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Hierarchical models — motivation
James-Stein inference

» Suppose X ~ N(6,1)
» X is admissible (not dominated) for estimating 6 with squared
error loss
» Now X; ~ N(6;,1), i=1,...,r
» X =(Xq,...,X;) is admissible if r = 1,2 but not r > 3
» forr>3
r—2

= (1— <=2
-

)X

yields better estimates
» known as James-Stein estimation



Hierarchical models — motivation
James-Stein inference (cont’d)

» The Bayes view: X; ~ N(6;,1) and 0; ~ N(0, a)

>
>
>

posterior distn: 6;|X; ~ N
posterior mean is (1 — -37)X;
need to estimate a; one natural approach yields James-Stein

» Summary

>
>

estimation results depend on loss function

squared-error loss do well on avg but maybe poor for one
component

powerful lesson about combining related

problems to get improved inferences



Hierarchical Models

Suppose we have data

Y, j=1,...,J
= ]_, <y Ny
such that Y;; i=1,...,n; are independent given 6; with
distribution p(Y'|0;). e.g. scores for students in classrooms It
—— —_— N———
Y (1) 0)

might be reasonable to expect §;'s to be “similar” (but not
necessarily identical).

Therefore, we may perhaps try to estimate population distribution
of 6;'s. This is achieved in a natural way if we use a prior
distribution in which the 6;'s are viewed as a sample from a
common population distribution.



Hierarchical Models

» Key: The observed data, y;;, with units indexed by / within
groups indexed by j, can be used to estimate aspects of the
population distribution of the ¢;'s even though the values of
t; are not themselves observed.

» How? It is natural to model such a problem hierarchically

> observable outcomes modeled conditionally on parameters 6
» 6 given a probabilistic specification in terms of other
parameters, ¢, known as hyperparameters.



Hierarchical Models

» Nonhierarchical models are usually inappropiate for
hierarchical data. Why?
» asingle 0 (i.e., §; = 8 Vj) may be inadequate to fit a
combined data set.
> separate unrelated 6; are likely to “overfit” data.
» information about one ; can be obtained from others’ data.

» Hierarchical model uses many parameters but population
distribution induces enough structure to avoid overfitting.



Setting up hierarchical models
Exchangeability

Recall: A set of random variables (61, ...,60k) is
exchangeable if the joint distribution is invariant to
permutations of the indexes (1,..., k).

The indexes contain no information about the values of the
random variables.

e hierarchical models often use exchangeable models for the prior
distribution of model parameters

e iid random variables are one example

e seemingly non-exchangeable r.v.'s may become exchangeable if
we condition on all available information (e.g., regression
analysis)



Setting up hierarchical models
Exchangeable models

» Basic form of exchangeable model
» 0 = (61,...,0k) are independent conditional on additional
parameters ¢ (known as hyperparameters)

k

p(019) = [T p(6110)

Jj=1

» ¢ referred to as hyperparameter(s) with hyperprior distn p(¢)
> implies p(0) = [ p(0|¢)p(¢)d¢

» work with joint posterior distribution, p(, ¢|y)

» One objection to exchangeable model is that we may have
other information, say (Xj). In that case may take

J

P(el, . 70J|X17 . 'aXJ) = Hp(91‘¢7xl)
i=1



Setting up hierarchical models

> Model is usually specified in nested stages

» sampling distribution of data p(y|6)
(first level of hierarchy)

» prior (or population) distribution for 6 is p(8|¢)
(second level of hierarchy)

» prior distribution for ¢ (hyperprior) is p(¢)

» Note: more levels are possible

» hyperprior at highest level is often diffuse but improper priors
must be checked carefully to avoid improper posterior
distributions.



Setting up hierarchical models

» Inference
» Joint distn:

p(y,0,9) p(y|0,8)p(0]6)p(¢)

p(y|0)p(0]6)p(4)

» Posterior distribution

p(0,9oly) o p(e)p(6]e)p(y|0)
= p(Oly, d)p(dly)

> often p(6|¢) is conjugate for p(y|0)
> if we know (or fix) ¢: p(@ly, ¢) follows from conjugacy
> then need inference for ¢: p(¢|y)



Computational approaches for hierarchical models

» Marginal model

p(y]6) = / p(y10)p(0]6)d0

do inference only for ¢ (e.g. marginal maximum likelihood)
» this is the approach that is often used in traditional random
effects models
» no inference for 6



Computational approaches for hierarchical models

» Empirical Bayes
p(Oly, d) o< p(y|0)p(6]9)
» estimate ¢ (often using marginal maximum likelihood)

» inference for # conditional on the estimated ¢
» underestimates the uncertainty about 6



Computational approaches for hierarchical models

» Hierarchical Bayes (a.k.a. full Bayes)

p(0, dly) o< p(y|0)p(0]9)p(¢)

inference for 6 and ¢

» full posterior distribution of # and ¢ is obtained
> this is the approach we rely on



Hierarchical models and random effects
Animal breeding example

Consider the following mixed linear model
commonly used in animal breeding studies

Y=X8+Zu+e

X = design matrix for fixed effects

Z = design matrix for random effects
B = fixed effects parameters

u = random effects parameters

e = individual variation ~ N(0, 02/)

Y|8,u,08 ~ N(XB+ Zu,a2l)

ulo? ~ N(0,02A)

(can also think of 5 as random with p(3) 1)



Hierarchical models and random effects
Animal breeding example

» Marginal model (after integrating out u)

Y|8,02,02 ~ N(XB,02ZAZ' + o21)

» Note: the separation of parameters into € and ¢ is somewhat
ambiguous here:

>

model specification suggests ¢ = {02}
and 0 = {S,u,c°}

marginal model suggests ¢ = {3,02,02}
and 0 = {u}



Hierarchical models and random effects
Animal breeding example

» Empirical Bayes (known as REML/BLUP)

We can estimate 2, o2 by marginal
(restricted?) maximum likelihood (62, 52).
Then
p(u, Bly,83,62) o p(y|B, u, 62)p(ul5?)
(a joint normal distn)

» Hierarchical Bayes

p(B,02,02, uly) o p(y|8, u,02)P(ulo?)p(B, 02, 2)



Computation with hierarchical models

» Two cases
» conjugate case (p(0|¢) conjugate prior for p(y|6))
» approach described below
» non-conjugate case
> requires more advanced computing
» problem-specific implementations
» Computational strategy for conjugate case
> write p(6, ¢|y) = p(¢ly)p(6l¢, y)
» identify conditional posterior density of 6 given ¢, p(6|®,y)
(easy for conjugate models)
» obtain marginal posterior distribution of ¢, p(¢|y)
» simulate from p(¢|y) and then p(6|¢,y)



Computation with hierarchical models
The marginal posterior distribution p(¢|y)

» Approaches for obtaining p(¢|y)

> integration p(¢ly) = [ p(0, ¢ly)dd
> algebra - for a convenient value of §

p(0, 9ly)

» Sampling from p(¢|y)
> easy if known distribution
» grid if ¢ is low-dimensional
» more sophisticated methods (later)



Normal-normal hierarchical model

» Data model
> y;l0; ~ N(OJ,UJ?),j =1,...,J (indep)
> 07's are assumed known for now
(can release this assumption later)
» motivation: y; could be a summary statistic
with (approx) normal distn from the j-th study
(e.g., regression coefficient, sample mean)
» Prior distn
» need a prior distn p(61,...,0,)

» if exchangeable, then model #'s as iid given
parameters ¢



Normal-normal hierarchical model: motivation

» Can think of this data model as a one-way ANOVA model
(especially if y; is a sample mean of n; obs in group j).
Typical ANOVA analysis begins by testing:

Hy: 61=...=6,
H,: not Hy

> If we don’t reject Hy, we might prefer to estimate each 6; by
the pooled estimate,

J
Zj:l %YJ
Y17

J
> If we reject Hp, we might use separate estimates, §; = y; for
each j.
» Alternative: compromise between complete pooling and none
at all, e.g., a weighted combination,

0; = \jyj + (1 — \)y. where \; € (0,1)



Normal-normal hierarchical model

» Constructing a prior distribution

(a) The pooled estimate 6 = . is the posterior mean if the J
values 0; are restricted to be equal, with a uniform prior
density on the common 6; i.e. p(f) x 1.

(b) The unpooled estimate f; = y; is the posterior mean if the J
values 6 have independent uniform prior densities on
(—00,00); i.e. p(By,...,0,) x 1.

(c) The weighted combination is the posterior mean if the J values
0; are iid N(p, 72).

Note: (a) corresponds to (c) with 72 =0
(b) corresponds to (c) with 72 — oo



Normal-normal hierarchical model

» Data model p(y;|6,) ~ N(0,02),j=1,...,J

Jr Y
oj?'s assumed known

» Prior model for 6;'s is normal (conjugate)

J
p(917---79J|M7 HNQ‘Ma
j=1

i.e. ;'s conditionally independent given (1, T)
» Hyperprior distribution p(u, 7)
» noninformative distribution for u given 7, i.e., p(u|7) o< 1
(this won't matter much because the combined data from all J
experiments are highly informative about u)
» more on p(7) later
> p(psm) = p(T)p(ulT) o p(7)



Normal-normal model: computation

» Joint posterior distribution:

p(0, 1, Tly)
o< p(p, 7)p(0)1e, 7)p(y10)

J J
) [T NG, 72) ] Nyil67.07)
j=1 j=1

1 1 1 1 1
X P(T)p exp ) Zﬁ(ej - M)2 exp ) Z?(yj - 91‘)2
j i

v

Factors that depend only on y and {o;} are treated as
constants because they are known
Posterior distn is a distn on J 4+ 2 parameters
Can compute using MCMC (later) or
Hierarchical computation:
1. p(O1,...,04|p,7,y)
p(plT, y)
p(7ly)

v

vy



v

v

v

v

v

Normal-normal model: computation
Conditional posterior distn of 6 given u, 7,y

Treat (p,7) as fixed in previous expression

Given (1, 7), the J separate parameters §; are
independent in their posterior distribution

0ily, i, ™ ~ N(;, V;) with

1% 1
0 = and V; = ———
J J 12

>

\C‘,\,‘b—'
A <
+] +
ﬂw‘,_. ﬂw"_,

Q=

Result from simple normal-normal conjugate analysis

QAJ- is weighted average of hyperprior mean and data



Normal-normal model: computation
Marginal posterior distribution of u, 7T given y

» We can analytically integrate the full posterior distn
p(0, u, T|y) over 6

p(u, Tly) = /P(G,uafly) do

» An alternative is to use the marginal model

P, 7ly) o< ply|u, 7)p(p, 7)
» Marginal model

}/’/h H/ 0‘:“’77-),\/ .yJ‘HJ?U )

quadratic in y;

= yjlu, 7 ~ Normal

Var(yjlp, ) = E(Var(yjlp,7,6;)) + Var(E(y;|u, 7,6;))
= E(Jf) + Var(0;) = Uf + 72



Normal-normal model: computation
Marginal posterior distribution of u, 7 given y

» End result is

J
p(p.7ly) o p(r) [ NOjlu, oF +7°)
j=1

J 2
—1/2 (vj — 1)
x  p(7) E oj +T / exp <—2(012 +7_2)>

» Note: in non-normal models, it is not generally possible to
integrate over 6 and rely on the marginal model, so that more
elaborate computational methods are needed



Normal-normal model: computation
Posterior distribution of p given 7,y

Instead of sampling (1, 7) on a grid, factor the distribution:

p(p, ly) = p(rly)p(uiT, y)
p(u|T,y) is obtained by looking at p(u,7|y) and thinking of T
as known:

J

= p(ulr.y) o< [ Nyl o7 +7°)
j=1

This is the posterior distn corresponding to a normal sampling
distribution with a noninformative prior density on p

Result: p|7,y ~ N(fi, V) with



Normal-normal model: computation
Posterior distribution of 7 given y

» p(7]y) can be found in two equivalent ways
» integrate p(u, 7|y) over u
» use algebraic form p(7|y) = p(p, 7|y)/p(u|7, ¥), which must
hold for any
» Choose the second option, and evaluate at u = i (for
simplicity):

J ~
11 N(yjlfi, o7 +72)

p\T|ly) T~
(1) (il V)
J (yj — f1)?
1/2 2 2\—1/2 ]
x Vu/ jl—[l(aj +79) / exp <_2(0J2 +T2)>

» Note that V), and i are both functions of 7

» Compute p(7|y) on a grid of values of T



Normal-normal model: computation
Summary

» To simulate from joint posterior distribution p(6, u, 7]y):

1. draw 7 from p(7|y) (grid approximation)
2. draw p from p(p|7,y) (normal distribution)
3. draw 0 = (6y,...,0,) from p(f|7,y)
(independent normal distribution for each 6)
» Choice of p(7)
» p(7) o< 1 - proper posterior distribution
» p(log 7) o 1 - improper posterior distribution
(equivalent to p(72) oc 1/72 but this common noninformative
prior for variances doesn't work in this case
» discuss further on the next slide
» Then illustrate with SAT coaching example (add to slides or
do separately)



Normal-normal model: computation
Hyperprior distribution

» Non-informative or weakly informative prior distributions for 7

> p(7)

o 1 - yields a proper posterior distribution (J > 2); can

be thought of as limit of U(0, A); sometimes useful to use

u(o,

A) with A determined by context of problem

» p(log7) o 1 - yields an improper posterior distribution; why??

>
>

> p(7)

this is a common noninformative prior for variances

here 1/77 assigns infinite mass near 7 = 0 and the data can
never rule out 7 = 0 because the 6;s are not observable
can contrast with o2 in usual normal model where data
(assuming all y's are not equal) rules out 0% = 0

= inverse-gamma(e, €) - proper prior distribution; but

does not yield a proper posterior in the limit as ¢ — 0 so
choice of ¢ matters

> p(7)

o (14 72/A%)~("+1D/2 _ known as half-t; distn of

absolute value of a mean zero t distribution with scale
parameter A and degrees of freedom v (see Gelman 2006)



v

v

v

v

Beta-binomial example

Series of toxicology studies

Study j: n; exchangeable individuals
y; develop tumors
Model specification:
> yjl0; ~ Bin(n;, 0;),j =1,...,J (indep)
» 0,j=1,...,J | a, 8 ~ Beta(e, 8) (iid)
» p(a, B) — to be specified later, hopefully "non” or " weakly"
informative

Marginal model:
» can integrate out 0, = 1,...,J in this case

J Mo+ ni—yj
plyle. £) / /Hra g; Ja 1 J)B 1<yj>9yj(1 ;)7 Yidey - do,

_ T (nj)rww) Mo +y)T(B+n — )
Y I(a)r(B) r(a+[3+n/)

» yi,j=1,...,J areind
» distn of y; is known as beta-binomial distn



Beta-binomial example

» Conditional distn of 8's given o, 3,y

p(o‘aaﬂJ/) - Hj Beta(a+yj,ﬁ+ n; _yj)
independent conjugate analyses

find this by algebra or by inspection of p(6, «, 8ly)
analysis is thus reduced to finding (and

simulating from) p(a, B|y)

v

v vy

» Marginal posterior distn of «, 3

J Fa—i—ﬁ (+y) )T (B + n;

— )

pla, Bly) o< pla Flr Mo+ B+ n))

» could derive from marginal distn on previous slide
» could also derive from joint posterior distn
» not a known distn (on «, 3) but easy to evaluate



Beta-binomial example

» Hyperprior distn p(«, )

>

>

First try: p(a, 8) o< 1 (flat, noninformative?)

equivalent to p(a/(a+ ), + ) x (a + )

(relevant because o/(«v + ) is the mean and 1/(a + ) is
roughly proportional to variance)

» equivalent to p(log(a/f),log(a + B)) x af

check to see if posterior is proper

> consider diff't cases (e.g., « — 0, 3 fixed)
> if a, 8 — oo with a/(a+ ) =c,
then p(a, B|y) x constant (not integrable)
> this is an improper distn
> contour plot would also show this
(lots of probability extending out towards infinity)



Beta-binomial example

» Hyperprior distn p(«, 3)
» Second try: p(a/(a+ B),a+ ) x 1
(flat on prior mean and precision)
> more intuitive, these two params are plausibly independent
> equivalent to p(a, 8) x 1/(a+ )
> still leads to improper posterior distn
» Third try: p(log(a/fB),log(a+ 3)) x 1
(flat on natural transformation of prior mean and variance)
> equivalent to p(a, 8) x 1/(afB)
> still leads to improper posterior distn
» Fourth try: p(a/(a+ ), (a+B)"1?) x 1
(flat on prior mean and prior s.d.)
> equivalent to p(«, 8) x (a + 3)
> "final answer" - proper posterior distn

> equivalent to p(log(/B), log(a + B)) o af(a + B) /2 (this
will come up later)

—5/2



Beta-binomial example

» Computing
> later consider more sophisticated approaches
» for now, use grid approach
> simulate «, 8 from grid approx to posterior distn
> then simulate 0's using conjugate beta
posterior distn
» convenient to use (log(a/pB), log(c + 3)) scale because
contours "look better” and we can get away with smaller grid

» lllustrate with rat tumor data (add slides or do separately?)



