Statistics 225
Bayesian Statistical Analysis (Part 3)

Hal Stern

Department of Statistics
University of California, Irvine
sternh@uci.edu

March 28, 2019

v

v

v

v

Computation
Introduction

Goal: Posterior inference for parameters, missing data (if
any), and predictions
Thus far:

» analytic results or exact simulation in small problems

normal approximation for large samples

grid approximation

use hierarchical structure (e.g., 7|y, then u|7,y, then 8|y, u, 7
in hierarchical normal-normal model)

v

v

v

Now consider additional tools:

» numerical integration
» simulation (including MCMC)
» approximation (including optimization strategy)

Some of this is usually covered in a statistical computing class

Computation

> An overall computation strategy
» initial (perhaps crude) estimates of parameters
» numerical integration or direct simulation when possible
» if direct simulation is not possible
> iterative simulation via MCMC algorithms (e.g., Gibbs
sampler, Metropolis algorithm)
> approximation strategies (modes, variational Bayes, EP)

Computation
Some helpful computing ideas / strategies

» Compute posterior distn on log scale (to avoid underflows or
overflows)

» Factoring the posterior distribution
(e-g., p(01,02]y) = p(61|62,y)p(02]y))
» reduce to easier, lower-dimensional problems
> isolate the parameters most influenced by prior
distribution (e.g., 7 in 8 schools example)
» difficulties:
> can't generally find marginal distn easily
> hard to use a grid with a high-dimensional marginal distn
» Transformations

» create more understandable parameters

make prior independence plausible

improve normal approximation (e.g., log of scale parameter)
speed /simplify iterative simulation

v Vvyy

Computation
Notation/Notes

» p(f|y) is the posterior distn

» 6 now includes all parameters (i.e., both 6 and ¢ in the
hierarchical model)
» often we only know the unnormalized posterior distn g(6]y)
> ie, p(0ly) < p(y|0)p(0) = q(bly)
» more formally, p(8|y) = c(y)q(0]y)
» our computation discussion will generally use p(6]y) to refer to
both normalized /unnormalized posterior distribution
> | will point out whether it matters whether the posterior distn
is normalized

Computation
Initial estimation

» Starting point for subsequent approaches

» Serves as a check for other approaches

» Problem-specific methods are required
» use results from other statistical approaches (e.g., maximum
likelihood estimates in bioassay logistic regression)
» fix hyperparameters at crude estimates
(e.g., consider separate and pooled estimates for the 8 schools
example which are equivalent to 7 = 0o and 7 = 0)

Computation
Numerical integration

Many quantities of interest in a Bayesian analysis can be
written as E(h = [h(0)p(]y)db
(e.g., posterior mean)

These can be obtained by numerical integration

In modern world, simulation is often preferred (but numerical
integration still used)

We focus here briefly on some useful tools

Computation
Numerical integration

» Traditional quadrature

» trapezoidal rule (piecewise linear approximation)
» Simpson's rule (piecewise quadratic)

» algorithms for iterating

» Gaussian quadrature

Computation
Numerical integration

> Integration via direct simulation
» if we can generate 61,...,0y from p(f|y) then we can

estimate integral as), h(6;)/N
» of course, this is equivalent to direct simulation from the

posterior distribution
» Importance sampling
> can write E(h(0)]y) = [225 g(9)do

» if we can generate 6,...,0y from g(6), then we can estimate

integral as © > 7"(9259(_9)’”)

» w(0;) = p(0ily)/g(0;) is known as the importance ratio
» improves upon simple MC if we can find g yielding low
variability weights
» works very poorly if g's tails are too short
(we get some very large importance ratios)

Computation
Numerical integration

» Dealing with unnormalized distributions
» suppose we only have g(6]y)
» numerical integration and importance sampling approaches can
work

: "h(0)q(6ly)do
» write E(h(6)|y) = %37\(}/)‘?9

» apply numerical integration or importance sampling separately
to numerator and denominator
» There are many techniques for improving upon Monte Carlo
(simulation) approaches to numerical integration (e.g.,
antithetic variables) ... see statistical computing texts

Computation
Numerical integration

» Analytical approximation (Laplace’s method)

>

>

can write E(h(0)]y) = [e"&h(®)p() ¢g
approximate u(f) = log(h(6)p(f|y)) using a quadratic
expansion around the mode 6,

> find E(h(8)ly) = h(6o)p(bo|y)(2m)~/?| — u"(80)[*/>
> requires large samples
» need two approximations for unnormalized

posterior distn
(E(h(O)ly) = [h(0)a(bly)d6/ [q(6ly)d0)

Computation
Direct simulation

» We have already seen that simulation is a powerful approach
for studying the posterior distn in a Bayesian analysis
> Next, briefly discuss some basic direct simulation tools

» these are useful in simpler (low dimensional) problems
» these same tools are useful as components for more advanced
simulations

» Simulation analysis

> report number of draws
> report summary statistics (mean, sd, percentiles)
» graphs
» how many draws? depends on desired accuracy
(e.g., if we have iid simulations then std error of posterior
mean is equal to posterior s.d. divided by /n)

Computation
Direct simulation approaches

» Exact simulation

» standard algorithms for drawing from standard distns (uniform,
normal, Poisson, gamma, etc.)
» available in most software including R

» Grid approximation
» discrete (evenly spaced) grid 61,0, ...,0y,

Pr(6 = 0;) = P(9j|}/)/(z p(0ily))

grid

we have already seen this approach

works for normalized or unnormalized posterior distn
hard in 2 or more dimensions

choice of grid can affect the answer

vV vy vVvYyy

Computation
Direct simulation approaches

» Probability integral transform

>

consider posterior distn p(f|y) with

corresponding cdf F(0]y)

recall probability result: if U ~ Unif(0,1), then § = F~1(U) is
a r.v. with distn p(6]y)

> eg., if Oly ~ N(p,72), then 0 = u + 70~1(V)
> discrete r.v.'s are possible but harder to program
» can use this to improve grid by making a trapezoidal

approximation

Computation
Direct simulation approaches

» Rejection sampling
» suppose we find g(6) that we can sample from with
p(fly)/g(0) < M (with M known)
> algorithm:
> draw 6 ~ g(6)
> accept 6 with prob p(8|y)/(Mg(0)),
otherwise reject and draw a new candidate
> for log-concave densities this approach can be used with
trapezoids defining rejection function (Gilks and Wild, 1992,
Applied Statistics)

» Many other useful methods for direct simulation that we don't
have time to discuss here

Computation
Iterative simulation

» Basic idea: to sample from p(f|y) create a Markov chain with
p(0]y) as stationary distribution
> Algorithms:

» Gibbs sampler (full conditionals)
Metropolis-Hastings algorithm (jumping distn)
combinations of Gibbs and M-H

Hamiltonian Monte Carlo

v Vvyy

» Implementation issues (later)

v

v

v

v

Iterative simulation
Gibbs sampler

Key features
» break problem into lower-dimensional pieces
using conditional distributions
» conditional posterior distributions often
have simple form
Start by drawing an initial 6 = (61, ..., 60k) from an
approximation to p(6|y).
Repeat the following steps using most recently drawn values
for variables in conditioning set:

» draw 6y from p(0y | O2,...,0k,y)
» draw 6, from p(62 | 01,603,...,60k,y)

> draw Ok from p(Oy | 01, ...,0k-1,y)

Can update parameters one at a time (as above) or in blocks

Iterative simulation
Gibbs sampling

» Efficiency considerations
» partitioning parameters into groups/blocks is often a good idea
» works best if we can create independent or nearly independent
blocks of parameters
» transform distributions/parameters (e.g., t as a scale mixture
of normals, centering random effects)

» Example of Gibbs sampling (normal-normal model)

Iterative simulation
Non-standard distributions

» It may happen that one or more of the Gibbs sampling distns
is not a known distn
» What then?
» can go back to previous direct simulation discussion
(i.e., use grid approximation, rejection sampling, etc.)
but this is not ideal
» Metropolis (or (Metropolis-Hastings) algorithm

Iterative simulation
Metropolis-Hastings (M-H) algorithm

» Replaces “conditional draws” of Gibbs sampler
with “jumps” around the parameter space
> Algorithm:
» given current draw 6 (scalar or vector)
» sample a candidate point 8* from jumping
distribution J(6*|0)
> accept candidate or stay in place with
probabilities determined by importance ratio

_ P(0"]y)/J(0"]0)
p(0ly)/J(0]6%)
» Simplifies if J is symmetric (Metropolis algorithm)
» Combining M-H and Gibbs: M-H steps can be used in place of

one conditional distn in a Gibbs sampler, or a single M-H step
can replace several (or even all) of the conditional distns

Iterative simulation
Efficiency considerations - M-H

» How do we choose the jumping distribution J(#|4(t~1))?

» Optimal J is p(f|y) independent of current value §(t=1)

» this always accepts (r = 1)

» but if we could do this we wouldn't need M-H
» Goals in choosing J:

» J should be easy to sample from

> it should be easy to compute r

» jumps should go far (so we move around the parameter space)
but not too far (so they are not always rejected)

Iterative simulation
Efficiency considerations - M-H

» Three common approaches
» independence M-H
» random walk M-H (used most often)
> approximation M-H
» Independence M-H
» find a distribution g(#) independent of current 8(t=1) and keep
generating candidates from g(6)

> requires g be a reasonably good approximation
» hard to do for M-H within Gibbs

Iterative simulation
Efficiency considerations - M-H

» Random Walk M-H

>

generate candidate using random walk (often normal) centered
at current value

> J(0]0¢—1) = N(|9(t—D), cV)
» note this is symmetric so M-H acceptance calculation simplifies
» works well if V' is chosen to be posterior variance

(don't know this but can use a pilot run to get some idea)

» C is a constant chosen to optimize efficiency
» theory results indicate optimal acceptance rate for this kind of

jumping distn is between .2 and .5 (decreases with dimension)

Iterative simulation
Efficiency considerations - M-H

» Approximation M-H

» generate candidate using an approximation to target distn
(varying from iteration to iteration)

> eg., J(O]0UD) = N(9IOCD), Vi)

» now variance matrix depends on current value so this is no
longer symmetric

» idea is to make this a good approximation (high acceptance
rate)

Iterative simulation
Proof of convergence - using Metropolis

» Show resulting Markov chain has a unique staionary
distribution (i.e., is irreducible, aperiodic, non-transient)

» Show stationary distribution is p(f|y)
» Start algorithm at 0¢—1) ~ p(d]y)
> We can show that p(8(t=1), 0(t)) is symmetric which means
that () ~ p(A|y) (hence p is stationary distn)
> Let 0,,0, be two points in parameter space with

p(6sly) = p(0aly)

> (6 = 0,,61 = 01) = p(6a|y)Je(65]0)
(since we accept jumps to 6,

> p(0¢D = 0,000 = 0,) = p(0s]y) s (0:]05) E21)

» Jumping distribution is symmetric so these two expressions are
equal and the joint distribution is symmetric

Iterative simulation
Hamiltonian Monte Carlo

Gibbs sampling and Metropolis-Hastings are random walk
approaches

They can perform poorly in high dimensional spaces
Hamiltonian Monte Carlo (HMC) uses ideas from
deterministic simulation of physical systems

Newtonian mechanics works in terms of forces, masses,
velocities in a fixed co-ordinate systems

Hamiltonian and Lagrangean mechanics arise as an alterantive
mathematical formalism that reproduces Newtonian results
but enables modeling more complex systems

HMC is derived from this formalism; it introduces a
momentum variable ¢; corresponding to each model
parameter 0;

Iterative simulation
Hamiltonian Monte Carlo

v

Target is now p(6, 6ly) = p(6]y)p(®)
Note that ¢ is independent of y

Common choice for p(¢) is N(¢|0, M) with M (mass matrix)
diagonal

v

v

Algorithm (iterates over time, here assume we have #(t~1)
Generate ¢{t=1) ~ p(¢)
update 6, ¢ via L leapfrog steps (scaled by a factor €)
repeat L times

¢ < ¢+0.5 ¢ d(log p(ly)/do

0+ 0+eM 1o

¢+ ¢+ 0.5 ¢ d(log p()y)/do
at the end of the L steps call the result 8%, ¢*
Accept the proposed pair with probability r =

v

v

p(0™ |y)p(¢™)
p(0¢—D1y)p(ept—1))

vV VY Y vV VvV VY

» ¢, L, M are turning parameters
(often € = 0.1, L = 10 and M approx Var(f]y)™?1)

> W

[0}

vV vy VvVYyy

Iterative simulation
Logistics

have glossed over some details
starting values

monitoring convergence

inference from iterative simulation
software availability

Iterative simulation
Starting values

» Markov chain will converge to stationary
distribution from any starting value assuming
» chain has a nonzero probability of eventually getting from any
point to any other point (i.e., parameter space is not divided
into separate regions)
» chain does not drift off to infinity (can happen if the posterior
distribution is improper — which means the model is wrong!)

> Assessing when this convergence has occurred is
best done using multiple chains with overdispersed
starting points

Iterative simulation
Starting values

» An algorithm for choosing starting values:

» find posterior mode (or modes)
(marginal distn usually better than joint distn)

» create overdispersed approximation to posterior
(e.g., t4 instead of normal)

» sample 1000 points from approximation

» resample 5 or 10 starting values
(using importance ratios as described later)

Iterative simulation
Monitoring convergence

Run several sequences in parallel
Can use graphical displays to monitor convergence or
semi-formal approach of Gelman and Rubin (described now)
Two estimates of sd(6]y)

» underestimate from sd within each sequence

» overestimate from sd of mixture of sequences
Potential scale reduction factor:

N mixture-of-sequences estimate of sd(6|y)
within-sequence estimate of sd(f]y)

Initially \/E is large (because we use
overdispersed starting points)

At convergence, \/E =1 (each sequence
has made a complete tour)

Monitor \/E for all parameters and quantities
of interest; stop simulations when they are all
near 1 (e.g., below 1.2)

Iterative simulation
Inference from posterior simulations

At approximate convergence we have many draws from the
posterior distribution

The draws are not independent

This means that obtaining standard errors to
assess simulation noise is difficult
(can use between-chain info, batching,)

Note there is a distinction here between posterior uncertainty
about 8 and Monte Carlo uncertainty about some summary of
the posterior distn (e.g., std error of E(f]y))

Good news: Simulation noise is generally minor compared to
posterior uncertainty about 6

v

v

v

v

Iterative simulation
Improving MC simulation

Earlier discussed some ideas for improving efficience of Gibbs
/ Metropolis

Those ideas are based on the algorithms
Can also improve MCMC performance by modifying the model

Some ideas follow

Iterative simulation
Transformations

Gibbs/Metropolis work best for independent components
Can sometimes transform parameters of a distribution
Example: Beta distribution is usually parameterized in terms
of a, B with p(6a, §) o 8271(1 — §)P~1

Can reparameters in terms of mean «/(a +) and (rough)
variance parameter 1/(a + 3)

Can further reparameterize as logit of mean (log(«/f3)) and
log of variance (log(a + f3))

Iterative simulation
Auxiliary variables

Some distributions can be expressed as mixtures of simpler
distributions

Example: consider the t distribution with v degrees of
freedom and suppose we wish to model Y; ~ t,(u, 0?)
Simulating from posterior distribution of 11, 02 from t-density
is challenging

Note that we can introduce V; with Yi|u;, Vi ~ N(u, V;) and
Vi|o? ~ Inv — x?(v, 0?)

Marginal distribution of Y; is t-distribution

Gibbs sampling is straightforward if we think of 1, 0? as

parameters and V' as "missing” data (another unknown to
include in Gibbs sampling)

Iterative simulation
Parameter expansion

» Previous example obtained improved performance by adding
"missing” variable V

» It is counterintuitive but sometimes adding an additional
parameter improves efficiency

» Example: consider the t distribution with v degrees of
freedom example from previous slide

» Rewrite our model with added parameter « as
Yilu, a, Ui ~ N(p, a2 U;) and U;]7'2 ~ Inv — (72)

» Note that « is not identified (a?U; = Vi, a?1? = 0?)

» But

» Gibbs sampling in this model will work if we monitor

convergence in terms of i, 0% = &?72, V; = o?U;

» Not only does it work, but it tends to be more reliable
» Why? Increasing the size of the parameter space can help

getting trapped in uninteresting areas (e.g., o near zero in the
original formulation)

Iterative simulation
Many other extensions / expansions

> Reversible jump MCMC to explore inference across multiple
models

» Simulatied tempering and other approaches to explore
multiple modes

Iterative simulation
Software availability

» Variety of packages

» R — write your own MCMC
WINBUGS (BUGS = Bayesian analysis Using Gibbs Sampling)
JAGS
STAN
JAGS and STAN can be run from within R (runjags, rstan
packages)

vV vy vVvYyy

Computation
Debugging iterative simulation methods

» Checking that programs are correct is crucial
(especially if you write your own)
» Can be difficult to check because

» output is a distribution not a point estimate
» incorrect output may look reasonable

» Some useful debugging ideas:

» build up from simple (debugged) models
» when adding a new parameter, start by setting it to a fixed
value, then let it vary
» simulate fake data (repeat the following steps)
> draw “true parameters’ from prior distn
(must be proper)
» simulate data from the model
> obtain draws from posterior distn
> compare distns of posterior draws and
“true parameters”

Computation
Debugging iterative simulation methods

» Common problems
» conceptual flaw in part of model
> prior is too vague

> this may give improper posterior distn
> detect by looking for values that don't make substantive sense

Computation
Approximation

Recall results of Chapter 4 ... for large samples p(f|y) is

approx N(6|0, J(6)~!) where § is the posterior mode

Often use inverse curvature matrix of log posterior density,
-1

Vy = —j—;z log p(0ly)l,_s| as variance matrix

Transformations are often used to improve quality of normal
approx
May use t distn with few degrees of freedom in place of
normal distn (to protect against long tails)
Multiple modes can be a problem: N(8, V) or t4(8, Vy)
approx at each mode (i.e., a mixture)
Reasons not to approximate based on modes:
» misleading in some problems (e.g., in 8 schools example, mode
is 7 = 0 which is at edge of parameter space)

» advances in algorithms have made inference from exact
posterior distn possible

v

v

v

v

Computation
Approximation - mode finding

To apply normal approximation, need posterior mode
Review traditional stat computing topic of mode finding
(optimization)
Iterative conditional modes (ICM)

> start at 6@ = (7. 6y

» fori=1,...
» forj=1,...,d
» choose GJ(i) as the value that maximizes
(or even just increases) p(9§i), o 9}21, 0, 9};}1), . 95,;_1))

ICM leads to a local maximum

Computation
Approximation - mode finding

» Newton's method (L = log p(f|y))

start at 6(©)

iterate with () = (t=1) _ [17(g(t=1)=1/(p(t=1)
converges fast but is sensitive to starting value

> can use numerical derivatives

v vy

» Other optimization methods
> steepest ascent () = 9(t=1) 4 o 1/(9(t=1))
» quasi-Newton methods
» simplex/polytope (no derivative methods)

Computation
Approximation

For many problems, especially hierarchical models, the joint
mode is not very useful

Instead may focus on factorization
p(0, ¢ly) = p(dly)p(0l¢, y)
Often p(0|¢, y) is easy (e.g., conjugate family)

» Normal approximation for marginal posterior distn p(¢|y)

» But need mode of p(¢|y)

» sometimes this function can be identified and maximized
analytically
» for other situations EM algorithm is helpful

Computation
Approximation - The EM algorithm

» EM is an iterative algorithm for maximizing functions
(likelihoods or posterior distns) when there is missing data

» Appl
> ldea:

ied here in maximizing p(¢|y) treating 6 as missing data

» start with initial guess for ¢
» given ¢ we can estimate "missing data” 6
» given estimated 6 it may be easy to now maximize for

improved ¢
repeat last two steps

Computation
Approximation - The EM algorithm

> lterative algorithm with two steps

» Suppose current value of ¢ is ¢(t)
> E-step
> compute Q(¢) = E(log(p(0, ¢ly)|¢ = ¢\) =

J log(p(0, ¢ly))p(016), y)do
> essentially computes expected value of needed functions of 6

rather than estimating the " missing” 0
> M-step

» choose ¢(**1) as the value of ¢ that maximizes Q(¢)

» Can show that p(¢|y) increases after each E-M pair of steps

Computation
Approximating the Conditional Distribution

» EM-based approximation works when we know the conditional
distribution p(8|¢, y)

» If not, an alternative is to first approximate this conditional
distribution on a grid of ¢ values, e.g.,

papprox(md)a)/) = N(9|9A(¢), V9(¢))
» Then can derive approximation to the marginal distribution

p(¢,0ly)

Papprox ¢y T o (0lb.v)
approx(#]Y) Papprox (06,)

Computation
Approximation - Variational Inference

In very large or complex problems it can be prohibitively
expensive to carry out MCMC calculations

Variational inference is an alternative approach that builds an
approximation to the joint posterior distribution from simpler
functions

Note MCMC is simulating from the correct distribution (but
has MC error)

Variational inference is simulating from a different (nearby)
distribution (and has MC error)

Computation
Approximation - Variational Inference

» Most common approach is to choose to approximate p(6|y)
with g(8]¢) = Hle gj(0;|¢;) where J is the number of
parameters

> Note that ¢ here is not a hyperparameter, it is a
parameterization of our approximating distribution

» Goal is to estiimate ¢ (i.e., it will depend on the data) and
then use simulations from g(0]¢) as our (approximate) draws
from the posterior distribution

» Which g? Construct g to minimize the K-L divergence
KL(gllp) = —Eg log(p(6]y)/g(0))

Computation
Approximation - Variational Inference

How does this work in practice

Can find best functional form for g;(6;|¢;) by examining
Eg_;(log p(6]y))
This quantity is viewed as a function of §; with expectation
taken over all other parts of € (for which we assume we
already have approximating g's)
Then the algorithm proceeds as follows

> initial guesses for all the ¢;'s

> iterate j = 1,...,J, update ¢; such that

log g;(0;1¢,) = Eg_;(log p(0ly))

A common alternative to the above is to just choose
convenient forms for g; and numerically minimize K-L
divergence

Computation
Approximation - Expectation Propagation

Variational inference approximates posterior by considering
each dimensions separately

Expectation propagation is an alternative strategy that
focuses on approximating each data contribution to the
posterior separately

The target is p(6ly) = p(6) [T, p((5i16) = p(6) IT, Pi(6)
Our approximation is g(6) (often multivariate normal)

Turns out this approach is equivalent to minimizing the
alternative K-L divergence, KL(p||g) = —Ep log(g(0)/p(0]y))

No details here (some in book and other references)

Computation
Approximation - Approximate Bayes Computation (ABC)

In some problems we don’t have the likelihood in closed form
(e.g., have only a simulation model for y|6)

» ABC is an apporach that can work in this case

» Algorithm - repeat as often as desired

» draw 6 from p(6) (requires proper prior distribution)
» simulate y (") from p(y|6)
» compute d(y("P), y) for suitable distance function d (so that y
and y("P) agree on relevant features)
> accept 6 if d(y"P,y) < ¢
How does it work? We are simulating from p(6, y) and then
conditioning on observed y which yields the posterior

Challenges - Need to define d, €. Doesn’t work well if prior
distribution is too broad

v

v

v

Computation
Summary

Goal: posterior inference concerning the vector of parameters
(and any missing data)

Simulation is an extremely powerful tool, especially in
complex models

Basic approach

> initial estimates
» direct simulation (if possible)
» if direct simulation is not possible:
> normal or t approximation about posterior mode
> iterative simulation (Gibbs, Metropolis-Hastings)
For iterative simulation

» inference is conditional on the starting points
» use multiple sequences and run until they mix

