivity analysis considers multiple models with a focus on whether the inference changes
- \triangleright We next consider approaches the choose between (or average over) a set of models

- \triangleright We address three topics
	- \triangleright Comparing models
	- \triangleright Model selection (via the Bayes factor)
	- \triangleright Model averaging

- \triangleright Given one or more models it is natural to assess performance in terms of predictive accuracy
- \triangleright This also provides a mechanism for comparing models
- Goal is to predict new data \tilde{y} from the same data generating process
- \blacktriangleright How do we measure accuracy?
- \triangleright Need a scoring rule that assesses the quality of the predictive density

- **The log predictive density log** $p(\tilde{y}|\theta)$ **is a common choice**
	- \triangleright matches squared error in normal models
	- \blacktriangleright related to Kullback-Leibler information

- \blacktriangleright Ideal measure would be out-of-sample predictive performance (i.e., assess on new data from the same process)
- In Let f be true data generating model, y be observed data and \tilde{y} future data
- \triangleright Out-of-sample predictive fit for a single new data point using logarithmic score is

$$
\log p_{post}(\tilde{y}_i) = \log E_{post}(p(\tilde{y}_i|\theta)) = \log \int p(\tilde{y}_i|\theta) p_{post}(\theta) d\theta
$$

where p_{post} is shorthand notation for the posterior distribution $p(\theta|y)$ (this notation keeps formulas a bit neater)

- \triangleright Of course we don't have future data so ideally would average this over the distribution f
	- $elpd =$ expected log predictive density for a new data point elpd $= E_f(\log p_{post}(\tilde{\mathit{y}}_i) = \int (\log p_{post}(\tilde{\mathit{y}}_i))f(\tilde{\mathit{y}}_i)d\tilde{\mathit{y}}_i$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

\blacktriangleright Recall

 $elpd =$ expected log predictive density for a new data point elpd $= E_f(\log p_{post}(\widetilde{\mathbf{y}}_i) = \int (\log p_{post}(\widetilde{\mathbf{y}}_i))f(\widetilde{\mathbf{y}}_i)d\widetilde{\mathbf{y}}_i$

- \triangleright There is a choice to be made between evaluating predictive performance for the joint distn of \tilde{v} or evaluating predictive performance by considering the sum over individual points \tilde{v}_i
	- \triangleright These are the same if model for y is independent given parameters
	- \triangleright Many common precedures use pointwise (so we will do that) $elppd = exp$. log pointwise predicitve density for new data set elppd $= \sum_{i=1}^n E_f(\log p_{post}(\tilde{y}_i))$
- \triangleright As in model checking there is some ambiguity in defining what predictive performance means in hierarchical models (e.g., predictions at the same schools or at new schools from the population distn)
- \triangleright Both are plausible and it will depend on context; we don't worry about this issue further
- \blacktriangleright So how do we estimate elppd or ot[her](#page-17-0) [relevant quantity?](#page-0-0)

 -990

Given that f is unknown and we only have our data set y, the most natural idea is to summarize the predictive accuracy of the fitted model by

$$
lppd = log pointwise predictive density
$$

\n
$$
lppd = log \prod_{i=1}^{n} p_{post}(y_i) = \sum_{i=1}^{n} log \int p(y_i|\theta) p_{post}(\theta) d\theta
$$

\n
$$
lppd ≈ \sum_{i=1}^{n} log(\frac{1}{5} \sum_{s=1}^{5} p(y_i|\theta_s))
$$

\nwhere θ_s , $s = 1, ..., S$ are posterior simulations

- \triangleright The lppd is an overestimate (biased high) of the target elppd
	- \triangleright same data is used to fit the model and assess the model
	- \triangleright bias likely to depend on number of parameters in the model
- \triangleright We consider approaches to correcting for this bias

 \triangleright For historical reasons measures of predictive accuracy are

- \blacktriangleright described as information criteria
- \triangleright based on the deviance (log predictive density multiplied by -2)
- \triangleright Akaike information criteria (AIC)
	- **Ex** uses plug-in estimate (MLE) for θ rather than posterior distribution
	- \triangleright applies penalty to predictive accuracy based on asymptotic normal posterior distribution

KORKAR KERKER EL VOLO

- ► el $\hat{p}d_{AIC} = \log p(y|\hat{\theta}_{mle}) k$
- \blacktriangleright AIC = -2 log p(y| $\hat{\theta}_{mle}$) + 2k
- \blacktriangleright if iid data, then $\log p(y|\hat{\theta}_{mle}) = \sum_i \log p(y_i|\hat{\theta}_{mle})$
- \triangleright number of parameters is not always well defined (e.g., strong prior distns, hierarchical models)

\triangleright Deviance information criteria (DIC)

 \blacktriangleright Makes two changes to AIC: replaces MLE with posterior mean $\hat{\theta}_{Bayes} = E(\theta | y)$ replaces k with data-based bias correction

$$
\blacktriangleright \quad \hat{elpd}_{DIC} = \log p(y|\hat{\theta}_{Bayes}) - p_{DIC}
$$

►
$$
p_{DIC}
$$
 is effective number of parameters
\n $p_{DIC} = 2(\log p(y|\hat{\theta}_{Bayes}) - E_{post}(\log p(y|\theta)))$
\nestimated as $p_{DIC} = 2(\log p(y|\hat{\theta}_{Bayes}) - \frac{1}{5} \sum_{s} \log p(y|\theta^{s}))$

KORKA SERKER ORA

$$
\triangleright \; DIC = -2 \log p(y|\hat{\theta}_{Bayes}) + 2p_{DIC}
$$

 \triangleright Watanabe-Akaike information criteria (WAIC)

- \triangleright More fully Bayesian approach
	- \blacktriangleright uses $\emph{lppd} = \sum_i \log(\frac{1}{5} \sum_s p(y_i|\theta^s))$ as starting point rather than plugging in an estimate
	- \blacktriangleright alternative definition(s) of estimated number of parameters
	- \triangleright derived as approximation to cross-validation (discussed below)

KORKAR KERKER EL VOLO

 \triangleright p_{WAIC} is effective number of parameters $p_{\text{WAIC}} = 2\sum_{i=1}^{n} (\log(E_{\text{post}}p(y_i|\theta)) - E_{\text{post}}(\log p(y_i|\theta)))$ estimated as

$$
p_{\text{WAIC}} = 2\sum_{i=1}^{n} (\log(\frac{1}{5}\sum_{s} p(y_i|\theta^s)) - \frac{1}{5}\sum_{s} \log p(y|\theta^s))
$$

- \blacktriangleright elppd _{WAIC} = lppd p_{WAIC}
- $W AIC = -2$ lppd + 2 pware
- **Exercise in another (often better) expression for** p_{WAIC} **is in the text**
- \triangleright WAIC relies on pointwise calculations (others don't because they use point estimate for θ)

- \triangleright Bayesian information criteria (BIC)
	- \triangleright You may have heard of BIC (or SBC)
	- \triangleright Often provided with AIC
	- ► BIC $=$ $-2 \log p(y|\hat{\theta}) + k \log n$ (for some estimate, often MLE)

KORKAR KERKER EL VOLO

- \blacktriangleright Motivation is different
- \triangleright BIC derived as an approximation to marginal probability density under the model, $p(y)$, not predictive accuracy
- \triangleright Relevant to Bayes factors (discussed below) but not here

▶ Leave-one-out cross-validation (LOOCV)

- \blacktriangleright Cross validation
	- idea is to partition data into training y_{train} and holdout $y_{holdout}$ data sets

- \triangleright model is fit to training data yielding posterior distribution $p_{\text{train}}(\theta) = p(\theta | y_{\text{train}})$
- \blacktriangleright fit evaluated by examining $\log p_{\text{train}}(y_{\text{holdout}}) = \log \int p(y_{\text{holdout}}|\theta)p_{\text{train}}(\theta)d\theta$
- **In typically estimated by simulations from** $p_{train}(\theta)$
- \triangleright LOOCV is the special case with *n* repetitions, each having holdout set equal to a single point
- \triangleright More details on the next slide

- \blacktriangleright Leave-one-out cross-validation (LOOCV)
	- \triangleright Define $p_{post(-i)} = p(\theta | y_{(-i)})$
	- ► Assume we have posterior simulations from each $p_{post(-i)}$, denoted $\theta^{is}, s = 1, \ldots, S$
	- ► $lppd_{loo-Cv} = \sum_{i=1}^{n} \log p_{post(-i)}(y_i)$, calculated as $\sum_{i=1}^n \log(\frac{1}{5} \sum_{s=1}^S p(y_i|\theta^{is}))$
	- \triangleright Slight bias because this estimates predictive accuracy of model based on $n-1$ observations (rather than n)
	- \triangleright Bias correction addressed in text but not usually applied
	- \triangleright Can define effective number of parameters (in analogy with other approaches), $p_{loo-cv} = lppd - lppd_{loo-cv}$

A O A G A 4 O A C A G A G A 4 O A C A

Figure 1.5 Then (trivially), lppd_{loo−cv} = lppd – p_{loocv}

Model selection / Bayes factors

- \triangleright Model selection is a limiting case of model comparison in which the goal is to formally decide between the models
- **In Suppose there are two competings models** M_1 **and** M_2 **for a** data set
	- ightharpoonup distribute distributed and $p_2(\theta_2)$
	- In different data models $p_1(y|\theta_1)$ and $p_2(y|\theta_2)$
	- note θ_1 and θ_2 may be of different dimension
- \triangleright Consider a full Bayesian analysis
	- ► begin with prior probability $p(M_1) = 1 p(M_2)$
	- In then posterior odds of M_1 relative to M_2 are

$$
\frac{p(M_1|y)}{p(M_2|y)} = \frac{p(y|M_1)}{p(y|M_2)} \frac{p(M_1)}{p(M_2)}
$$

- \triangleright posterior odds are the product of prior odds and a form of likelihood ratio $p(y|M_1)/p(y|M_2)$
- ighthroup the ratio $p(y|M_1)/p(y|M_2)$ is known as the Bayes factor
- \triangleright it is a measure of how much the data changes the odds in favor of M_1 vs M_2 KID KA KERKER KID KO

Bayes Factors

 \triangleright Bayes factor of model 1 relative to model 2

$$
BF_{12} = \frac{p(y|M_1)}{p(y|M_2)} = \frac{\int p(y|\theta_1, M_1)p(\theta_1|M_1) d\theta_1}{\int p(y|\theta_2, M_2)p(\theta_2|M_2) d\theta_2}
$$

- notation: M_1 and M_2 are not events they merely identify models
- \triangleright Bayes factor is only defined when the marginal density of y under each model is proper (requires a proper prior distn)

KORKA SERKER ORA

Bayes Factor Computation

 \blacktriangleright To compute Bayes factors we need to be able to compute marginal likelihoods

$$
p(y) = \int p(y|\theta)p(\theta) d\theta
$$

- \blacktriangleright There are a number of approaches
- \triangleright Simple Monte Carlo approach
	- \triangleright simplest concept but doesn't work very well
	- \blacktriangleright draw G values of θ from $p(\theta)$, call them $\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(G)}$
	- $\hat{p}(y) = \frac{1}{G} \sum_{g=1}^{G} p(y|\theta^{(g)})$
	- **P** problem: prior distn may not have probability where $p(y|\theta)$ is substantial \rightarrow poor estimate

KORKAR KERKER EL VOLO

Bayes Factor Computation (cont'd)

- \blacktriangleright Alternative Monte Carlo approach
	- **Exercise in the following identity (true for any pdf** $h(\theta)$ **)**

$$
p(y)^{-1} = \int \frac{h(\theta)}{p(y|\theta)p(\theta)} p(\theta|y) d\theta
$$

- In draw G values of θ from $p(\theta|y)$
- $\hat{p}(y) = \left[\frac{1}{G}\sum_{g=1}^{G}\frac{h(\theta^{(g)})}{p(y|\theta^{(g)})p(y)}\right]$ $\frac{h(\theta^{(g)})}{p(y|\theta^{(g)})p(\theta^{(g)})}\Big]^{-1}$
- \blacktriangleright h(θ) could be prior distribution or normal approx to the posterior distn
- \triangleright problem: not a stable calculation because of the possibility of small numbers in the denom

Bayes Factor Computation (cont'd)

- \triangleright Chib's marginal likelihood method
	- note that $p(y) = p(y|\theta)p(\theta)/p(\theta|y)$
	- idea: evaluate above at one value of θ , say the posterior mean or the posterior mode
	- \blacktriangleright numerator terms are easy
	- **P** need to estimate denominator at chosen θ
	- \triangleright can use a density estimate derived from a posterior sample
	- \triangleright Chib proposes an alternative approach using Gibbs sampling
		- ► suppose target is $p(\theta^*|y)$ with $\theta = (\theta_1, \theta_2)$
		- ► then $p(\theta_1^*, \theta_2^* | y) = p(\theta_1^* | y) p(\theta_2^* | \theta_1^*, y)$
		- \triangleright we know the last term (since we have the density available for Gibbs samling)
		- \triangleright we can estimate the first from available posterior draws as $\frac{1}{N}\sum_{i=1}^N \rho(\theta_1^*|\theta_2^{(i)},y)$
		- \triangleright Chib shows how to generalize this to more components of θ

Bayes Factor Improper prior distributions

 \triangleright Consider y|θ ~ N(θ, 1) with $p(\theta) \propto 1$

$$
p(y) \propto \int \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-\theta)^2} d\theta = 1
$$

- ► Looks OK but $p(y) = 1$ for $y \in (-\infty, \infty)$ is not a valid marginal distn
- \blacktriangleright Ideas:
	- **►** approx improper prior with proper prior $(Unif(-c, c))$ but BF is very sensitive to choice of c
	- \triangleright partial Bayes factor: use part of the data to build a proper prior distn and then compute BF on the rest of the data, e.g., use y_1 and flat prior to define "new" prior

$$
p(\theta) = N(\theta | y_1, 1)
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

and then can define a Bayes Factor for y_2, \ldots, y_n

 \blacktriangleright fractional Bayes factor

Bayes Factor Asymptotic approximation

If sample size *n* is large, then

$$
\begin{array}{lcl} \log(BF) & \approx & \log(p(y|\hat{\theta}_2, M_2)) - \log(p(y|\hat{\theta}_1, M_1)) \\ & -\frac{1}{2}(d_1 - d_2)\log(n) \end{array}
$$

where

- \blacktriangleright $\hat{\theta}_i =$ posterior mode under M_i $(i = 1, 2)$
- d_i = dimension of the parameter space of M_i
- \blacktriangleright Equivalent to ranking models based on the BIC (Bayes information criterion)

$$
\mathsf{BIC} = -\log(p(y|\hat{\theta}, M) + \frac{1}{2}d \log(n)
$$

Bayes Factors

Bayes factors and model averaging - I

- Given m models (M_1, \ldots, M_m) with parameter vectors $\theta_1, \ldots, \theta_M$ and prior probabilities $P(M_1), \ldots, P(M_m)$
- \triangleright Suppose that each model is used to estimate a quantity of interest Δ (exists in all models)
- \blacktriangleright This could be a relevant summary for the scientific problem being studied or perhaps a prediction for a future observable quantity
- ► Then $P(\Delta|y) = \sum_{j=1}^{m} p(\Delta|M_j, y)p(M_j|y)$
- \triangleright Posterior probability for model *i* is

$$
p(M_j|y) = \frac{p(y|M_j)p(M_j)}{\sum_k p(y|M_k)p(M_k)}
$$

\blacktriangleright Notes:

- numerator is just marginal likelihood for model j
- \blacktriangleright $p(M_j|y)/p(M_i|y) = BF_{ji}\frac{p(M_j)}{p(M_i)}$
- \blacktriangleright can write $p(M_j | y) = D Y_{ji} P(M_i)$ $p(M_j | y) = D Y_{ji} P(M_i)$ $p(M_j | y) = D Y_{ji} P(M_i)$ $p(M_j | y) = D Y_{ji} P(M_i)$
 \blacktriangleright can write $p(M_j | y) = p(M_j) / (\sum_k BF_{kj} p(M_k))$ $p(M_j | y) = p(M_j) / (\sum_k BF_{kj} p(M_k))$

Bayes Factors

Bayes factors and model averaging - II

- \triangleright The previous slide envisions fitting each model separately and is completely general
- If the models are related, e.g., regression models with different predictors from a fixed list, then one can average in a different way

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- \blacktriangleright Build a single "super" model that includes (M_j,θ_j) as parameters and average over this model
- \triangleright Computation a single MCMC incorporating all models (reversible jump MCMC)

- \triangleright Model selection is closely related to traditional hypothesis testing
- \triangleright Makes this a good time to check in on some classical ideas and their Bayesian counterparts
- \triangleright Some general comments on classical/Bayesian
	- \triangleright Bayesian = classical for some problems (large samples, small number of parameters with noninformative prior distns)
	- \triangleright Standard methods often correspond to a Bayesian model for some prior (e.g., in hierarchical models we saw that complete pooling and no pooling correspond to specific (extreme) choices of the prior distribution on the random effects)
	- \triangleright Big differences on some issues (e.g., p-values)
		- \triangleright p-values are based on probability distribution over possible values of y
		- \triangleright Bayesian ideas all condition on the single fixed observed y

 \blacktriangleright Asymptotics

- \blacktriangleright $\hat{\theta}_{MLE}$ is asymptotic efficient and consistent
- \blacktriangleright $\hat{\theta}_{post.mode}$ is asymptotic efficient and consistent
- \blacktriangleright Point estimation
	- \triangleright optimal Bayes point estimates depend on the specification of a loss function

KORKAR KERKER EL VOLO

- \triangleright classical inference relies on MLE (or occasionally other estimation strategies)
- \triangleright Bayes estimators are not generally unbiased but then again neither are MLEs (recall defn of unbiasedness: $E(\hat{\theta}(y)|\theta) = \theta$)

- \blacktriangleright Confidence intervals
	- \triangleright interpretation of Bayes and frequentist intervals are very different
	- \triangleright most people want the Bayesian interpretation
- \blacktriangleright Hypothesis testing
	- \blacktriangleright Frequentist setup:

$$
H_0: \theta = \theta_0 \quad \text{vs.} \quad H_a: \theta > \theta_0
$$

p-value = $P(\bar{Y} \text{ is unusually large}|H_0 \text{ is true})$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- only assessing H_0 vs data
- \blacktriangleright p-value depends on unobserved values
- \blacktriangleright likelihood ratio tests work for nested models only

- \blacktriangleright Hypothesis testing (cont'd)
	- \blacktriangleright Bayesian view:
		- **P** need a prior distn $p(\theta)$ under both hypotheses
		- Bayes factor $BF = p(y|H_0)/p(y|H_a)$ where $p(y|H) = \int p(y|\theta, H)p(\theta|H)d\theta$
		- \blacktriangleright alternative for simple situation (like previous slide), just compute $Pr(\theta > \theta_o | y)$

Classical ideas and Bayesian Inference Hypothesis testing - an interesting example

- ▶ Discussion due to Morris (JASA 1987)
- \triangleright Consider binomial sampling: $y|\theta \sim Bin(n, \theta)$

 $H_0 \cdot \theta < 0.5$ $H \geq 0.5$

- \triangleright Simple Bayesian analysis
	- ► model: $\hat{\theta} \sim \mathcal{N}(\theta, 0.25/n)$ (normal approximation to binomial)
	- ► prior: $\theta \sim N(0.5, (0.05)^2)$

$$
p(\theta > 0.5|y) = \begin{cases} 0.796 & (n = 20) \\ 0.953 & (n = 200) \\ 0.976 & (n = 2000) \end{cases}
$$

- \blacktriangleright Multiple comparisons
	- \triangleright e.g., effect of performing many hypothesis tests
	- \triangleright tempting to say that Bayesian's don't care about multiple comparisons but there is a price to modeling many parameters
- \triangleright Stopping rules/data collections
	- \triangleright recall binomial/neg.binomial example
	- \blacktriangleright more on this later
- \blacktriangleright Nonparametrics
	- \triangleright many nonparametric tests/procedures have been developed
	- \triangleright Bayesian non-parametrics is more and more popular (not covered here)