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Model checking
Introduction

» So far:

>

>

build probability models
compute/simulate posterior distn

» Now:
» model checking (does the model fit the data)

v

v

v

sensitivity analysis (are conclusions sensitive to assumptions)
model selection (which is the best model)
robust analysis (are conclusions sensitive to data)



v

v

v

v

Model checking
General ideas

Don't ask if the model is true

Does the model fit and provide useful inferences
Remember the model includes

sampling distribution

prior distribution

hierarchical structure

explanatory variables

vV vy vy

More than one model can fit (sensitivity analysis)



Model checking: types of checks

» Classical ideas

» Check whether parameter estimates make sense

» Check whether predictions make sense

» Does the model generate data like “my data” (simulation
approach, residual analysis)

» Embed in a larger model

» Bayesian ideas

» Compare posterior distribution of parameters to substantive
knowledge

» Compare posterior predictive distribution of
future data to substantive knowledge

» Compare posterior predictive distribution of
future data to observed data

» Evaluate sensitivity of inferences to other model specifications
(e.g., alternate priors or sampling distributions, embed in larger
model)



Posterior predictive model checking

» y"®P = replicate data that might have occurred

Replicated under same model as original data (e.g., same
covariate values) with same values for unknown parameters 6
Posterior predictive distribution of y"P

ply"™ly) = / p(y™,0ly) do
= /p(yre"!&y)p(@\y)d@

= [ o I8)p(ely)ds

Last equality is generally (but not always) true

Easy to obtain simulations of y™P given posterior simulations
of 8

Other possible definitions of replications

(more on this later)



Posterior predictive model checking

T(y,0) is a test quantity or discrepancy measure

Compare posterior predictive distribution of T(y"P,0) to
posterior distribution of T(y,#)

One possible summary (but not the only one) is the posterior
predictive P-value

P, = Pr(T(y™,0)> T(y,0)ly)

= //’[T(y'ep,9)>T(y,e)]P(yrep9)P(9|)/)dyre”d9

Special case T(y,0) = T(y) is a test statistic
» compare posterior predictive distribution of T(y™P) to
observed T(y)
Diagnostics such as plots of residuals are special cases of
posterior predictive checks



Posterior predictive model checking
Relation to traditional tests

» Example:

>

>
| 4
>

Suppose y1, .. ., Y, are iid N(ju,o?)

believe = 0, so fit N(0,0?) model

want to check fit of N(0,0?) model

weak example because obvious model checking approach is to
fit the “bigger” N(u,0?) model and check whether 1 = 0 is
plausible

» Frequentist approach

>

>

>

>

test statistic: T(y) =y
begin by assuming o2 is fixed

r.v. obs.value
— ~ =
pvalue = P(T(y*)> T(y) |o?)

= P =7l0%)

- P (ﬁg'ep > \/55)7‘0.2) —p (tn—l > \/g\_/)

last equality because distn no longer depends on o

it is not always possible to get rid of nuisance parameters in
this way



Posterior predictive model checking
Relation to traditional tests (cont'd)

» Posterior predictive approach
p-value = P(T(y"™") = T(y)ly)
= [ [ hryeny>T(p)p(YPl0?)p(0?|y)dy P do?

= [P(T(y®) > T(y)|o®) p(o?|y)do?

classical p-value

» if the classical p-value is independent of o2, as for T(y) = ¥ in
the example, then the posterior predictive p-value is equal to
classical p-value

» if not, then formula above shows how the
Bayesian approach handles nuisance parameters



Posterior predictive model checking
Defining replications

» Defining replications y"P

» usually keep features of original data fixed (e.g., sample size)
» different definitions are possible in hierarchical models

> replications of the same units

p(oly) — p(0l9,y) = p(y""10)

> replicate data for new units

p(¢ly) — p(0l¢) — p(y""(0)



Posterior predictive model checking
Defining test measures

» Defining test statistics or discrepancies

>

measure features of data not directly included in the model
(bad to use T(y) = y if the model includes a location
parameter)

» may define a number of test measures
» difficult to speak in general terms because good test measures

depend on context
examples
> to check for autocorrelation in a sequence of Bernoulli trials,
use a count of the number of runs
> to check for new predictor in regression model, use
corr(y — X3, Xnew)
> to check for asymmetry in a normal model, use
lyo =6l —[y1—0
> to check overall fix in a complex model,
use T(y;0) = 3 [(vi — E(%l0))?/Var(yi|0)]
(Note: asympt x° for known @ but here no reliance on
asymptotic distn)



Related ideas

» Parametric bootstrap (e.g., Efron, 1979)

» plug in point estimate 0
» simulated replicate data sets from p(y|d)
» Marginal distribution (Box, 1980)
> reference distribution is p(y) = [ p(y|0)p(0)d0
» note this is prior predictive distribution
> requires proper prior distribution



Criticisms of pp model checks

Unobserved data (y("®P)) is not relevant for Bayesian inference

Posterior predictive checks are too conservative
(“double-counting(?)" the data)

Main concern is that posterior predictive p-values are not
uniformly distributed under the null hypothesis

Critics complain that it is difficult to interpret because of
above ... what is an unusually high or low value in practice
Alternatives have been proposed, e.g., conditional predictive

distn or partial posterior predictive distn (Bayarri and Berger
in JASA 2000)

» avoid some of the criticisms by conditioning on “some” of the
data but not all
» can be hard to compute
Counterpoint: Post. pred. p-values are posterior probabilities
of relevant quantities and can be interpreted as probabilities



v

v

v

v

On the conservatism of pp model checks

Suppose that Y ~ N(u, 1) and p ~ N(0,9)
Observe Y,ps = 10. Is this unusual?
Prior predictive approach

vV vyVvVvyy

marginal distn of Y is N(0, 10)

p-value = 1 — &(10/4/10) = .008

don't believe model

the observed value 10 is not consistent with this
prior distn and data model

Posterior predictive approach

>

>
>
>

posterior distn of p is N(0.9Y,ps,0.9) = N(9,.9)
posterior predictive distn of Y is N(9,1.9)
p-value = .23

model cares about posterior fit

(this minimizes the effect of the prior)

would this approach ever reject the model

(ves, Yobs = 23)



Posterior predictive model checking

» Easy to execute
» Analogous to usual model checking ideas

» Can be somewhat conservative in practice .. but can argue
appropriately so because it does not reject a model that
generates data like my data



v

v

v
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Sensitivity analysis

Generally true that many models can be fit to the same data

Question is how sensitive the inferences we draw are to the
different models
Different types of inferences may have different sensitivity

» posterior mean or median for parameter of
interest is typically not sensitive
> extreme percentiles are more sensitive

Approaches

» fit different models
» expand model/embed model in larger family (more on this
later)
» examp: consider normal distn as part of t,(u, o?)
family (normal distn corresponds to v = oo)



Model comparison / Model Selection / Model Averaging

v

Model checking assesses the fit of a single model

v

Sensitivity analysis considers multiple models with a focus on
whether the inference changes

We next consider approaches the choose between (or average
over) a set of models

v

v

We address three topics
» Comparing models
» Model selection (via the Bayes factor)
» Model averaging



Model comparison

Given one or more models it is natural to assess performance
in terms of predictive accuracy

This also provides a mechanism for comparing models

Goal is to predict new data y from the same data generating
process

How do we measure accuracy?

Need a scoring rule that assesses the quality of the predictive
density

The log predictive density log p(7]0) is a common choice

» matches squared error in normal models
> related to Kullback-Leibler information



Model comparison

Ideal measure would be out-of-sample predictive performance
(i.e., assess on new data from the same process)

Let f be true data generating model, y be observed data and
y future data

Out-of-sample predictive fit for a single new data point using
logarithmic score is

log Ppost()N/i) = log Epost(P(}N/iW)) = IOg/P()N/i“g)Ppost‘(‘g)d‘9

where ppos: is shorthand notation for the posterior distribution
p(0ly) (this notation keeps formulas a bit neater)
Of course we don't have future data so ideally would average

this over the distribution f
elpd = expected log predictive density for a new data point

elpd = Ef(IOg Ppost()N/i) = f(log Ppost(}N/i))f(}N/i)d)N/i



v

Model comparison

Recall
elpd = expected log predictive density for a new data point
elpd = E¢(log ppost (Vi) = [ (log ppost(¥i))f (¥i)d¥i
There is a choice to be made between evaluating predictive
performance for the joint distn of y or evaluating predictive
performance by considering the sum over individual points y;
» These are the same if model for y is independent given
parameters
» Many common precedures use pointwise (so we will do that)

elppd = exp. log pointwise predicitve density for new data set
elppd = Y7 Ef(log ppost (Vi)

As in model checking there is some ambiguity in defining
what predictive performance means in hierarchical models
(e.g., predictions at the same schools or at new schools from
the population distn)

Both are plausible and it will depend on context; we don't
worry about this issue further

.... So how do we estimate elppd or other relevant quantity?



Model comparison

» Given that f is unknown and we only have our data set y, the
most natural idea is to summarize the predictive accuracy of
the fitted model by
Ippd = log pointwise predictive density
Ippd = log [T7_; Ppost(yi) = D71 log [ p(yil0)ppost(8)dO
Ippd ~ 37y log(3 o2y p(yil6s))
where 05,5 = 1,...,S are posterior simulations

» The Ippd is an overestimate (biased high) of the target elppd

» same data is used to fit the model and assess the model
> bias likely to depend on number of parameters in the model

» We consider approaches to correcting for this bias



Model Comparison Measures

» For historical reasons measures of predictive accuracy are

» described as information criteria
» based on the deviance (log predictive density multiplied by -2)
» Akaike information criteria (AIC)
» uses plug-in estimate (MLE) for 6 rather than posterior
distribution
> applies penalty to predictive accuracy based on asymptotic
normal posterior distribution
elpd pc = log P(Y\Qm/e) —k
AIC = —2log p(y‘gm/e) ‘J: 2k n
if iid data, then log p(y|0mie) = >, log p(¥i|Omie)
number of parameters is not always well defined
(e.g., strong prior distns, hierarchical models)

vV vy vy



Model Comparison Measures

» Deviance information criteria (DIC)
» Makes two changes to AIC:
replaces MLE with posterior mean égayes = E(fy)
replaces k with data-based bias correction

> e/IAJdDIC = log P(Y|éBayeS) — Pbic
> ppic is effective number of parameters

Ppic = 2(|Og p(y|é\Bayes) - Eposa(log p(}/|9)))
estimated as ppic = 2(log p(y|0payes) — < D log p(y|6°))
» DIC = -2 |Og p(y|933yes) + 2PDIC



Model Comparison Measures

» Watanabe-Akaike information criteria (WAIC)
» More fully Bayesian approach

> uses Ippd = Y. log(+ >, p(yi|60°)) as starting point rather
than plugging in an estimate

> alternative definition(s) of estimated number of parameters

> derived as approximation to cross-validation (discussed below)

> pwaic is effective number of parameters

pwaic = 2 Z, 1(|Og(Epostp(yl|9)) Epost(log p(yil0)))
estimated as

pwaic = 257 1 (log(& >, p(yil6°)) — & - log p(y[6°))
> e/PPdWAIC = /PPd — PwWAIC
» WAIC = -2 Ippd + 2 pwarc

» another (often better) expression for pyac is in the text

» WAIC relies on pointwise calculations
(others don't because they use point estimate for 6)



Model Comparison Measures

» Bayesian information criteria (BIC)

>

vV vy VvVyy

You may have heard of BIC (or SBC)

Often provided with AIC

BIC = —2log p(y|A) + k log n (for some estimate, often MLE)
Motivation is different

BIC derived as an approximation to marginal probability
density under the model, p(y), not predictive accuracy
Relevant to Bayes factors (discussed below) but not here



Model Comparison Measures

» Leave-one-out cross-validation (LOOCV)
» Cross validation
> idea is to partition data into training yinin and holdout Yhordout
data sets
> model is fit to training data yielding posterior distribution
Perain(0) = p(0]Ytrain)
> fit evaluated by examining
log ptrain(Yholdout) = 108 | p(Vhoidout |0) Perain(0) dO
> typically estimated by simulations from pirain(6)
» LOOCV is the special case with n repetitions, each having
holdout set equal to a single point
» More details on the next slide



Model Comparison Measures

> Leave-one-out cross-validation (LOOCV)

>

>

Define Ppost(—i) = P(9|)/(_,'))
Assume we have posterior simulations from each pyos:(—iy,
denoted 6*,s=1,...,S
/ppdloo—cv = 27:1 lOg ppost(fi)()/i)a calculated as
3 :
27:1 |Og(% 25:1 P(YIWIS))
Slight bias because this estimates predictive accuracy of model
based on n — 1 observations (rather than n)

» Bias correction addressed in text but not usually applied
» Can define effective number of parameters (in analogy with

other approaches), pioo—cv = Ippd — IpPdiso—cv
Then (trivially), Ippdico—cv = IPPd — Pivocy



Model selection / Bayes factors

> Model selection is a limiting case of model comparison in
which the goal is to formally decide between the models
» Suppose there are two competings models M; and M; for a
data set
» different prior distns p;(61) and pa(62)
» different data models p1(y|61) and p2(y|62)
» note 01 and A may be of different dimension
» Consider a full Bayesian analysis
» begin with prior probability p(M;) =1 — p(M)
» then posterior odds of M; relative to M, are

p(Mily) — p(y|Mi) p(Mi)

p(Maly) — p(y|M2) p(Ms)

» posterior odds are the product of prior odds and a form of
likelihood ratio p(y|M1)/p(y|Ma)

» the ratio p(y|M1)/p(y|M2) is known as the Bayes factor

> it is a measure of how much the data changes the odds in
favor of My vs M,



Bayes Factors

» Bayes factor of model 1 relative to model 2

_ plyIMy) _ [ p(yl61, Ma)p(61| M) dby
p(yIM2) [ p(yl62, M2)p(62|M2) db,

BFi2

> notation: My and M, are not events they merely identify
models

» Bayes factor is only defined when the marginal density of y
under each model is proper
(requires a proper prior distn)



Bayes Factor
Computation

» To compute Bayes factors we need to be able to compute
marginal likelihoods

ply) = / p(y16)p(6) db

» There are a number of approaches
» Simple Monte Carlo approach

» simplest concept but doesn't work very well

» draw G values of @ from p(f), call them (1) 9 . . (¢)
N G

> Bly) = & X1 P(¥10®)

» problem: prior distn may not have probability where p(y|6) is
substantial — poor estimate



Bayes Factor
Computation (cont'd)

» Alternative Monte Carlo approach
» consider the following identity (true for any pdf h(6))

ply) ™ = /p(y%?;(e)p(f)y)dé’

» draw G values of 6 from p(6]y)

A G h(0®) !
> ply) = % Zg:l p(y|9((g))p()9(g))}

» h(0) could be prior distribution or normal approx to the
posterior distn

» problem: not a stable calculation because of the possibility of
small numbers in the denom



Bayes Factor
Computation (cont'd)

» Chib’s marginal likelihood method
note that p(y) = p(y(0)p(0)/p(0]y)

>

>

vVvyVvyYy

idea:

evaluate above at one value of 6, say the posterior mean

or the posterior mode

numerator terms are easy

need to estimate denominator at chosen 6

can use a density estimate derived from a posterior sample
Chib proposes an alternative approach using Gibbs sampling

>
>
>

suppose target is p(0*|y) with 0 = (61, 60>)
then p(01,63]y) = p(01 ly)p(03 101, y)
we know the last term (since we have the density available for
Gibbs samling)
we can estimate the first from available posterior draws as
N G
8 S p(07165, y)
Chib shows how to generalize this to more components of 6



Bayes Factor
Improper prior distributions

» Consider y|6 ~ N(6,1) with p(f) o 1

p(y) o ie*%(y%)zdg -1
V2r
» Looks OK but p(y) =1 for y € (—o0, o0)
is not a valid marginal distn
> lIdeas:
» approx improper prior with proper prior (Unif(—c, ¢)) but
BF is very sensitive to choice of ¢
> partial Bayes factor: use part of the data to build a proper
prior distn and then compute BF on the rest of the data, e.g.,
use y; and flat prior to define “new"” prior

p(6) = N(0|y1,1)

and then can define a Bayes Factor for y>,..., v,
» fractional Bayes factor



Bayes Factor
Asymptotic approximation

> If sample size n is large, then

log(BF) =~ log(p(y|02, M2)) — log(p(y|f1, Mr))

1
— 5 (d1 = d2)log(n)
where

» 0; = posterior mode under M; (i = 1,2)

» d; = dimension of the parameter space of M;

» Equivalent to ranking models based on the BIC
(Bayes information criterion)

BIC = —log(p(y|0, M) + %d log(n)



Bayes Factors
Bayes factors and model averaging - |

Given m models (My, ..., Mp,) with parameter vectors
01,...,0n) and prior probabilities P(My), ..., P(My,)
Suppose that each model is used to estimate a quantity of
interest A (exists in all models)

This could be a relevant summary for the scientific problem
being studied or perhaps a prediction for a future observable
quantity

> Then P(Aly) =32 p(A|M;, y)p(M;ly)

» Posterior probability for model j is

p(Mly) = Py |M;)p(M;)
>k Py [Mi)p(My)
Notes:
» numerator is just marginal likelihood for model j
> p(Mjly)/p(Mily) = BF; 23
> can write p(Mjly) = p(M;)/ (T, BFyp(Mk))




Bayes Factors
Bayes factors and model averaging - |l

The previous slide envisions fitting each model separately and
is completely general

If the models are related, e.g., regression models with different
predictors from a fixed list, then one can average in a different
way

Build a single "super” model that includes (M;,6;) as
parameters and average over this model

Computation - a single MCMC incorporating all models
(reversible jump MCMC)



Classical ideas and Bayesian Inference

» Model selection is closely related to traditional hypothesis
testing

> Makes this a good time to check in on some classical ideas
and their Bayesian counterparts

» Some general comments on classical /Bayesian

» Bayesian = classical for some problems
(large samples, small number of parameters with
noninformative prior distns)

» Standard methods often correspond to a Bayesian model for
some prior (e.g., in hierarchical models we saw that complete
pooling and no pooling correspond to specific (extreme)
choices of the prior distribution on the random effects)

» Big differences on some issues (e.g., p-values)

> p-values are based on probability distribution over possible

values of y
> Bayesian ideas all condition on the single fixed observed y



Classical ideas and Bayesian Inference

» Asymptotics
> 9MLE is asymptotic efficient and consistent
> 9post,mode is asymptotic efficient and consistent
> Point estimation
» optimal Bayes point estimates depend on the specification of a
loss function
» classical inference relies on MLE (or occasionally other
estimation strategies)
» Bayes estimators are not generally unbiased ....
but then again neither are MLEs
(recall defn of unbiasedness: E(6(y)|d) = 6)



Classical ideas and Bayesian Inference

» Confidence intervals

> interpretation of Bayes and frequentist intervals are very
different
» most people want the Bayesian interpretation

» Hypothesis testing
» Frequentist setup:

Hy:0=06y vs. H,:0 >0
p-value = P(Y is unusually large|Ho is true)
> only assessing Hp vs data

> p-value depends on unobserved values
> likelihood ratio tests work for nested models only



Classical ideas and Bayesian Inference

» Hypothesis testing (cont'd)
» Bayesian view:

>
>

need a prior distn p(6) under both hypotheses
Bayes factor BF = p(y|Ho)/p(y|Ha) where

py|H) = [ p(y|6, H)p(6|H)do
alternative for simple situation (like previous slide), just

compute Pr(0 > 6,|y)



Classical ideas and Bayesian Inference
Hypothesis testing - an interesting example

» Discussion due to Morris (JASA 1987)
» Consider binomial sampling: y|6 ~ Bin(n, )

Ho:0<05  H,)0>05

n y 0 t p-value
20 15 0.750 2.03 0.02
200 115 0.575 2.05 0.02
2000 1064 0.523 2.03 0.02
» Simple Bayesian analysis
» model: 6 ~ N(6,0.25/n) (normal approximation to binomial)
» prior: 6 ~ N(0.5,(0.05)2)

0.796 (n = 20)

p(6 > 05|y) =< 0.953 (n=200)
0.976 (n = 2000)



Classical ideas and Bayesian Inference

» Multiple comparisons
> e.g., effect of performing many hypothesis tests
» tempting to say that Bayesian's don't care about multiple
comparisons but there is a price to modeling many parameters
» Stopping rules/data collections
» recall binomial/neg.binomial example
» more on this later
» Nonparametrics
» many nonparametric tests/procedures have been developed
» Bayesian non-parametrics is more and more popular (not
covered here)



