Statistics 225 Bayesian Statistical Analysis (Part 3)

Hal Stern

Department of Statistics University of California, Irvine sternh@uci.edu

March 28, 2019

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Introduction

- \triangleright Goal: Posterior inference for parameters, missing data (if any), and predictions
- \blacktriangleright Thus far:
	- \triangleright analytic results or exact simulation in small problems
	- \blacktriangleright normal approximation for large samples
	- \blacktriangleright grid approximation
	- **If** use hierarchical structure (e.g., $\tau |y$, then $\mu | \tau, y$, then $\theta | y, \mu, \tau$ in hierarchical normal-normal model)
- \blacktriangleright Now consider additional tools:
	- \blacktriangleright numerical integration
	- \triangleright simulation (including MCMC)
	- \blacktriangleright approximation (including optimization strategy)
- \triangleright Some of this is usually covered in a statistical computing class

- \triangleright An overall computation strategy
	- \triangleright initial (perhaps crude) estimates of parameters
	- \triangleright numerical integration or direct simulation when possible
	- \triangleright if direct simulation is not possible
		- iterative simulation via MCMC algorithms (e.g., Gibbs sampler, Metropolis algorithm)
		- \blacktriangleright approximation strategies (modes, variational Bayes, EP)

Some helpful computing ideas / strategies

- \triangleright Compute posterior distn on log scale (to avoid underflows or overflows)
- \blacktriangleright Factoring the posterior distribution (e.g., $p(\theta_1, \theta_2 | v) = p(\theta_1 | \theta_2, v) p(\theta_2 | v)$)
	- \blacktriangleright reduce to easier, lower-dimensional problems
	- \triangleright isolate the parameters most influenced by prior distribution (e.g., τ in 8 schools example)
	- \blacksquare difficulties:
		- \triangleright can't generally find marginal distn easily
		- \triangleright hard to use a grid with a high-dimensional marginal distn
- \blacktriangleright Transformations
	- \triangleright create more understandable parameters
	- \triangleright make prior independence plausible
	- \triangleright improve normal approximation (e.g., log of scale parameter)

KORKA SERKER ORA

 \blacktriangleright speed/simplify iterative simulation

Computation Notation/Notes

- \blacktriangleright $p(\theta|\gamma)$ is the posterior distn
	- \blacktriangleright θ now includes all parameters (i.e., both θ and ϕ in the hierarchical model)
	- **•** often we only know the unnormalized posterior distn $q(\theta|y)$
		- \triangleright i.e., $p(\theta|y) \propto p(y|\theta)p(\theta) = q(\theta|y)$
		- **If** more formally, $p(\theta|y) = c(y)q(\theta|y)$
	- \triangleright our computation discussion will generally use $p(\theta|y)$ to refer to both normalized/unnormalized posterior distribution
	- \blacktriangleright I will point out whether it matters whether the posterior distn is normalized

Computation Initial estimation

- \triangleright Starting point for subsequent approaches
- \triangleright Serves as a check for other approaches
- \blacktriangleright Problem-specific methods are required
	- \triangleright use results from other statistical approaches (e.g., maximum likelihood estimates in bioassay logistic regression)
	- \triangleright fix hyperparameters at crude estimates (e.g., consider separate and pooled estimates for the 8 schools example which are equivalent to $\tau = \infty$ and $\tau = 0$)

- \triangleright Many quantities of interest in a Bayesian analysis can be written as $E(h(\theta)|y) = \int h(\theta)p(\theta|y)d\theta$ (e.g., posterior mean)
- \triangleright These can be obtained by numerical integration
- \triangleright In modern world, simulation is often preferred (but numerical integration still used)

KORKA SERKER ORA

 \triangleright We focus here briefly on some useful tools

Numerical integration

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright Traditional quadrature
	- \triangleright trapezoidal rule (piecewise linear approximation)
	- \triangleright Simpson's rule (piecewise quadratic)
	- \blacktriangleright algorithms for iterating
	- \blacktriangleright Gaussian quadrature

Integration via direct simulation

- if we can generate $\theta_1, \ldots, \theta_N$ from $p(\theta|y)$ then we can estimate integral as $\sum_i h(\theta_i)/N$
- \triangleright of course, this is equivalent to direct simulation from the posterior distribution
- \blacktriangleright Importance sampling
	- \blacktriangleright can write $E(h(\theta)|y)=\int \frac{h(\theta)p(\theta|y)}{g(\theta)}g(\theta)d\theta$
	- if we can generate $\theta_1, \ldots, \theta_N$ from $g(\theta)$, then we can estimate integral as $\frac{1}{N} \sum_i \frac{h(\theta_i) p(\theta_i | y)}{g(\theta_i)}$ $g(\theta_i)$

- $\blacktriangleright \hspace{0.2cm}$ w $(\theta_{i}) = p(\theta_{i}|y)/g(\theta_{i})$ is known as the importance ratio
- improves upon simple MC if we can find g yielding low variability weights
- ightharpoorly if g' s tails are too short (we get some very large importance ratios)

- \triangleright Dealing with unnormalized distributions
	- **E** suppose we only have $q(\theta|y)$
	- \triangleright numerical integration and importance sampling approaches can work
	- ightharpoonup write $E(h(\theta)|y) = \frac{\int h(\theta)q(\theta|y)d\theta}{\int g(\theta|x)d\theta}$ $\int q(\theta|y)d\theta$
	- \triangleright apply numerical integration or importance sampling separately to numerator and denominator

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \triangleright There are many techniques for improving upon Monte Carlo (simulation) approaches to numerical integration (e.g., antithetic variables) ... see statistical computing texts

- \triangleright Analytical approximation (Laplace's method)
	- \blacktriangleright can write $E(h(\theta)|y) = \int e^{\log(h(\theta)p(\theta|y))}d\theta$
	- papproximate $u(\theta) = \log(h(\theta)p(\theta|y))$ using a quadratic expansion around the mode θ_{o}
	- ► find $E(h(\theta)|y) \approx h(\theta_o)p(\theta_o|y)(2\pi)^{-d/2}$ $u''(\theta_o)|^{1/2}$

- \blacktriangleright requires large samples
- \blacktriangleright need two approximations for unnormalized posterior distn $(E(h(\theta)|y) = \int h(\theta)q(\theta|y)d\theta / \int q(\theta|y)d\theta)$

Direct simulation

- \triangleright We have already seen that simulation is a powerful approach for studying the posterior distn in a Bayesian analysis
- \triangleright Next, briefly discuss some basic direct simulation tools
	- \triangleright these are useful in simpler (low dimensional) problems
	- \triangleright these same tools are useful as components for more advanced simulations
- \blacktriangleright Simulation analysis
	- \blacktriangleright report number of draws
	- \blacktriangleright report summary statistics (mean, sd, percentiles)
	- \blacktriangleright graphs
	- \triangleright how many draws? depends on desired accuracy (e.g., if we have iid simulations then std error of posterior (e.g., if we have no simulations then std error
mean is equal to posterior s.d. divided by \sqrt{n})

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Direct simulation approaches

- \blacktriangleright Exact simulation
	- \triangleright standard algorithms for drawing from standard distns (uniform, normal, Poisson, gamma, etc.)
	- \triangleright available in most software including R
- \blacktriangleright Grid approximation
	- ightharpoonup discrete (evenly spaced) grid $\theta_1, \theta_2, \ldots, \theta_N$,

$$
\Pr_{grid}(\theta = \theta_j) = p(\theta_j|y) / (\sum_i p(\theta_i|y))
$$

- \triangleright we have already seen this approach
- \triangleright works for normalized or unnormalized posterior distn
- \blacktriangleright hard in 2 or more dimensions
- \triangleright choice of grid can affect the answer

Direct simulation approaches

- \blacktriangleright Probability integral transform
	- **Exercise** consider posterior distributed $p(\theta|y)$ with corresponding cdf $F(\theta|v)$
	- ► recall probability result: if $U\sim \mathsf{Unif}(0,1)$, then $\theta=F^{-1}(U)$ is a r.v. with distn $p(\theta|y)$

- \blacktriangleright e.g., if $\theta\vert y\sim \mathcal{N}(\mu,\tau^2),$ then $\theta=\mu+\tau\Phi^{-1}(U)$
- \blacktriangleright discrete r.v.'s are possible but harder to program
- \triangleright can use this to improve grid by making a trapezoidal approximation

Direct simulation approaches

- \blacktriangleright Rejection sampling
	- **E** suppose we find $g(\theta)$ that we can sample from with $p(\theta|y)/g(\theta) \leq M$ (with M known)
	- \blacktriangleright algorithm:
		- \blacktriangleright draw $\theta \sim g(\theta)$
		- **F** accept θ with prob $p(\theta|y)/(Mg(\theta))$. otherwise reject and draw a new candidate
		- \triangleright for log-concave densities this approach can be used with trapezoids defining rejection function (Gilks and Wild, 1992, Applied Statistics)

KORKA SERKER ORA

 \triangleright Many other useful methods for direct simulation that we don't have time to discuss here

Computation Iterative simulation

Basic idea: to sample from $p(\theta|y)$ create a Markov chain with $p(\theta|y)$ as stationary distribution

- \blacktriangleright Algorithms:
	- \triangleright Gibbs sampler (full conditionals)
	- \triangleright Metropolis-Hastings algorithm (jumping distn)
	- \triangleright combinations of Gibbs and M-H
	- \blacktriangleright Hamiltonian Monte Carlo
- \blacktriangleright Implementation issues (later)

Iterative simulation Gibbs sampler

 \blacktriangleright Key features

· · ·

- \triangleright break problem into lower-dimensional pieces using conditional distributions
- \triangleright conditional posterior distributions often have simple form
- **If** Start by drawing an initial $\theta = (\theta_1, \dots, \theta_k)$ from an approximation to $p(\theta|y)$.
- \triangleright Repeat the following steps using most recently drawn values for variables in conditioning set:
	- In draw θ_1 from $p(\theta_1 | \theta_2, \ldots, \theta_k, v)$
	- In draw θ_2 from $p(\theta_2 | \theta_1, \theta_3, \dots, \theta_k, y)$
	- \triangleright draw θ_k from $p(\theta_k | \theta_1, \ldots, \theta_{k-1}, y)$

 \triangleright Can update parameters one at a time (as above) or in blocks

Iterative simulation Gibbs sampling

- \blacktriangleright Efficiency considerations
	- \triangleright partitioning parameters into groups/blocks is often a good idea
	- \triangleright works best if we can create independent or nearly independent blocks of parameters
	- **Exercise 1** transform distributions/parameters (e.g., t as a scale mixture of normals, centering random effects)

KORK ERKER ADE YOUR

 \triangleright Example of Gibbs sampling (normal-normal model)

Non-standard distributions

- It may happen that one or more of the Gibbs sampling distns is not a known distn
- \blacktriangleright What then?
	- \triangleright can go back to previous direct simulation discussion (i.e., use grid approximation, rejection sampling, etc.) but this is not ideal

KORK ERKER ADE YOUR

 \triangleright Metropolis (or (Metropolis-Hastings) algorithm

Metropolis-Hastings (M-H) algorithm

- \triangleright Replaces "conditional draws" of Gibbs sampler with "jumps" around the parameter space
- \blacktriangleright Algorithm:
	- **E** given current draw θ (scalar or vector)
	- ► sample a candidate point θ^* from jumping distribution $J(\theta^*|\theta)$
	- \triangleright accept candidate or stay in place with probabilities determined by importance ratio

$$
r = \frac{p(\theta^*|y)/J(\theta^*|\theta)}{p(\theta|y)/J(\theta|\theta^*)}
$$

- \triangleright Simplifies if J is symmetric (Metropolis algorithm)
- ► Combining M-H and Gibbs: M-H steps can be used in place of one conditional distn in a Gibbs sampler, or a single M-H step can replace several (or even all) of the conditional distns

Iterative simulation Efficiency considerations - M-H

- ► How do we choose the jumping distribution $J(\theta|\theta^{(t-1)})$?
- ► Optimal J is $p(\theta | y)$ independent of current value $\theta^{(t-1)}$
	- ighthis always accepts $(r = 1)$
	- \triangleright but if we could do this we wouldn't need M-H
- Goals in choosing J :
	- \triangleright J should be easy to sample from
	- it should be easy to compute r
	- \triangleright jumps should go far (so we move around the parameter space) but not too far (so they are not always rejected)

KORKAR KERKER EL VOLO

Iterative simulation Efficiency considerations - M-H

- \blacktriangleright Three common approaches
	- \blacktriangleright independence M-H
	- \triangleright random walk M-H (used most often)
	- \blacktriangleright approximation M-H
- \blacktriangleright Independence M-H
	- ► find a distribution $g(\theta)$ independent of current $\theta^{(t-1)}$ and keep generating candidates from $g(\theta)$

- requires g be a reasonably good approximation
- \triangleright hard to do for M-H within Gibbs

Efficiency considerations - M-H

- \blacktriangleright Random Walk M-H
	- \triangleright generate candidate using random walk (often normal) centered at current value
	- \blacktriangleright $J(\theta | \theta^{(t-1)}) = N(\theta | \theta^{(t-1)}, cV)$
	- \triangleright note this is symmetric so M-H acceptance calculation simplifies
	- \triangleright works well if V is chosen to be posterior variance (don't know this but can use a pilot run to get some idea)
	- \triangleright c is a constant chosen to optimize efficiency
	- \triangleright theory results indicate optimal acceptance rate for this kind of jumping distn is between .2 and .5 (decreases with dimension)

Efficiency considerations - M-H

- \blacktriangleright Approximation M-H
	- \triangleright generate candidate using an approximation to target distn (varying from iteration to iteration)
	- ► e.g., $J(\theta | \theta^{(t-1)}) = N(\theta | \theta^{(t-1)}, V_{\theta^{(t-1)}})$
	- \triangleright now variance matrix depends on current value so this is no longer symmetric
	- \triangleright idea is to make this a good approximation (high acceptance rate)

Proof of convergence - using Metropolis

- \triangleright Show resulting Markov chain has a unique staionary distribution (i.e., is irreducible, aperiodic, non-transient)
- \triangleright Show stationary distribution is $p(\theta|\mathbf{y})$
	- ► Start algorithm at $\theta^{(t-1)} \sim p(\theta | y)$
	- ► We can show that $p(\theta^{(t-1)},\theta^{(t)})$ is symmetric which means that $\theta^{(t)} \sim p(\theta | y)$ (hence p is stationary distn)
		- Exect θ_a , θ_b be two points in parameter space with $p(\theta_b|v) > p(\theta_a|v)$
		- \blacktriangleright $p(\theta^{(t-1)} = \theta_a, \theta^{(t)} = \theta_b) = p(\theta_a|y)J_t(\theta_b|\theta_a)$ (since we accept jumps to θ_b
		- $\blacktriangleright \rho(\theta^{(t-1)} = \theta_b, \theta^{(t)} = \theta_a) = \rho(\theta_b|y)J_t(\theta_a|\theta_b) \frac{\rho(\theta_a|y)}{\rho(\theta_b|y)}$
		- I Jumping distribution is symmetric so these two expressions are equal and the joint distribution is symmetric

KORKAR KERKER EL VOLO

Hamiltonian Monte Carlo

- \triangleright Gibbs sampling and Metropolis-Hastings are random walk approaches
- \triangleright They can perform poorly in high dimensional spaces
- \blacktriangleright Hamiltonian Monte Carlo (HMC) uses ideas from deterministic simulation of physical systems
- \triangleright Newtonian mechanics works in terms of forces, masses, velocities in a fixed co-ordinate systems
- \blacktriangleright Hamiltonian and Lagrangean mechanics arise as an alterantive mathematical formalism that reproduces Newtonian results but enables modeling more complex systems
- \blacktriangleright HMC is derived from this formalism; it introduces a momentum variable ϕ_i corresponding to each model parameter θ_i

Iterative simulation Hamiltonian Monte Carlo

- **F** Target is now $p(\theta, \phi | y) = p(\theta | y) p(\phi)$
- \triangleright Note that ϕ is independent of y
- ► Common choice for $p(\phi)$ is $N(\phi|0, M)$ with M (mass matrix) diagonal
- ► Algorithm (iterates over time, here assume we have $\theta^{(t-1)}$)
	- ► Generate $\phi^{(t-1)} \sim \rho(\phi)$
	- **In update** θ , ϕ via L leapfrog steps (scaled by a factor ϵ)
	- \blacktriangleright repeat L times
	- $\rightarrow \phi \leftarrow \phi + 0.5 \epsilon \ d(\log \rho(\theta|y)/d\theta)$
	- $\theta \leftarrow \theta + \epsilon M^{-1} \phi$
	- $\rightarrow \phi \leftarrow \phi + 0.5 \epsilon \ d(\log \rho(\theta|y)/d\theta)$
	- ► at the end of the L steps call the result θ^*, ϕ^*
	- Accept the proposed pair with probability $r = \frac{p(\theta^*|y)p(\phi^*)}{p(\theta^{(t-1)}|y)p(\phi^{(t-1)})}$ $p(\theta^{(t-1)}|y)p(\phi^{(t-1)})$
- \blacktriangleright ϵ , L, M are turning parameters (often $\epsilon = 0.1, L = 10$ and M approx $Var(\theta|y)^{-1}$)

Logistics

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

- \triangleright We have glossed over some details
	- \blacktriangleright starting values
	- \blacktriangleright monitoring convergence
	- \blacktriangleright inference from iterative simulation
	- \triangleright software availability

Iterative simulation Starting values

- \triangleright Markov chain will converge to stationary distribution from any starting value assuming
	- \triangleright chain has a nonzero probability of eventually getting from any point to any other point (i.e., parameter space is not divided into separate regions)
	- \triangleright chain does not drift off to infinity (can happen if the posterior distribution is improper – which means the model is wrong!)

KORK ERKER ADE YOUR

 \triangleright Assessing when this convergence has occurred is best done using multiple chains with overdispersed starting points

Iterative simulation Starting values

- \triangleright An algorithm for choosing starting values:
	- \blacktriangleright find posterior mode (or modes) (marginal distn usually better than joint distn)
	- \triangleright create overdispersed approximation to posterior $(e.g., t_4$ instead of normal)
	- \triangleright sample 1000 points from approximation
	- resample 5 or 10 starting values (using importance ratios as described later)

Monitoring convergence

- \triangleright Run several sequences in parallel
- \triangleright Can use graphical displays to monitor convergence or semi-formal approach of Gelman and Rubin (described now)
- \blacktriangleright Two estimates of sd($\theta|\gamma$)
	- \blacktriangleright underestimate from sd within each sequence
	- \triangleright overestimate from sd of mixture of sequences
- \blacktriangleright Potential scale reduction factor:

 $\sqrt{\hat{R}} = \frac{\text{mixture-of-sequences estimate of sd}(\theta|y)}{\text{within-sequence estimate of sd}(\theta|v)}$ within-sequence estimate of sd $(\theta|{\mathsf{y}})$

- Initially $\sqrt{\widehat{R}}$ is large (because we use overdispersed starting points)
- At convergence, $\sqrt{\widehat{R}} = 1$ (each sequence has made a complete tour)
- \blacktriangleright Monitor $\sqrt{\widehat{R}}$ for all parameters and quantities of interest; stop simulations when they are all near 1 (e.g., below 1.2)

Inference from posterior simulations

- \triangleright At approximate convergence we have many draws from the posterior distribution
- \blacktriangleright The draws are **not** independent
- \triangleright This means that obtaining standard errors to assess simulation noise is difficult (can use between-chain info, batching,)
- \triangleright Note there is a distinction here between posterior uncertainty about θ and Monte Carlo uncertainty about some summary of the posterior distn (e.g., std error of $E(\theta|y)$)
- \triangleright Good news: Simulation noise is generally minor compared to posterior uncertainty about θ

Iterative simulation Improving MC simulation

- \triangleright Earlier discussed some ideas for improving efficience of Gibbs / Metropolis
- \blacktriangleright Those ideas are based on the algorithms
- \triangleright Can also improve MCMC performance by modifying the model

KORKA SERKER ORA

 \blacktriangleright Some ideas follow

Iterative simulation Transformations

- \triangleright Gibbs/Metropolis work best for independent components
- \triangleright Can sometimes transform parameters of a distribution
- \triangleright Example: Beta distribution is usually parameterized in terms of α,β with $\rho(\theta|\alpha,\beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$
- ► Can reparameters in terms of mean $\alpha/(\alpha + \beta)$ and (rough) variance parameter $1/(\alpha + \beta)$
- ► Can further reparameterize as logit of mean (log(α/β)) and log of variance $(\log(\alpha + \beta))$

KORKAR KERKER EL VOLO

Auxiliary variables

- \triangleright Some distributions can be expressed as mixtures of simpler distributions
- Example: consider the t distribution with ν degrees of freedom and suppose we wish to model $Y_i \sim t_\nu(\mu,\sigma^2)$
- Simulating from posterior distribution of μ, σ^2 from *t*-density is challenging
- ► Note that we can introduce V_i with $Y_i|\mu_i, V_i \sim N(\mu, V_i)$ and $V_i|\sigma^2 \sim Inv - \chi^2(\nu, \sigma^2)$
- \blacktriangleright Marginal distribution of Y_i is *t*-distribution
- Gibbs sampling is straightforward if we think of μ, σ^2 as parameters and V as "missing" data (another unknown to include in Gibbs sampling)

KORKAR KERKER EL VOLO

Iterative simulation Parameter expansion

- \triangleright Previous example obtained improved performance by adding "missing" variable V
- \blacktriangleright It is counterintuitive but sometimes adding an additional parameter improves efficiency
- Example: consider the t distribution with ν degrees of freedom example from previous slide
- **F** Rewrite our model with added parameter α as $Y_i | \mu, \alpha, U_i \sim N(\mu, \alpha^2 U_i)$ and $U_i | \tau^2 \sim Inv - \chi^2(\nu, \tau^2)$
- ► Note that α is not identified $(\alpha^2 U_i = V_i, \alpha^2 \tau^2 = \sigma^2)$
- \blacktriangleright But
- \triangleright Gibbs sampling in this model will work if we monitor convergence in terms of $\mu, \sigma^2 = \alpha^2 \tau^2,$ $V_i = \alpha^2 U_i$
- \triangleright Not only does it work, but it tends to be more reliable
- \triangleright Why? Increasing the size of the parameter space can help getting trapped in uninteresting areas (e.g., σ near zero in the original formulation)KID KA KERKER KID KO

Many other extensions / expansions

 \triangleright Reversible jump MCMC to explore inference across multiple models

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright Simulatied tempering and other approaches to explore multiple modes

Software availability

- \blacktriangleright Variety of packages
	- \triangleright R write your own MCMC
	- \triangleright WINBUGS (BUGS = Bayesian analysis Using Gibbs Sampling)

- \blacktriangleright JAGS
- \triangleright STAN
- \triangleright JAGS and STAN can be run from within R (runjags, rstan packages)

Debugging iterative simulation methods

- \triangleright Checking that programs are correct is crucial (especially if you write your own)
- \triangleright Can be difficult to check because
	- \triangleright output is a distribution not a point estimate
	- \blacktriangleright incorrect output may look reasonable
- \blacktriangleright Some useful debugging ideas:
	- \rightarrow build up from simple (debugged) models
	- \triangleright when adding a new parameter, start by setting it to a fixed value, then let it vary

- \triangleright simulate fake data (repeat the following steps)
	- \blacktriangleright draw "true parameters" from prior distn (must be proper)
	- \blacktriangleright simulate data from the model
	- \triangleright obtain draws from posterior distn
	- \triangleright compare distns of posterior draws and "true parameters"

Debugging iterative simulation methods

- \blacktriangleright Common problems
	- \triangleright conceptual flaw in part of model
	- \blacktriangleright prior is too vague
		- \blacktriangleright this may give improper posterior distn
		- \blacktriangleright detect by looking for values that don't make substantive sense

Computation Approximation

- Recall results of Chapter 4 ... for large samples $p(\theta|y)$ is approx $\mathcal{N}(\theta|\hat{\theta},\mathcal{J}(\hat{\theta})^{-1})$ where $\hat{\theta}$ is the posterior mode
- \triangleright Often use inverse curvature matrix of log posterior density, $V_{\theta} = \left[-\frac{d^2}{d\theta^2}\right]$ $\frac{d^2}{d\theta^2}\log p(\theta|\mathsf{y})\big|_{\theta=\hat{\theta}}\Big]^{-1}$, as variance matrix
- \triangleright Transformations are often used to improve quality of normal approx
- \triangleright May use t distn with few degrees of freedom in place of normal distn (to protect against long tails)
- ► Multiple modes can be a problem: $N(\hat{\theta}, V_{\theta})$ or $t_4(\hat{\theta}, V_{\theta})$ approx at each mode (i.e., a mixture)
- Reasons **not** to approximate based on modes:
	- \triangleright misleading in some problems (e.g., in 8 schools example, mode is $\tau = 0$ which is at edge of parameter space)
	- \blacktriangleright advances in algorithms have made inference from exact posterior distn possibleKID KA KERKER KID KO

Approximation - mode finding

- \blacktriangleright To apply normal approximation, need posterior mode
- \triangleright Review traditional stat computing topic of mode finding (optimization)
- \blacktriangleright Iterative conditional modes (ICM)
	- \blacktriangleright start at $\theta^{(0)} = (\theta_1^{(0)}, \ldots, \theta_d^{(0)})$
	- \triangleright for $i = 1, \ldots$
	- \blacktriangleright for $j = 1, \ldots, d$
		- \blacktriangleright choose $\theta_j^{(i)}$ as the value that maximizes
			- $(\textsf{or even just increases})~~\rho(\theta_1^{(i)},..,\theta_{j-1}^{(i)},\theta,\theta_{j+1}^{(i-1)},..,\theta_d^{(i-1)})$

KORKAR KERKER EL VOLO

 \blacktriangleright ICM leads to a local maximum

Computation Approximation - mode finding

- \blacktriangleright Newton's method $(L = \log p(\theta|\gamma))$
	- Start at $\theta^{(0)}$
	- ► iterate with $\theta^{(t)} = \theta^{(t-1)} [\mathcal{L}''(\theta^{(t-1)})^{-1}\mathcal{L}'(\theta^{(t-1)})]$

- \triangleright converges fast but is sensitive to starting value
- \triangleright can use numerical derivatives
- \triangleright Other optimization methods
	- ► steepest ascent $\theta^{(t)} = \theta^{(t-1)} + \alpha L'(\theta^{(t-1)})$
	- \blacktriangleright quasi-Newton methods
	- \triangleright simplex/polytope (no derivative methods)

Computation Approximation

- \triangleright For many problems, especially hierarchical models, the joint mode is not very useful
- \blacktriangleright Instead may focus on factorization $p(\theta, \phi | \mathbf{v}) = p(\phi | \mathbf{v})p(\theta | \phi, \mathbf{v})$
- **•** Often $p(\theta|\phi, y)$ is easy (e.g., conjugate family)
- **•** Normal approximation for marginal posterior distn $p(\phi|y)$
- But need mode of $p(\phi|v)$
	- \triangleright sometimes this function can be identified and maximized analytically

KORK ERKER ADE YOUR

 \triangleright for other situations EM algorithm is helpful

Computation Approximation - The EM algorithm

- \triangleright EM is an iterative algorithm for maximizing functions (likelihoods or posterior distns) when there is missing data
- **•** Applied here in maximizing $p(\phi|y)$ treating θ as missing data
- Idea:
	- **F** start with initial guess for ϕ
	- **F** given ϕ we can estimate "missing data" θ
	- **F** given estimated θ it may be easy to now maximize for improved ϕ

KORK ERKER ADE YOUR

 \blacktriangleright repeat last two steps

Approximation - The EM algorithm

- \blacktriangleright Iterative algorithm with two steps
- \blacktriangleright Suppose current value of ϕ is $\phi^{(t)}$
	- \blacktriangleright E-step
		- **Domain compute** $Q(\phi) = E(\log(p(\theta, \phi|y))|\phi = \phi^{(t)}) =$ $\int\log(p(\theta,\phi|y))p(\theta|\phi^{(t)},y)d\theta$
		- **Example 1** essentially computes expected value of needed functions of θ rather than estimating the "missing" θ

KORK ERKER ADE YOUR

- \blacktriangleright M-step
	- \blacktriangleright choose $\phi^{(t+1)}$ as the value of ϕ that maximizes $Q(\phi)$

Can show that $p(\phi|y)$ **increases after each E-M pair of steps**

Approximating the Conditional Distribution

- \triangleright EM-based approximation works when we know the conditional distribution $p(\theta|\phi, y)$
- \blacktriangleright If not, an alternative is to first approximate this conditional distribution on a grid of ϕ values, e.g., $p_{\text{approx}}(\theta|\phi, y) = N(\theta|\hat{\theta}(\phi), V_{\theta}(\phi))$

 \triangleright Then can derive approximation to the marginal distribution

$$
p_{approx}(\phi|y) = \frac{p(\phi, \theta|y)}{p_{approx}(\theta|\phi, y)}
$$

KORKAR KERKER EL VOLO

Approximation - Variational Inference

- \blacktriangleright In very large or complex problems it can be prohibitively expensive to carry out MCMC calculations
- \triangleright Variational inference is an alternative approach that builds an approximation to the joint posterior distribution from simpler functions
- \triangleright Note MCMC is simulating from the correct distribution (but has MC error)
- \triangleright Variational inference is simulating from a different (nearby) distribution (and has MC error)

KORK STRATER STRAKER

Approximation - Variational Inference

- \triangleright Most common approach is to choose to approximate $p(\theta|\mathbf{v})$ with $\displaystyle {\mathop{g}_{}} (\theta|\phi)=\prod_{j=1}^{J} \displaystyle {\mathop{g}_{}}_j (\theta_j|\phi_j)$ where J is the number of parameters
	- \triangleright Note that ϕ here is not a hyperparameter, it is a parameterization of our approximating distribution
	- ► Goal is to estiimate ϕ (i.e., it will depend on the data) and then use simulations from $g(\theta|\hat{\phi})$ as our (approximate) draws from the posterior distribution

KORKAR KERKER EL VOLO

 \triangleright Which g? Construct g to minimize the K-L divergence $KL(g||p) = -E_{g} \log(p(\theta|y)/g(\theta))$

Computation Approximation - Variational Inference

- \blacktriangleright How does this work in practice
- \blacktriangleright Can find best functional form for $g_j(\theta_j|\phi_j)$ by examining $E_{g_{-j}}(\log p(\theta|{\rm y}))$
- \blacktriangleright This quantity is viewed as a function of θ_i with expectation taken over all other parts of θ (for which we assume we already have approximating g 's)
- \triangleright Then the algorithm proceeds as follows
	- \blacktriangleright initial guesses for all the ϕ_j 's
	- iterate $j = 1, \ldots, J$, update ϕ_i such that $\log g_j(\theta_j|\phi_j)=E_{g_{-j}}(\log p(\theta|{\bf y}))$
- \triangleright A common alternative to the above is to just choose convenient forms for g_i and numerically minimize K-L divergence

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Approximation - Expectation Propagation

- \triangleright Variational inference approximates posterior by considering each dimensions separately
- \triangleright Expectation propagation is an alternative strategy that focuses on approximating each data contribution to the posterior separately
- \blacktriangleright The target is $p(\theta | y) = p(\theta) \prod_i p((y_i | \theta) = p(\theta) \prod_i p_i(\theta)$
- \triangleright Our approximation is $g(\theta)$ (often multivariate normal)
- \triangleright Turns out this approach is equivalent to minimizing the alternative K-L divergence, $KL(p||g) = -E_p \log(g(\theta)/p(\theta|y))$
- \triangleright No details here (some in book and other references)

Approximation - Approximate Bayes Computation (ABC)

- In some problems we don't have the likelihood in closed form (e.g., have only a simulation model for $y|\theta$)
- \triangleright ABC is an apporach that can work in this case
- \blacktriangleright Algorithm repeat as often as desired
	- **If** draw θ from $p(\theta)$ (requires proper prior distribution)
	- ► simulate $y^{(rep)}$ from $p(y|\theta)$
	- \blacktriangleright compute $d(y^{(rep)}, y)$ for suitable distance function d (so that y and $y^(rep)$ agree on relevant features)
	- **D** accept θ if $d(y^{(rep)}, y) < \epsilon$
- \blacktriangleright How does it work? We are simulating from $p(\theta, y)$ and then conditioning on observed y which yields the posterior
- \triangleright Challenges Need to define d, ϵ . Doesn't work well if prior distribution is too broad

Computation Summary

- \triangleright Goal: posterior inference concerning the vector of parameters (and any missing data)
- \triangleright Simulation is an extremely powerful tool, especially in complex models
- \blacktriangleright Basic approach
	- \blacktriangleright initial estimates
	- \blacktriangleright direct simulation (if possible)
	- \blacktriangleright if direct simulation is not possible:
		- \triangleright normal or t approximation about posterior mode
		- \triangleright iterative simulation (Gibbs, Metropolis-Hastings)

- \blacktriangleright For iterative simulation
	- \triangleright inference is conditional on the starting points
	- \triangleright use multiple sequences and run until they mix