
Statistics 225
Bayesian Statistical Analysis (Part 3)

Hal Stern

Department of Statistics
University of California, Irvine

sternh@uci.edu

March 28, 2019

Computation
Introduction

I Goal: Posterior inference for parameters, missing data (if
any), and predictions

I Thus far:
I analytic results or exact simulation in small problems
I normal approximation for large samples
I grid approximation
I use hierarchical structure (e.g., τ |y , then µ|τ, y , then θ|y , µ, τ

in hierarchical normal-normal model)

I Now consider additional tools:
I numerical integration
I simulation (including MCMC)
I approximation (including optimization strategy)

I Some of this is usually covered in a statistical computing class

Computation

I An overall computation strategy
I initial (perhaps crude) estimates of parameters
I numerical integration or direct simulation when possible
I if direct simulation is not possible

I iterative simulation via MCMC algorithms (e.g., Gibbs
sampler, Metropolis algorithm)

I approximation strategies (modes, variational Bayes, EP)

Computation
Some helpful computing ideas / strategies

I Compute posterior distn on log scale (to avoid underflows or
overflows)

I Factoring the posterior distribution
(e.g., p(θ1, θ2|y) = p(θ1|θ2, y)p(θ2|y))

I reduce to easier, lower-dimensional problems
I isolate the parameters most influenced by prior

distribution (e.g., τ in 8 schools example)
I difficulties:

I can’t generally find marginal distn easily
I hard to use a grid with a high-dimensional marginal distn

I Transformations
I create more understandable parameters
I make prior independence plausible
I improve normal approximation (e.g., log of scale parameter)
I speed/simplify iterative simulation

Computation
Notation/Notes

I p(θ|y) is the posterior distn
I θ now includes all parameters (i.e., both θ and φ in the

hierarchical model)
I often we only know the unnormalized posterior distn q(θ|y)

I i.e., p(θ|y) ∝ p(y |θ)p(θ) = q(θ|y)
I more formally, p(θ|y) = c(y)q(θ|y)

I our computation discussion will generally use p(θ|y) to refer to
both normalized/unnormalized posterior distribution

I I will point out whether it matters whether the posterior distn
is normalized

Computation
Initial estimation

I Starting point for subsequent approaches

I Serves as a check for other approaches
I Problem-specific methods are required

I use results from other statistical approaches (e.g., maximum
likelihood estimates in bioassay logistic regression)

I fix hyperparameters at crude estimates
(e.g., consider separate and pooled estimates for the 8 schools
example which are equivalent to τ =∞ and τ = 0)

Computation
Numerical integration

I Many quantities of interest in a Bayesian analysis can be
written as E (h(θ)|y) =

∫
h(θ)p(θ|y)dθ

(e.g., posterior mean)

I These can be obtained by numerical integration

I In modern world, simulation is often preferred (but numerical
integration still used)

I We focus here briefly on some useful tools

Computation
Numerical integration

I Traditional quadrature
I trapezoidal rule (piecewise linear approximation)
I Simpson’s rule (piecewise quadratic)
I algorithms for iterating
I Gaussian quadrature

Computation
Numerical integration

I Integration via direct simulation
I if we can generate θ1, . . . , θN from p(θ|y) then we can

estimate integral as
∑

i h(θi)/N
I of course, this is equivalent to direct simulation from the

posterior distribution

I Importance sampling
I can write E (h(θ)|y) =

∫ h(θ)p(θ|y)
g(θ) g(θ)dθ

I if we can generate θ1, . . . , θN from g(θ), then we can estimate

integral as 1
N

∑
i
h(θi)p(θi |y)

g(θi)
I w(θi) = p(θi |y)/g(θi) is known as the importance ratio
I improves upon simple MC if we can find g yielding low

variability weights
I works very poorly if g ’s tails are too short

(we get some very large importance ratios)

Computation
Numerical integration

I Dealing with unnormalized distributions
I suppose we only have q(θ|y)
I numerical integration and importance sampling approaches can

work
I write E (h(θ)|y) =

∫
h(θ)q(θ|y)dθ∫
q(θ|y)dθ

I apply numerical integration or importance sampling separately
to numerator and denominator

I There are many techniques for improving upon Monte Carlo
(simulation) approaches to numerical integration (e.g.,
antithetic variables) ... see statistical computing texts

Computation
Numerical integration

I Analytical approximation (Laplace’s method)
I can write E (h(θ)|y) =

∫
e log(h(θ)p(θ|y))dθ

I approximate u(θ) = log(h(θ)p(θ|y)) using a quadratic
expansion around the mode θo

I find E (h(θ)|y) ≈ h(θo)p(θo |y)(2π)−d/2| − u′′(θo)|1/2
I requires large samples
I need two approximations for unnormalized

posterior distn
(E (h(θ)|y) =

∫
h(θ)q(θ|y)dθ/

∫
q(θ|y)dθ)

Computation
Direct simulation

I We have already seen that simulation is a powerful approach
for studying the posterior distn in a Bayesian analysis

I Next, briefly discuss some basic direct simulation tools
I these are useful in simpler (low dimensional) problems
I these same tools are useful as components for more advanced

simulations

I Simulation analysis
I report number of draws
I report summary statistics (mean, sd, percentiles)
I graphs
I how many draws? depends on desired accuracy

(e.g., if we have iid simulations then std error of posterior
mean is equal to posterior s.d. divided by

√
n)

Computation
Direct simulation approaches

I Exact simulation
I standard algorithms for drawing from standard distns (uniform,

normal, Poisson, gamma, etc.)
I available in most software including R

I Grid approximation
I discrete (evenly spaced) grid θ1, θ2, . . . , θN ,

Pr
grid

(θ = θj) = p(θj |y)/(
∑
i

p(θi |y))

I we have already seen this approach
I works for normalized or unnormalized posterior distn
I hard in 2 or more dimensions
I choice of grid can affect the answer

Computation
Direct simulation approaches

I Probability integral transform
I consider posterior distn p(θ|y) with

corresponding cdf F (θ|y)
I recall probability result: if U ∼ Unif(0, 1), then θ = F−1(U) is

a r.v. with distn p(θ|y)
I e.g., if θ|y ∼ N(µ, τ 2), then θ = µ+ τΦ−1(U)
I discrete r.v.’s are possible but harder to program
I can use this to improve grid by making a trapezoidal

approximation

Computation
Direct simulation approaches

I Rejection sampling
I suppose we find g(θ) that we can sample from with

p(θ|y)/g(θ) ≤ M (with M known)
I algorithm:

I draw θ ∼ g(θ)
I accept θ with prob p(θ|y)/(Mg(θ)),

otherwise reject and draw a new candidate
I for log-concave densities this approach can be used with

trapezoids defining rejection function (Gilks and Wild, 1992,
Applied Statistics)

I Many other useful methods for direct simulation that we don’t
have time to discuss here

Computation
Iterative simulation

I Basic idea: to sample from p(θ|y) create a Markov chain with
p(θ|y) as stationary distribution

I Algorithms:
I Gibbs sampler (full conditionals)
I Metropolis-Hastings algorithm (jumping distn)
I combinations of Gibbs and M-H
I Hamiltonian Monte Carlo

I Implementation issues (later)

Iterative simulation
Gibbs sampler

I Key features
I break problem into lower-dimensional pieces

using conditional distributions
I conditional posterior distributions often

have simple form

I Start by drawing an initial θ = (θ1, . . . , θk) from an
approximation to p(θ|y).

I Repeat the following steps using most recently drawn values
for variables in conditioning set:

I draw θ1 from p(θ1 | θ2, . . . , θk , y)
I draw θ2 from p(θ2 | θ1, θ3, . . . , θk , y)
· · ·

I draw θk from p(θk | θ1, . . . , θk−1, y)

I Can update parameters one at a time (as above) or in blocks

Iterative simulation
Gibbs sampling

I Efficiency considerations
I partitioning parameters into groups/blocks is often a good idea
I works best if we can create independent or nearly independent

blocks of parameters
I transform distributions/parameters (e.g., t as a scale mixture

of normals, centering random effects)

I Example of Gibbs sampling (normal-normal model)

Iterative simulation
Non-standard distributions

I It may happen that one or more of the Gibbs sampling distns
is not a known distn

I What then?
I can go back to previous direct simulation discussion

(i.e., use grid approximation, rejection sampling, etc.)
but this is not ideal

I Metropolis (or (Metropolis-Hastings) algorithm

Iterative simulation
Metropolis-Hastings (M-H) algorithm

I Replaces “conditional draws” of Gibbs sampler
with “jumps” around the parameter space

I Algorithm:
I given current draw θ (scalar or vector)
I sample a candidate point θ∗ from jumping

distribution J(θ∗|θ)
I accept candidate or stay in place with

probabilities determined by importance ratio

r =
p(θ∗|y)/J(θ∗|θ)

p(θ|y)/J(θ|θ∗)

I Simplifies if J is symmetric (Metropolis algorithm)

I Combining M-H and Gibbs: M-H steps can be used in place of
one conditional distn in a Gibbs sampler, or a single M-H step
can replace several (or even all) of the conditional distns

Iterative simulation
Efficiency considerations - M-H

I How do we choose the jumping distribution J(θ|θ(t−1))?

I Optimal J is p(θ|y) independent of current value θ(t−1)

I this always accepts (r = 1)
I but if we could do this we wouldn’t need M-H

I Goals in choosing J:
I J should be easy to sample from
I it should be easy to compute r
I jumps should go far (so we move around the parameter space)

but not too far (so they are not always rejected)

Iterative simulation
Efficiency considerations - M-H

I Three common approaches
I independence M-H
I random walk M-H (used most often)
I approximation M-H

I Independence M-H
I find a distribution g(θ) independent of current θ(t−1) and keep

generating candidates from g(θ)
I requires g be a reasonably good approximation
I hard to do for M-H within Gibbs

Iterative simulation
Efficiency considerations - M-H

I Random Walk M-H
I generate candidate using random walk (often normal) centered

at current value
I J(θ|θ(t−1)) = N(θ|θ(t−1), cV)
I note this is symmetric so M-H acceptance calculation simplifies
I works well if V is chosen to be posterior variance

(don’t know this but can use a pilot run to get some idea)
I c is a constant chosen to optimize efficiency
I theory results indicate optimal acceptance rate for this kind of

jumping distn is between .2 and .5 (decreases with dimension)

Iterative simulation
Efficiency considerations - M-H

I Approximation M-H
I generate candidate using an approximation to target distn

(varying from iteration to iteration)
I e.g., J(θ|θ(t−1)) = N(θ|θ(t−1),Vθ(t−1))
I now variance matrix depends on current value so this is no

longer symmetric
I idea is to make this a good approximation (high acceptance

rate)

Iterative simulation
Proof of convergence - using Metropolis

I Show resulting Markov chain has a unique staionary
distribution (i.e., is irreducible, aperiodic, non-transient)

I Show stationary distribution is p(θ|y)
I Start algorithm at θ(t−1) ∼ p(θ|y)
I We can show that p(θ(t−1), θ(t)) is symmetric which means

that θ(t) ∼ p(θ|y) (hence p is stationary distn)
I Let θa, θb be two points in parameter space with

p(θb|y) ≥ p(θa|y)
I p(θ(t−1) = θa, θ

(t) = θb) = p(θa|y)Jt(θb|θa)
(since we accept jumps to θb

I p(θ(t−1) = θb, θ
(t) = θa) = p(θb|y)Jt(θa|θb) p(θa|y)

p(θb|y)
I Jumping distribution is symmetric so these two expressions are

equal and the joint distribution is symmetric

Iterative simulation
Hamiltonian Monte Carlo

I Gibbs sampling and Metropolis-Hastings are random walk
approaches

I They can perform poorly in high dimensional spaces

I Hamiltonian Monte Carlo (HMC) uses ideas from
deterministic simulation of physical systems

I Newtonian mechanics works in terms of forces, masses,
velocities in a fixed co-ordinate systems

I Hamiltonian and Lagrangean mechanics arise as an alterantive
mathematical formalism that reproduces Newtonian results
but enables modeling more complex systems

I HMC is derived from this formalism; it introduces a
momentum variable φj corresponding to each model
parameter θj

Iterative simulation
Hamiltonian Monte Carlo

I Target is now p(θ, φ|y) = p(θ|y)p(φ)

I Note that φ is independent of y

I Common choice for p(φ) is N(φ|0,M) with M (mass matrix)
diagonal

I Algorithm (iterates over time, here assume we have θ(t−1))
I Generate φ(t−1) ∼ p(φ)
I update θ, φ via L leapfrog steps (scaled by a factor ε)
I repeat L times
I φ← φ+ 0.5 ε d(log p(θ|y)/dθ
I θ ← θ + εM−1φ
I φ← φ+ 0.5 ε d(log p(θ|y)/dθ
I at the end of the L steps call the result θ∗, φ∗

I Accept the proposed pair with probability r = p(θ∗|y)p(φ∗)
p(θ(t−1)|y)p(φ(t−1))

I ε, L,M are turning parameters
(often ε = 0.1, L = 10 and M approx Var(θ|y)−1)

Iterative simulation
Logistics

I We have glossed over some details
I starting values
I monitoring convergence
I inference from iterative simulation
I software availability

Iterative simulation
Starting values

I Markov chain will converge to stationary
distribution from any starting value assuming

I chain has a nonzero probability of eventually getting from any
point to any other point (i.e., parameter space is not divided
into separate regions)

I chain does not drift off to infinity (can happen if the posterior
distribution is improper – which means the model is wrong!)

I Assessing when this convergence has occurred is
best done using multiple chains with overdispersed
starting points

Iterative simulation
Starting values

I An algorithm for choosing starting values:
I find posterior mode (or modes)

(marginal distn usually better than joint distn)
I create overdispersed approximation to posterior

(e.g., t4 instead of normal)
I sample 1000 points from approximation
I resample 5 or 10 starting values

(using importance ratios as described later)

Iterative simulation
Monitoring convergence

I Run several sequences in parallel
I Can use graphical displays to monitor convergence or

semi-formal approach of Gelman and Rubin (described now)
I Two estimates of sd(θ|y)

I underestimate from sd within each sequence
I overestimate from sd of mixture of sequences

I Potential scale reduction factor:√
R̂ =

mixture-of-sequences estimate of sd(θ|y)

within-sequence estimate of sd(θ|y)

I Initially
√
R̂ is large (because we use

overdispersed starting points)

I At convergence,
√

R̂ = 1 (each sequence
has made a complete tour)

I Monitor
√
R̂ for all parameters and quantities

of interest; stop simulations when they are all
near 1 (e.g., below 1.2)

Iterative simulation
Inference from posterior simulations

I At approximate convergence we have many draws from the
posterior distribution

I The draws are not independent

I This means that obtaining standard errors to
assess simulation noise is difficult
(can use between-chain info, batching,)

I Note there is a distinction here between posterior uncertainty
about θ and Monte Carlo uncertainty about some summary of
the posterior distn (e.g., std error of E (θ|y))

I Good news: Simulation noise is generally minor compared to
posterior uncertainty about θ

Iterative simulation
Improving MC simulation

I Earlier discussed some ideas for improving efficience of Gibbs
/ Metropolis

I Those ideas are based on the algorithms

I Can also improve MCMC performance by modifying the model

I Some ideas follow

Iterative simulation
Transformations

I Gibbs/Metropolis work best for independent components

I Can sometimes transform parameters of a distribution

I Example: Beta distribution is usually parameterized in terms
of α, β with p(θ|α, β) ∝ θα−1(1− θ)β−1

I Can reparameters in terms of mean α/(α + β) and (rough)
variance parameter 1/(α + β)

I Can further reparameterize as logit of mean (log(α/β)) and
log of variance (log(α + β))

Iterative simulation
Auxiliary variables

I Some distributions can be expressed as mixtures of simpler
distributions

I Example: consider the t distribution with ν degrees of
freedom and suppose we wish to model Yi ∼ tν(µ, σ2)

I Simulating from posterior distribution of µ, σ2 from t-density
is challenging

I Note that we can introduce Vi with Yi |µi ,Vi ∼ N(µ,Vi) and
Vi |σ2 ∼ Inv − χ2(ν, σ2)

I Marginal distribution of Yi is t-distribution

I Gibbs sampling is straightforward if we think of µ, σ2 as
parameters and V as ”missing” data (another unknown to
include in Gibbs sampling)

Iterative simulation
Parameter expansion

I Previous example obtained improved performance by adding
”missing” variable V

I It is counterintuitive but sometimes adding an additional
parameter improves efficiency

I Example: consider the t distribution with ν degrees of
freedom example from previous slide

I Rewrite our model with added parameter α as
Yi |µ, α,Ui ∼ N(µ, α2Ui) and Ui |τ2 ∼ Inv − χ2(ν, τ2)

I Note that α is not identified (α2Ui = Vi , α
2τ2 = σ2)

I But
I Gibbs sampling in this model will work if we monitor

convergence in terms of µ, σ2 = α2τ2,Vi = α2Ui

I Not only does it work, but it tends to be more reliable
I Why? Increasing the size of the parameter space can help

getting trapped in uninteresting areas (e.g., σ near zero in the
original formulation)

Iterative simulation
Many other extensions / expansions

I Reversible jump MCMC to explore inference across multiple
models

I Simulatied tempering and other approaches to explore
multiple modes

Iterative simulation
Software availability

I Variety of packages
I R – write your own MCMC
I WINBUGS (BUGS = Bayesian analysis Using Gibbs Sampling)
I JAGS
I STAN
I JAGS and STAN can be run from within R (runjags, rstan

packages)

Computation
Debugging iterative simulation methods

I Checking that programs are correct is crucial
(especially if you write your own)

I Can be difficult to check because
I output is a distribution not a point estimate
I incorrect output may look reasonable

I Some useful debugging ideas:
I build up from simple (debugged) models
I when adding a new parameter, start by setting it to a fixed

value, then let it vary
I simulate fake data (repeat the following steps)

I draw “true parameters” from prior distn
(must be proper)

I simulate data from the model
I obtain draws from posterior distn
I compare distns of posterior draws and

“true parameters”

Computation
Debugging iterative simulation methods

I Common problems
I conceptual flaw in part of model
I prior is too vague

I this may give improper posterior distn
I detect by looking for values that don’t make substantive sense

Computation
Approximation

I Recall results of Chapter 4 ... for large samples p(θ|y) is
approx N(θ|θ̂, J(θ̂)−1) where θ̂ is the posterior mode

I Often use inverse curvature matrix of log posterior density,

Vθ =
[
− d2

dθ2
log p(θ|y)|θ=θ̂

]−1

,
as variance matrix

I Transformations are often used to improve quality of normal
approx

I May use t distn with few degrees of freedom in place of
normal distn (to protect against long tails)

I Multiple modes can be a problem: N(θ̂,Vθ) or t4(θ̂,Vθ)
approx at each mode (i.e., a mixture)

I Reasons not to approximate based on modes:
I misleading in some problems (e.g., in 8 schools example, mode

is τ = 0 which is at edge of parameter space)
I advances in algorithms have made inference from exact

posterior distn possible

Computation
Approximation - mode finding

I To apply normal approximation, need posterior mode

I Review traditional stat computing topic of mode finding
(optimization)

I Iterative conditional modes (ICM)

I start at θ(0) = (θ
(0)
1 , . . . , θ

(0)
d)

I for i = 1, . . .
I for j = 1, . . . , d

I choose θ
(i)
j as the value that maximizes

(or even just increases) p(θ
(i)
1 , .., θ

(i)
j−1, θ, θ

(i−1)
j+1 , .., θ

(i−1)
d)

I ICM leads to a local maximum

Computation
Approximation - mode finding

I Newton’s method (L = log p(θ|y))
I start at θ(0)

I iterate with θ(t) = θ(t−1) − [L′′(θ(t−1))−1L′(θ(t−1)

I converges fast but is sensitive to starting value
I can use numerical derivatives

I Other optimization methods
I steepest ascent θ(t) = θ(t−1) + αL′(θ(t−1))
I quasi-Newton methods
I simplex/polytope (no derivative methods)

Computation
Approximation

I For many problems, especially hierarchical models, the joint
mode is not very useful

I Instead may focus on factorization
p(θ, φ|y) = p(φ|y)p(θ|φ, y)

I Often p(θ|φ, y) is easy (e.g., conjugate family)

I Normal approximation for marginal posterior distn p(φ|y)
I But need mode of p(φ|y)

I sometimes this function can be identified and maximized
analytically

I for other situations EM algorithm is helpful

Computation
Approximation - The EM algorithm

I EM is an iterative algorithm for maximizing functions
(likelihoods or posterior distns) when there is missing data

I Applied here in maximizing p(φ|y) treating θ as missing data
I Idea:

I start with initial guess for φ
I given φ we can estimate ”missing data” θ
I given estimated θ it may be easy to now maximize for

improved φ
I repeat last two steps

Computation
Approximation - The EM algorithm

I Iterative algorithm with two steps

I Suppose current value of φ is φ(t)

I E-step
I compute Q(φ) = E(log(p(θ, φ|y)|φ = φ(t)) =∫

log(p(θ, φ|y))p(θ|φ(t), y)dθ
I essentially computes expected value of needed functions of θ

rather than estimating the ”missing” θ

I M-step
I choose φ(t+1) as the value of φ that maximizes Q(φ)

I Can show that p(φ|y) increases after each E-M pair of steps

Computation
Approximating the Conditional Distribution

I EM-based approximation works when we know the conditional
distribution p(θ|φ, y)

I If not, an alternative is to first approximate this conditional
distribution on a grid of φ values, e.g.,
papprox(θ|φ, y) = N(θ|θ̂(φ),Vθ(φ))

I Then can derive approximation to the marginal distribution

papprox(φ|y) =
p(φ, θ|y)

papprox(θ|φ, y)

Computation
Approximation - Variational Inference

I In very large or complex problems it can be prohibitively
expensive to carry out MCMC calculations

I Variational inference is an alternative approach that builds an
approximation to the joint posterior distribution from simpler
functions

I Note MCMC is simulating from the correct distribution (but
has MC error)

I Variational inference is simulating from a different (nearby)
distribution (and has MC error)

Computation
Approximation - Variational Inference

I Most common approach is to choose to approximate p(θ|y)

with g(θ|φ) =
∏J

j=1 gj(θj |φj) where J is the number of
parameters

I Note that φ here is not a hyperparameter, it is a
parameterization of our approximating distribution

I Goal is to estiimate φ (i.e., it will depend on the data) and
then use simulations from g(θ|φ̂) as our (approximate) draws
from the posterior distribution

I Which g? Construct g to minimize the K-L divergence
KL(g ||p) = −Eg log(p(θ|y)/g(θ))

Computation
Approximation - Variational Inference

I How does this work in practice

I Can find best functional form for gj(θj |φj) by examining
Eg−j (log p(θ|y))

I This quantity is viewed as a function of θj with expectation
taken over all other parts of θ (for which we assume we
already have approximating g ’s)

I Then the algorithm proceeds as follows
I initial guesses for all the φj ’s
I iterate j = 1, . . . , J, update φj such that

log gj(θj |φj) = Eg−j (log p(θ|y))

I A common alternative to the above is to just choose
convenient forms for gj and numerically minimize K-L
divergence

Computation
Approximation - Expectation Propagation

I Variational inference approximates posterior by considering
each dimensions separately

I Expectation propagation is an alternative strategy that
focuses on approximating each data contribution to the
posterior separately

I The target is p(θ|y) = p(θ)
∏

i p((yi |θ) = p(θ)
∏

i pi (θ)

I Our approximation is g(θ) (often multivariate normal)

I Turns out this approach is equivalent to minimizing the
alternative K-L divergence, KL(p||g) = −Ep log(g(θ)/p(θ|y))

I No details here (some in book and other references)

Computation
Approximation - Approximate Bayes Computation (ABC)

I In some problems we don’t have the likelihood in closed form
(e.g., have only a simulation model for y |θ)

I ABC is an apporach that can work in this case
I Algorithm - repeat as often as desired

I draw θ from p(θ) (requires proper prior distribution)
I simulate y (rep) from p(y |θ)
I compute d(y (rep), y) for suitable distance function d (so that y

and y (rep) agree on relevant features)
I accept θ if d(y (rep, y) < ε

I How does it work? We are simulating from p(θ, y) and then
conditioning on observed y which yields the posterior

I Challenges - Need to define d , ε. Doesn’t work well if prior
distribution is too broad

Computation
Summary

I Goal: posterior inference concerning the vector of parameters
(and any missing data)

I Simulation is an extremely powerful tool, especially in
complex models

I Basic approach
I initial estimates
I direct simulation (if possible)
I if direct simulation is not possible:

I normal or t approximation about posterior mode
I iterative simulation (Gibbs, Metropolis-Hastings)

I For iterative simulation
I inference is conditional on the starting points
I use multiple sequences and run until they mix

