Statistics 225 Bayesian Statistical Analysis (Part 3)

Hal Stern

Department of Statistics University of California, Irvine sternh@uci.edu

March 28, 2019

- Goal: Posterior inference for parameters, missing data (if any), and predictions
- Thus far:
 - analytic results or exact simulation in small problems
 - normal approximation for large samples
 - grid approximation
 - ▶ use hierarchical structure (e.g., $\tau | y$, then $\mu | \tau, y$, then $\theta | y, \mu, \tau$ in hierarchical normal-normal model)
- Now consider additional tools:
 - numerical integration
 - simulation (including MCMC)
 - approximation (including optimization strategy)
- Some of this is usually covered in a statistical computing class

- An overall computation strategy
 - initial (perhaps crude) estimates of parameters
 - numerical integration or direct simulation when possible
 - if direct simulation is not possible
 - iterative simulation via MCMC algorithms (e.g., Gibbs sampler, Metropolis algorithm)
 - approximation strategies (modes, variational Bayes, EP)

Some helpful computing ideas / strategies

- Compute posterior distn on log scale (to avoid underflows or overflows)
- Factoring the posterior distribution (e.g., p(θ₁, θ₂|y) = p(θ₁|θ₂, y)p(θ₂|y))
 - reduce to easier, lower-dimensional problems
 - ► isolate the parameters most influenced by prior distribution (e.g., τ in 8 schools example)
 - difficulties:
 - can't generally find marginal distn easily
 - hard to use a grid with a high-dimensional marginal distn
- Transformations
 - create more understandable parameters
 - make prior independence plausible
 - improve normal approximation (e.g., log of scale parameter)

speed/simplify iterative simulation

Computation Notation/Notes

- $p(\theta|y)$ is the posterior distn
 - θ now includes all parameters (i.e., both θ and ϕ in the hierarchical model)
 - often we only know the unnormalized posterior distn $q(\theta|y)$
 - i.e., $p(\theta|y) \propto p(y|\theta)p(\theta) = q(\theta|y)$
 - more formally, $p(\theta|y) = c(y)q(\theta|y)$
 - ► our computation discussion will generally use p(θ|y) to refer to both normalized/unnormalized posterior distribution
 - I will point out whether it matters whether the posterior distn is normalized

Computation Initial estimation

- Starting point for subsequent approaches
- Serves as a check for other approaches
- Problem-specific methods are required
 - use results from other statistical approaches (e.g., maximum likelihood estimates in bioassay logistic regression)
 - Fix hyperparameters at crude estimates
 (e.g., consider separate and pooled estimates for the 8 schools example which are equivalent to τ = ∞ and τ = 0)

- Many quantities of interest in a Bayesian analysis can be written as E(h(θ)|y) = ∫ h(θ)p(θ|y)dθ (e.g., posterior mean)
- These can be obtained by numerical integration
- In modern world, simulation is often preferred (but numerical integration still used)

We focus here briefly on some useful tools

Numerical integration

- Traditional quadrature
 - trapezoidal rule (piecewise linear approximation)
 - Simpson's rule (piecewise quadratic)
 - algorithms for iterating
 - Gaussian quadrature

- Integration via direct simulation
 - if we can generate $\theta_1, \ldots, \theta_N$ from $p(\theta|y)$ then we can estimate integral as $\sum_i h(\theta_i)/N$
 - of course, this is equivalent to direct simulation from the posterior distribution
- Importance sampling
 - can write $E(h(\theta)|y) = \int \frac{h(\theta)p(\theta|y)}{g(\theta)}g(\theta)d\theta$
 - if we can generate $\theta_1, \ldots, \theta_N$ from $g(\theta)$, then we can estimate integral as $\frac{1}{N} \sum_i \frac{h(\theta_i)p(\theta_i|y)}{g(\theta_i)}$

- $w(\theta_i) = p(\theta_i|y)/g(\theta_i)$ is known as the importance ratio
- improves upon simple MC if we can find g yielding low variability weights
- works very poorly if g's tails are too short (we get some very large importance ratios)

- Dealing with unnormalized distributions
 - suppose we only have $q(\theta|y)$
 - numerical integration and importance sampling approaches can work
 - write $E(h(\theta)|y) = \frac{\int h(\theta)q(\theta|y)d\theta}{\int q(\theta|y)d\theta}$
 - apply numerical integration or importance sampling separately to numerator and denominator
- There are many techniques for improving upon Monte Carlo (simulation) approaches to numerical integration (e.g., antithetic variables) ... see statistical computing texts

- Analytical approximation (Laplace's method)
 - can write $E(h(\theta)|y) = \int e^{\log(h(\theta)p(\theta|y))} d\theta$
 - approximate u(θ) = log(h(θ)p(θ|y)) using a quadratic expansion around the mode θ_o
 - find $E(h(\theta)|y) \approx h(\theta_o)p(\theta_o|y)(2\pi)^{-d/2}| u''(\theta_o)|^{1/2}$

(日) (同) (三) (三) (三) (○) (○)

- requires large samples
- need two approximations for unnormalized posterior distn

 $(E(h(\theta)|y) = \int h(\theta)q(\theta|y)d\theta / \int q(\theta|y)d\theta)$

Direct simulation

- We have already seen that simulation is a powerful approach for studying the posterior distn in a Bayesian analysis
- Next, briefly discuss some basic direct simulation tools
 - these are useful in simpler (low dimensional) problems
 - these same tools are useful as components for more advanced simulations
- Simulation analysis
 - report number of draws
 - report summary statistics (mean, sd, percentiles)
 - graphs
 - ▶ how many draws? depends on desired accuracy (e.g., if we have iid simulations then std error of posterior mean is equal to posterior s.d. divided by √n)

Direct simulation approaches

Exact simulation

- standard algorithms for drawing from standard distns (uniform, normal, Poisson, gamma, etc.)
- available in most software including R
- Grid approximation
 - discrete (evenly spaced) grid $\theta_1, \theta_2, \ldots, \theta_N$,

$$\Pr_{\mathsf{grid}}(heta= heta_j)=p(heta_j|y)/(\sum_i p(heta_i|y))$$

- we have already seen this approach
- works for normalized or unnormalized posterior distn
- hard in 2 or more dimensions
- choice of grid can affect the answer

Computation Direct simulation approaches

- Probability integral transform
 - ► consider posterior distn p(θ|y) with corresponding cdf F(θ|y)
 - recall probability result: if U ∼ Unif(0, 1), then θ = F⁻¹(U) is a r.v. with distn p(θ|y)

- e.g., if $\theta | y \sim N(\mu, \tau^2)$, then $\theta = \mu + \tau \Phi^{-1}(U)$
- discrete r.v.'s are possible but harder to program
- can use this to improve grid by making a trapezoidal approximation

Direct simulation approaches

- Rejection sampling
 - ▶ suppose we find $g(\theta)$ that we can sample from with $p(\theta|y)/g(\theta) \le M$ (with M known)
 - algorithm:
 - draw $\theta \sim g(\theta)$
 - accept θ with prob p(θ|y)/(Mg(θ)), otherwise reject and draw a new candidate
 - for log-concave densities this approach can be used with trapezoids defining rejection function (Gilks and Wild, 1992, Applied Statistics)
- Many other useful methods for direct simulation that we don't have time to discuss here

Computation Iterative simulation

 Basic idea: to sample from p(θ|y) create a Markov chain with p(θ|y) as stationary distribution

- Algorithms:
 - Gibbs sampler (full conditionals)
 - Metropolis-Hastings algorithm (jumping distn)
 - combinations of Gibbs and M-H
 - Hamiltonian Monte Carlo
- Implementation issues (later)

Iterative simulation Gibbs sampler

Key features

. . .

- break problem into lower-dimensional pieces using conditional distributions
- conditional posterior distributions often have simple form
- Start by drawing an initial θ = (θ₁,...,θ_k) from an approximation to p(θ|y).
- Repeat the following steps using most recently drawn values for variables in conditioning set:
 - draw θ_1 from $p(\theta_1 \mid \theta_2, \ldots, \theta_k, y)$
 - draw θ_2 from $p(\theta_2 \mid \theta_1, \theta_3, \dots, \theta_k, y)$
 - draw θ_k from $p(\theta_k \mid \theta_1, \dots, \theta_{k-1}, y)$

Can update parameters one at a time (as above) or in blocks

Iterative simulation Gibbs sampling

- Efficiency considerations
 - partitioning parameters into groups/blocks is often a good idea
 - works best if we can create independent or nearly independent blocks of parameters
 - transform distributions/parameters (e.g., t as a scale mixture of normals, centering random effects)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example of Gibbs sampling (normal-normal model)

Non-standard distributions

- It may happen that one or more of the Gibbs sampling distns is not a known distn
- What then?
 - can go back to previous direct simulation discussion (i.e., use grid approximation, rejection sampling, etc.) but this is not ideal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Metropolis (or (Metropolis-Hastings) algorithm

Metropolis-Hastings (M-H) algorithm

- Replaces "conditional draws" of Gibbs sampler with "jumps" around the parameter space
- Algorithm:
 - given current draw θ (scalar or vector)
 - Sample a candidate point θ[∗] from jumping distribution J(θ[∗]|θ)
 - accept candidate or stay in place with probabilities determined by importance ratio

$$r = \frac{p(\theta^*|y)/J(\theta^*|\theta)}{p(\theta|y)/J(\theta|\theta^*)}$$

- Simplifies if J is symmetric (Metropolis algorithm)
- Combining M-H and Gibbs: M-H steps can be used in place of one conditional distn in a Gibbs sampler, or a single M-H step can replace several (or even all) of the conditional distns

Iterative simulation Efficiency considerations - M-H

- How do we choose the jumping distribution $J(\theta|\theta^{(t-1)})$?
- Optimal J is $p(\theta|y)$ independent of current value $\theta^{(t-1)}$
 - this always accepts (r = 1)
 - but if we could do this we wouldn't need M-H
- Goals in choosing *J*:
 - ► J should be easy to sample from
 - it should be easy to compute r
 - jumps should go far (so we move around the parameter space) but not too far (so they are not always rejected)

Iterative simulation Efficiency considerations - M-H

- Three common approaches
 - independence M-H
 - random walk M-H (used most often)
 - approximation M-H
- Independence M-H
 - find a distribution g(θ) independent of current θ^(t-1) and keep generating candidates from g(θ)

- requires g be a reasonably good approximation
- hard to do for M-H within Gibbs

Iterative simulation Efficiency considerations - M-H

- Random Walk M-H
 - generate candidate using random walk (often normal) centered at current value
 - $J(\theta|\theta^{(t-1)}) = N(\theta|\theta^{(t-1)}, cV)$
 - note this is symmetric so M-H acceptance calculation simplifies
 - works well if V is chosen to be posterior variance (don't know this but can use a pilot run to get some idea)
 - *c* is a constant chosen to optimize efficiency
 - theory results indicate optimal acceptance rate for this kind of jumping distn is between .2 and .5 (decreases with dimension)

Efficiency considerations - M-H

- Approximation M-H
 - generate candidate using an approximation to target distn (varying from iteration to iteration)
 - e.g., $J(\theta|\theta^{(t-1)}) = N(\theta|\theta^{(t-1)}, V_{\theta^{(t-1)}})$
 - now variance matrix depends on current value so this is no longer symmetric
 - idea is to make this a good approximation (high acceptance rate)

Proof of convergence - using Metropolis

- Show resulting Markov chain has a unique staionary distribution (i.e., is irreducible, aperiodic, non-transient)
- Show stationary distribution is $p(\theta|y)$
 - Start algorithm at $\theta^{(t-1)} \sim p(\theta|y)$
 - We can show that p(θ^(t-1), θ^(t)) is symmetric which means that θ^(t) ~ p(θ|y) (hence p is stationary distn)
 - Let θ_a, θ_b be two points in parameter space with $p(\theta_b|y) \ge p(\theta_a|y)$
 - $p(\theta^{(t-1)} = \theta_a, \theta^{(t)} = \theta_b) = p(\theta_a|y)J_t(\theta_b|\theta_a)$ (since we accept jumps to θ_b

 - Jumping distribution is symmetric so these two expressions are equal and the joint distribution is symmetric

Hamiltonian Monte Carlo

- Gibbs sampling and Metropolis-Hastings are random walk approaches
- They can perform poorly in high dimensional spaces
- Hamiltonian Monte Carlo (HMC) uses ideas from deterministic simulation of physical systems
- Newtonian mechanics works in terms of forces, masses, velocities in a fixed co-ordinate systems
- Hamiltonian and Lagrangean mechanics arise as an alterantive mathematical formalism that reproduces Newtonian results but enables modeling more complex systems
- HMC is derived from this formalism; it introduces a momentum variable φ_j corresponding to each model parameter θ_j

Iterative simulation Hamiltonian Monte Carlo

- Target is now $p(\theta, \phi|y) = p(\theta|y)p(\phi)$
- Note that ϕ is independent of y
- ► Common choice for p(φ) is N(φ|0, M) with M (mass matrix) diagonal
- Algorithm (iterates over time, here assume we have $\theta^{(t-1)}$)
 - Generate $\phi^{(t-1)} \sim p(\phi)$
 - update θ, ϕ via L leapfrog steps (scaled by a factor ϵ)
 - repeat L times
 - $\qquad \qquad \phi \leftarrow \phi + 0.5 \ \epsilon \ d(\log \ p(\theta|y)/d\theta$
 - $\blacktriangleright \qquad \theta \leftarrow \theta + \epsilon M^{-1} \phi$
 - $\qquad \qquad \phi \leftarrow \phi + 0.5 \ \epsilon \ d(\log \ p(\theta|y)/d\theta$
 - \blacktriangleright at the end of the L steps call the result θ^*,ϕ^*
 - Accept the proposed pair with probability $r = \frac{p(\theta^*|y)p(\phi^*)}{p(\theta^{(t-1)}|y)p(\phi^{(t-1)})}$
- ϵ, L, M are turning parameters (often $\epsilon = 0.1, L = 10$ and M approx $Var(\theta|y)^{-1}$)

Iterative simulation Logistics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- We have glossed over some details
 - starting values
 - monitoring convergence
 - inference from iterative simulation
 - software availability

Iterative simulation Starting values

- Markov chain will converge to stationary distribution from any starting value assuming
 - chain has a nonzero probability of eventually getting from any point to any other point (i.e., parameter space is not divided into separate regions)
 - chain does not drift off to infinity (can happen if the posterior distribution is improper – which means the model is wrong!)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Assessing when this convergence has occurred is best done using multiple chains with overdispersed starting points

Iterative simulation Starting values

- An algorithm for choosing starting values:
 - find posterior mode (or modes)
 (marginal distn usually better than joint distn)
 - create overdispersed approximation to posterior (e.g., t₄ instead of normal)
 - sample 1000 points from approximation
 - resample 5 or 10 starting values (using importance ratios as described later)

Monitoring convergence

- Run several sequences in parallel
- Can use graphical displays to monitor convergence or semi-formal approach of Gelman and Rubin (described now)
- Two estimates of $sd(\theta|y)$
 - underestimate from sd within each sequence
 - overestimate from sd of mixture of sequences
- Potential scale reduction factor:

 $\sqrt{\hat{R}} = \frac{\text{mixture-of-sequences estimate of sd}(\theta|y)}{\text{within-sequence estimate of sd}(\theta|y)}$

- ► Initially √R is large (because we use overdispersed starting points)
- At convergence, $\sqrt{\hat{R}} = 1$ (each sequence has made a complete tour)
- Monitor $\sqrt{\hat{R}}$ for all parameters and quantities of interest; stop simulations when they are all near 1 (e.g., below 1.2)

Inference from posterior simulations

- At approximate convergence we have many draws from the posterior distribution
- The draws are **not** independent
- This means that obtaining standard errors to assess simulation noise is difficult (can use between-chain info, batching,)
- Note there is a distinction here between posterior uncertainty about θ and Monte Carlo uncertainty about some summary of the posterior distn (e.g., std error of E(θ|y))
- Good news: Simulation noise is generally minor compared to posterior uncertainty about θ

Iterative simulation Improving MC simulation

- Earlier discussed some ideas for improving efficience of Gibbs / Metropolis
- Those ideas are based on the algorithms
- Can also improve MCMC performance by modifying the model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some ideas follow

Iterative simulation Transformations

- Gibbs/Metropolis work best for independent components
- Can sometimes transform parameters of a distribution
- Example: Beta distribution is usually parameterized in terms of α, β with p(θ|α, β) ∝ θ^{α−1}(1 − θ)^{β−1}
- Can reparameters in terms of mean α/(α + β) and (rough) variance parameter 1/(α + β)
- Can further reparameterize as logit of mean (log(α/β)) and log of variance (log(α + β))

(日) (同) (三) (三) (三) (○) (○)

Iterative simulation Auxiliary variables

Auxiliary variables

- Some distributions can be expressed as mixtures of simpler distributions
- ► Example: consider the t distribution with ν degrees of freedom and suppose we wish to model Y_i ~ t_ν(μ, σ²)
- Simulating from posterior distribution of μ, σ² from *t*-density is challenging
- ▶ Note that we can introduce V_i with $Y_i | \mu_i, V_i \sim N(\mu, V_i)$ and $V_i | \sigma^2 \sim Inv \chi^2(\nu, \sigma^2)$
- Marginal distribution of Y_i is t-distribution
- Gibbs sampling is straightforward if we think of μ, σ² as parameters and V as "missing" data (another unknown to include in Gibbs sampling)

Iterative simulation Parameter expansion

- Previous example obtained improved performance by adding "missing" variable V
- It is counterintuitive but sometimes adding an additional parameter improves efficiency
- Example: consider the t distribution with ν degrees of freedom example from previous slide
- ► Rewrite our model with added parameter α as $Y_i | \mu, \alpha, U_i \sim N(\mu, \alpha^2 U_i)$ and $U_i | \tau^2 \sim Inv \chi^2(\nu, \tau^2)$
- Note that α is not identified ($\alpha^2 U_i = V_i, \alpha^2 \tau^2 = \sigma^2$)
- ▶ But
- ► Gibbs sampling in this model will work if we monitor convergence in terms of μ, σ² = α²τ², V_i = α²U_i
- Not only does it work, but it tends to be more reliable
- Why? Increasing the size of the parameter space can help getting trapped in uninteresting areas (e.g., σ near zero in the original formulation)

Iterative simulation

Many other extensions / expansions

 Reversible jump MCMC to explore inference across multiple models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Simulatied tempering and other approaches to explore multiple modes

Iterative simulation

Software availability

- Variety of packages
 - R write your own MCMC
 - WINBUGS (BUGS = Bayesian analysis Using Gibbs Sampling)

- JAGS
- STAN
- ► JAGS and STAN can be run from within R (runjags, rstan packages)

Debugging iterative simulation methods

- Checking that programs are correct is crucial (especially if you write your own)
- Can be difficult to check because
 - output is a distribution not a point estimate
 - incorrect output may look reasonable
- Some useful debugging ideas:
 - build up from simple (debugged) models
 - when adding a new parameter, start by setting it to a fixed value, then let it vary

- simulate fake data (repeat the following steps)
 - draw "true parameters" from prior distn (must be proper)
 - simulate data from the model
 - obtain draws from posterior distn
 - compare distns of posterior draws and "true parameters"

Debugging iterative simulation methods

- Common problems
 - conceptual flaw in part of model
 - prior is too vague
 - this may give improper posterior distn
 - detect by looking for values that don't make substantive sense

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computation Approximation

- ► Recall results of Chapter 4 ... for large samples p(θ|y) is approx N(θ|θ̂, J(θ̂)⁻¹) where θ̂ is the posterior mode
- ► Often use inverse curvature matrix of log posterior density, $V_{\theta} = \left[-\frac{d^2}{d\theta^2} \log p(\theta|y)|_{\theta=\hat{\theta}} \right]_{,}^{-1} \text{ as variance matrix}$
- Transformations are often used to improve quality of normal approx
- May use t distn with few degrees of freedom in place of normal distn (to protect against long tails)
- ► Multiple modes can be a problem: N(\(\heta\), V_{\(\theta\)}) or t₄(\(\heta\), V_{\(\theta\)}) approx at each mode (i.e., a mixture)
- Reasons not to approximate based on modes:
 - ► misleading in some problems (e.g., in 8 schools example, mode is τ = 0 which is at edge of parameter space)
 - advances in algorithms have made inference from exact posterior distn possible

Approximation - mode finding

- ► To apply normal approximation, need posterior mode
- Review traditional stat computing topic of mode finding (optimization)
- Iterative conditional modes (ICM)
 - start at $\theta^{(0)} = (\theta_1^{(0)}, \dots, \theta_d^{(0)})$
 - for $i = 1, \ldots$
 - ▶ for *j* = 1, . . . , *d*
 - choose $\theta_i^{(i)}$ as the value that maximizes
 - (or even just increases) $p(\theta_1^{(i)},..,\theta_{j-1}^{(i)},\theta,\theta_{j+1}^{(i-1)},..,\theta_d^{(i-1)})$
- ICM leads to a local maximum

Computation Approximation - mode finding

- Newton's method $(L = \log p(\theta|y))$
 - start at $\theta^{(0)}$
 - iterate with $\theta^{(t)} = \theta^{(t-1)} [L''(\theta^{(t-1)})^{-1}L'(\theta^{(t-1)})]$

- converges fast but is sensitive to starting value
- can use numerical derivatives
- Other optimization methods
 - steepest ascent $\theta^{(t)} = \theta^{(t-1)} + \alpha L'(\theta^{(t-1)})$
 - quasi-Newton methods
 - simplex/polytope (no derivative methods)

Computation Approximation

- For many problems, especially hierarchical models, the joint mode is not very useful
- Instead may focus on factorization p(θ, φ|y) = p(φ|y)p(θ|φ, y)
- Often $p(\theta|\phi, y)$ is easy (e.g., conjugate family)
- Normal approximation for marginal posterior distn $p(\phi|y)$
- But need mode of $p(\phi|y)$
 - sometimes this function can be identified and maximized analytically
 - for other situations EM algorithm is helpful

Computation Approximation - The EM algorithm

- EM is an iterative algorithm for maximizing functions (likelihoods or posterior distns) when there is missing data
- Applied here in maximizing $p(\phi|y)$ treating θ as missing data
- Idea:
 - start with initial guess for ϕ
 - given ϕ we can estimate "missing data" θ
 - \blacktriangleright given estimated θ it may be easy to now maximize for improved ϕ

repeat last two steps

Approximation - The EM algorithm

- Iterative algorithm with two steps
- Suppose current value of ϕ is $\phi^{(t)}$
 - E-step

• compute
$$Q(\phi) = E(\log(p(\theta, \phi|y)|\phi = \phi^{(t)}) = \int \log(p(\theta, \phi|y))p(\theta|\phi^{(t)}, y)d\theta$$

 \blacktriangleright essentially computes expected value of needed functions of θ rather than estimating the "missing" θ

- M-step
 - choose $\phi^{(t+1)}$ as the value of ϕ that maximizes $Q(\phi)$

• Can show that $p(\phi|y)$ increases after each E-M pair of steps

Approximating the Conditional Distribution

- EM-based approximation works when we know the conditional distribution p(θ|φ, y)
- If not, an alternative is to first approximate this conditional distribution on a grid of φ values, e.g.,
 p_{approx}(θ|φ, y) = N(θ|θ̂(φ), V_θ(φ))

Then can derive approximation to the marginal distribution

$$p_{approx}(\phi|y) = rac{p(\phi, \theta|y)}{p_{approx}(\theta|\phi, y)}$$

Approximation - Variational Inference

- In very large or complex problems it can be prohibitively expensive to carry out MCMC calculations
- Variational inference is an alternative approach that builds an approximation to the joint posterior distribution from simpler functions
- Note MCMC is simulating from the correct distribution (but has MC error)
- Variational inference is simulating from a different (nearby) distribution (and has MC error)

Approximation - Variational Inference

- Most common approach is to choose to approximate p(θ|y) with g(θ|φ) = Π^J_{j=1} g_j(θ_j|φ_j) where J is the number of parameters
 - Note that \u03c6 here is not a hyperparameter, it is a parameterization of our approximating distribution
 - Goal is to estimate ϕ (i.e., it will depend on the data) and then use simulations from $g(\theta|\hat{\phi})$ as our (approximate) draws from the posterior distribution

Which g? Construct g to minimize the K-L divergence KL(g||p) = −E_g log(p(θ|y)/g(θ))

Computation Approximation - Variational Inference

- How does this work in practice
- ► Can find best functional form for g_j(θ_j|φ_j) by examining E_{g-j}(log p(θ|y))
- This quantity is viewed as a function of θ_j with expectation taken over all other parts of θ (for which we assume we already have approximating g's)
- Then the algorithm proceeds as follows
 - initial guesses for all the ϕ_j 's
 - ► iterate j = 1, ..., J, update ϕ_j such that $\log g_j(\theta_j | \phi_j) = E_{g_{-j}}(\log p(\theta | y))$
- A common alternative to the above is to just choose convenient forms for g_j and numerically minimize K-L divergence

Approximation - Expectation Propagation

- Variational inference approximates posterior by considering each dimensions separately
- Expectation propagation is an alternative strategy that focuses on approximating each data contribution to the posterior separately
- The target is $p(\theta|y) = p(\theta) \prod_i p((y_i|\theta) = p(\theta) \prod_i p_i(\theta)$
- Our approximation is $g(\theta)$ (often multivariate normal)
- ► Turns out this approach is equivalent to minimizing the alternative K-L divergence, KL(p||g) = -E_p log(g(θ)/p(θ|y))
- No details here (some in book and other references)

Approximation - Approximate Bayes Computation (ABC)

- In some problems we don't have the likelihood in closed form (e.g., have only a simulation model for y|θ)
- ABC is an apporach that can work in this case
- Algorithm repeat as often as desired
 - draw θ from $p(\theta)$ (requires proper prior distribution)
 - simulate $y^{(rep)}$ from $p(y|\theta)$
 - compute d(y^(rep), y) for suitable distance function d (so that y and y^(rep) agree on relevant features)
 - accept θ if $d(y^{(rep}, y) < \epsilon$
- How does it work? We are simulating from p(θ, y) and then conditioning on observed y which yields the posterior
- Challenges Need to define d, e. Doesn't work well if prior distribution is too broad

Computation Summary

- Goal: posterior inference concerning the vector of parameters (and any missing data)
- Simulation is an extremely powerful tool, especially in complex models
- Basic approach
 - initial estimates
 - direct simulation (if possible)
 - if direct simulation is not possible:
 - normal or t approximation about posterior mode
 - iterative simulation (Gibbs, Metropolis-Hastings)

- For iterative simulation
 - inference is conditional on the starting points
 - use multiple sequences and run until they mix