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Hierarchical models – motivation
James-Stein inference

I Suppose X ∼ N(θ, 1)
I X is admissible (not dominated) for estimating θ with squared

error loss

I Now Xi ∼ N(θi , 1), i = 1, . . . , r
I X = (X1, . . . ,Xr ) is admissible if r = 1, 2 but not r ≥ 3
I for r ≥ 3

δi = (1− r − 2∑
i X

2
i

)Xi

yields better estimates
I known as James-Stein estimation



Hierarchical models – motivation
James-Stein inference (cont’d)

I The Bayes view: Xi ∼ N(θi , 1) and θi ∼ N(0, a)
I posterior distn: θi |Xi ∼ N
I posterior mean is (1− 1

a+1 )Xi

I need to estimate a; one natural approach yields James-Stein

I Summary
I estimation results depend on loss function
I squared-error loss do well on avg but maybe poor for one

component
I powerful lesson about combining related

problems to get improved inferences



Hierarchical Models

Suppose we have data

Yij j = 1, . . . , J
i = 1, . . . , nj

such that Yij i = 1, . . . , nj are independent given θj with
distribution p(Y |θj). e.g. scores︸ ︷︷ ︸

Y

for students︸ ︷︷ ︸
(i)

in classrooms︸ ︷︷ ︸
(j)

It

might be reasonable to expect θj ’s to be “similar” (but not
necessarily identical).
Therefore, we may perhaps try to estimate population distribution
of θj ’s. This is achieved in a natural way if we use a prior
distribution in which the θj ’s are viewed as a sample from a
common population distribution.



Hierarchical Models

I Key: The observed data, yij , with units indexed by i within
groups indexed by j , can be used to estimate aspects of the
population distribution of the θj ’s even though the values of
θj are not themselves observed.

I How? It is natural to model such a problem hierarchically
I observable outcomes modeled conditionally on parameters θ
I θ given a probabilistic specification in terms of other

parameters, φ, known as hyperparameters.



Hierarchical Models

I Nonhierarchical models are usually inappropiate for
hierarchical data. Why?

I a single θ (i.e., θj ≡ θ ∀j) may be inadequate to fit a
combined data set.

I separate unrelated θj are likely to “overfit” data.
I information about one θj can be obtained from others’ data.

I Hierarchical model uses many parameters but population
distribution induces enough structure to avoid overfitting.



Setting up hierarchical models
Exchangeability

Recall: A set of random variables (θ1, . . . , θk) is
exchangeable if the joint distribution is invariant to
permutations of the indexes (1, . . . , k).
The indexes contain no information about the values of the
random variables.

• hierarchical models often use exchangeable models for the prior
distribution of model parameters

• iid random variables are one example
• seemingly non-exchangeable r.v.’s may become exchangeable if

we condition on all available information (e.g., regression
analysis)



Setting up hierarchical models
Exchangeable models

I Basic form of exchangeable model
I θ = (θ1, . . . , θk) are independent conditional on additional

parameters φ (known as hyperparameters)

p(θ|φ) =
k∏

j=1

p(θj |φ)

I φ referred to as hyperparameter(s) with hyperprior distn p(φ)
I implies p(θ) =

∫
p(θ|φ)p(φ)dφ

I work with joint posterior distribution, p(θ, φ|y)

I One objection to exchangeable model is that we may have
other information, say (Xj). In that case may take

p(θ1, . . . , θJ |X1, . . . ,XJ) =
J∏

i=1

p(θi |φ,Xi )



Setting up hierarchical models

I Model is usually specified in nested stages
I sampling distribution of data p(y |θ)

(first level of hierarchy)
I prior (or population) distribution for θ is p(θ|φ)

(second level of hierarchy)
I prior distribution for φ (hyperprior) is p(φ)
I Note: more levels are possible
I hyperprior at highest level is often diffuse but improper priors

must be checked carefully to avoid improper posterior
distributions.



Setting up hierarchical models

I Inference
I Joint distn:

p(y , θ, φ) = p(y |θ, φ)p(θ|φ)p(φ)
= p(y |θ)p(θ|φ)p(φ)

I Posterior distribution

p(θ, φ|y) ∝ p(φ)p(θ|φ)p(y |θ)
= p(θ|y , φ)p(φ|y)

I often p(θ|φ) is conjugate for p(y |θ)
I if we know (or fix) φ: p(θ|y , φ) follows from conjugacy
I then need inference for φ: p(φ|y)



Computational approaches for hierarchical models

I Marginal model

p(y |φ) =

∫
p(y |θ)p(θ|φ)dθ

do inference only for φ (e.g. marginal maximum likelihood)
I this is the approach that is often used in traditional random

effects models
I no inference for θ



Computational approaches for hierarchical models

I Empirical Bayes

p(θ|y , φ̂) ∝ p(y |θ)p(θ|φ̂)

I estimate φ (often using marginal maximum likelihood)
I inference for θ conditional on the estimated φ
I underestimates the uncertainty about θ



Computational approaches for hierarchical models

I Hierarchical Bayes (a.k.a. full Bayes)

p(θ, φ|y) ∝ p(y |θ)p(θ|φ)p(φ)

inference for θ and φ
I full posterior distribution of θ and φ is obtained
I this is the approach we rely on



Hierarchical models and random effects
Animal breeding example

Consider the following mixed linear model
commonly used in animal breeding studies

Y = Xβ + Zu + e

X = design matrix for fixed effects
Z = design matrix for random effects
β = fixed effects parameters
u = random effects parameters
e = individual variation ∼ N(0, σ2

e I )

Y |β, u, σ2
e ∼ N(Xβ + Zu, σ2

e I )

u|σ2
a ∼ N(0, σ2

aA)

(can also think of β as random with p(β) ∝ 1)



Hierarchical models and random effects
Animal breeding example

I Marginal model (after integrating out u)

Y |β, σ2
a , σ

2
e ∼ N(Xβ, σ2

aZAZ
′ + σ2

e I )

I Note: the separation of parameters into θ and φ is somewhat
ambiguous here:

I model specification suggests φ = {σ2
a}

and θ = {β, u, σe}
I marginal model suggests φ = {β, σ2

a , σ
2
e}

and θ = {u}



Hierarchical models and random effects
Animal breeding example

I Empirical Bayes (known as REML/BLUP)

We can estimate σ2
a , σ2

e by marginal
(restricted?) maximum likelihood (σ̂2

a , σ̂2
e ).

Then
p(u, β|y , σ̂2

a , σ̂
2
e ) ∝ p(y |β, u, σ̂2

e )p(u|σ̂2
a)

(a joint normal distn)

I Hierarchical Bayes

p(β, σ2
a , σ

2
e , µ|y) ∝ p(y |β, u, σ2

e )P(u|σ2
a)p(β, σ2

a , σ
2
e )



Computation with hierarchical models

I Two cases
I conjugate case (p(θ|φ) conjugate prior for p(y |θ))

I approach described below

I non-conjugate case
I requires more advanced computing
I problem-specific implementations

I Computational strategy for conjugate case
I write p(θ, φ|y) = p(φ|y)p(θ|φ, y)
I identify conditional posterior density of θ given φ, p(θ|φ, y)

(easy for conjugate models)
I obtain marginal posterior distribution of φ, p(φ|y)
I simulate from p(φ|y) and then p(θ|φ, y)



Computation with hierarchical models
The marginal posterior distribution p(φ|y)

I Approaches for obtaining p(φ|y)
I integration p(φ|y) =

∫
p(θ, φ|y)dθ

I algebra - for a convenient value of θ

p(φ|y) =
p(θ, φ|y)

p(θ|φ, y)

I Sampling from p(φ|y)
I easy if known distribution
I grid if φ is low-dimensional
I more sophisticated methods (later)



Normal-normal hierarchical model

I Data model
I yj |θj ∼ N(θj , σ

2
j ), j = 1, . . . , J (indep)

I σ2
j ’s are assumed known for now

(can release this assumption later)
I motivation: yj could be a summary statistic

with (approx) normal distn from the j-th study
(e.g., regression coefficient, sample mean)

I Prior distn
I need a prior distn p(θ1, . . . , θJ)
I if exchangeable, then model θ’s as iid given

parameters φ



Normal-normal hierarchical model: motivation

I Can think of this data model as a one-way ANOVA model
(especially if yj is a sample mean of nj obs in group j).
Typical ANOVA analysis begins by testing:

H0 : θ1 = . . . = θJ
Ha : not H0

I If we don’t reject H0, we might prefer to estimate each θj by
the pooled estimate,

ȳ.. =

∑J
j=1

1
σ2
j
yj∑J

j=1
1
σ2
j

I If we reject H0, we might use separate estimates, θ̂j = yj for
each j .

I Alternative: compromise between complete pooling and none
at all, e.g., a weighted combination,

θj = λjyj + (1− λ)ȳ.. where λj ∈ (0, 1)



Normal-normal hierarchical model

I Constructing a prior distribution
(a) The pooled estimate θ̂ = ȳ.. is the posterior mean if the J

values θj are restricted to be equal, with a uniform prior
density on the common θ; i.e. p(θ) ∝ 1.

(b) The unpooled estimate θ̂j = yj is the posterior mean if the J
values θj have independent uniform prior densities on
(−∞,∞); i.e. p(θ1, . . . , θJ) ∝ 1.

(c) The weighted combination is the posterior mean if the J values
θj are iid N(µ, τ 2).

Note: (a) corresponds to (c) with τ2 = 0
(b) corresponds to (c) with τ2 →∞



Normal-normal hierarchical model

I Data model p(yj |θj) ∼ N(θj , σ
2
j ), j = 1, . . . , J

σ2
j ’s assumed known

I Prior model for θj ’s is normal (conjugate)

p(θ1, . . . , θJ |µ, τ) =
J∏

j=1

N(θj |µ, τ2)

i.e. θj ’s conditionally independent given (µ, τ)
I Hyperprior distribution p(µ, τ)

I noninformative distribution for µ given τ , i.e., p(µ|τ) ∝ 1
(this won’t matter much because the combined data from all J
experiments are highly informative about µ)

I more on p(τ) later
I p(µ, τ) = p(τ)p(µ|τ) ∝ p(τ)



Normal-normal model: computation

I Joint posterior distribution:

p(θ, µ, τ |y)

∝ p(µ, τ)p(θ|µ, τ)p(y |θ)

∝ p(τ)
J∏

j=1

N(θj |µ, τ2)
J∏

j=1

N(yj |θj , σ2
j )

∝ p(τ)
1

τ J
exp

−1

2

∑
j

1

τ2
(θj − µ)2

 exp

−1

2

∑
j

1

σ2
j

(yj − θj)2


I Factors that depend only on y and {σj} are treated as

constants because they are known
I Posterior distn is a distn on J + 2 parameters
I Can compute using MCMC (later) or
I Hierarchical computation:

1. p(θ1, . . . , θJ |µ, τ, y)
2. p(µ|τ, y)
3. p(τ |y)



Normal-normal model: computation
Conditional posterior distn of θ given µ, τ, y

I Treat (µ, τ) as fixed in previous expression

I Given (µ, τ), the J separate parameters θj are
independent in their posterior distribution

I θj |y , µ, τ ∼ N(θ̂j ,Vj) with

θ̂j =

1
σ2
j
yj + 1

τ2 µ

1
σ2
j

+ 1
τ2

and Vj =
1

1
σ2
j

+ 1
τ2

I Result from simple normal-normal conjugate analysis

I θ̂j is weighted average of hyperprior mean and data



Normal-normal model: computation
Marginal posterior distribution of µ, τ given y

I We can analytically integrate the full posterior distn
p(θ, µ, τ |y) over θ

p(µ, τ |y) =

∫
p(θ, µ, τ |y) dθ

I An alternative is to use the marginal model
p(µ, τ |y) ∝ p(y |µ, τ)p(µ, τ)

I Marginal model

p(y |µ, τ) =
J∏

j=1

∫
N(θj |µ, τ)N(ȳ.j |θj , σ2

j )︸ ︷︷ ︸
quadratic in yj

dθj

⇒ yj |µ, τ ∼ Normal

E (yj |µ, τ) = E (E (yj |θj , µ, τ)) = E (θj) = µ
Var(yj |µ, τ) = E (Var(yj |µ, τ, θj)) + Var(E (yj |µ, τ, θj))

= E (σ2
j ) + Var(θj) = σ2

j + τ2



Normal-normal model: computation
Marginal posterior distribution of µ, τ given y

I End result is

p(µ, τ |y) ∝ p(τ)
J∏

j=1

N(yj |µ, σ2
j + τ2)

∝ p(τ)
J∏

j=1

(σ2
j + τ2)−1/2 exp

(
−

(yj − µ)2

2(σ2
j + τ2)

)

I Note: in non-normal models, it is not generally possible to
integrate over θ and rely on the marginal model, so that more
elaborate computational methods are needed



Normal-normal model: computation
Posterior distribution of µ given τ, y

I Instead of sampling (µ, τ) on a grid, factor the distribution:
p(µ, τ |y) = p(τ |y)p(µ|τ, y)

I p(µ|τ, y) is obtained by looking at p(µ, τ |y) and thinking of τ
as known:

⇒ p(µ|τ, y) ∝
J∏

j=1

N(yj |µ, σ2
j + τ2)

I This is the posterior distn corresponding to a normal sampling
distribution with a noninformative prior density on µ

I Result: µ|τ, y ∼ N(µ̂,Vµ) with

µ̂ =

∑J
j=1

1
σ2
j +τ2 yj∑J

j=1
1

σ2
j +τ2

and Vµ =
1∑J

j=1
1

σ2
j +τ2



Normal-normal model: computation
Posterior distribution of τ given y

I p(τ |y) can be found in two equivalent ways
I integrate p(µ, τ |y) over µ
I use algebraic form p(τ |y) = p(µ, τ |y)/p(µ|τ, y), which must

hold for any µ

I Choose the second option, and evaluate at µ = µ̂ (for
simplicity):

p(τ |y) ∝
∏J

j=1 N(yj |µ̂, σ2
j + τ2)

N(µ̂|µ̂,Vµ)

∝ V 1/2
µ

J∏
j=1

(σ2
j + τ2)−1/2 exp

(
−

(yj − µ̂)2

2(σ2
j + τ2)

)

I Note that Vµ and µ̂ are both functions of τ

I Compute p(τ |y) on a grid of values of τ



Normal-normal model: computation
Summary

I To simulate from joint posterior distribution p(θ, µ, τ |y):

1. draw τ from p(τ |y) (grid approximation)
2. draw µ from p(µ|τ, y) (normal distribution)
3. draw θ = (θ1, . . . , θJ) from p(θ|τ, y)

(independent normal distribution for each θj)

I Choice of p(τ)
I p(τ) ∝ 1 - proper posterior distribution
I p(log τ) ∝ 1 - improper posterior distribution

(equivalent to p(τ 2) ∝ 1/τ 2 but this common noninformative
prior for variances doesn’t work in this case

I discuss further on the next slide

I Then illustrate with SAT coaching example (add to slides or
do separately)



Normal-normal model: computation
Hyperprior distribution

I Non-informative or weakly informative prior distributions for τ
I p(τ) ∝ 1 - yields a proper posterior distribution (J > 2); can

be thought of as limit of U(0,A); sometimes useful to use
U(0,A) with A determined by context of problem

I p(log τ) ∝ 1 - yields an improper posterior distribution; why??
I this is a common noninformative prior for variances
I here 1/τ 2 assigns infinite mass near τ = 0 and the data can

never rule out τ = 0 because the θj ’s are not observable
I can contrast with σ2 in usual normal model where data

(assuming all y ’s are not equal) rules out σ2 = 0

I p(τ) = inverse-gamma(ε, ε) - proper prior distribution; but
does not yield a proper posterior in the limit as ε→ 0 so
choice of ε matters

I p(τ) ∝ (1 + τ 2/A2ν)−(ν+1)/2 - known as half-t; distn of
absolute value of a mean zero t distribution with scale
parameter A and degrees of freedom ν (see Gelman 2006)



Beta-binomial example

I Series of toxicology studies

I Study j : nj exchangeable individuals
yj develop tumors

I Model specification:
I yj |θj ∼ Bin(nj , θj), j = 1, . . . , J (indep)
I θj , j = 1, . . . , J | α, β ∼ Beta(α, β) (iid)
I p(α, β) – to be specified later, hopefully ”non” or ”weakly”

informative

I Marginal model:
I can integrate out θj , j = 1, . . . , J in this case

p(y|α, β) =

∫
·
∫ J∏

j=1

Γ(α + β)

Γ(α)Γ(β)
θ
α−1
j (1− θj )

β−1
(
nj

yj

)
θ
yj
j (1− θj )

nj−yj dθ1 · dθJ

=
J∏

j=1

(
nj

yj

)
Γ(α + β)

Γ(α)Γ(β)

Γ(α + yj )Γ(β + nj − yj )

Γ(α + β + nj )

I yj , j = 1, . . . , J are ind
I distn of yj is known as beta-binomial distn



Beta-binomial example

I Conditional distn of θ’s given α, β, y
I p(θ|α, β, y) =

∏
j Beta(α + yj , β + nj − yj)

I independent conjugate analyses
I find this by algebra or by inspection of p(θ, α, β|y)
I analysis is thus reduced to finding (and

simulating from) p(α, β|y)

I Marginal posterior distn of α, β

p(α, β|y) ∝ p(α, β)
J∏

j=1

Γ(α + β)

Γ(α)Γ(β)

Γ(α + yj)Γ(β + nj − yj)

Γ(α + β + nj)

I could derive from marginal distn on previous slide
I could also derive from joint posterior distn
I not a known distn (on α, β) but easy to evaluate



Beta-binomial example

I Hyperprior distn p(α, β)
I First try: p(α, β) ∝ 1 (flat, noninformative?)
I equivalent to p(α/(α + β), α + β) ∝ (α + β)

(relevant because α/(α + β) is the mean and 1/(α + β) is
roughly proportional to variance)

I equivalent to p(log(α/β), log(α + β)) ∝ αβ
I check to see if posterior is proper

I consider diff’t cases (e.g., α→ 0, β fixed)
I if α, β → ∞ with α/(α + β) = c,

then p(α, β|y) ∝ constant (not integrable)
I this is an improper distn
I contour plot would also show this

(lots of probability extending out towards infinity)



Beta-binomial example

I Hyperprior distn p(α, β)
I Second try: p(α/(α + β), α + β) ∝ 1

(flat on prior mean and precision)
I more intuitive, these two params are plausibly independent
I equivalent to p(α, β) ∝ 1/(α + β)
I still leads to improper posterior distn

I Third try: p(log(α/β), log(α + β)) ∝ 1
(flat on natural transformation of prior mean and variance)

I equivalent to p(α, β) ∝ 1/(αβ)
I still leads to improper posterior distn

I Fourth try: p(α/(α + β), (α + β)−1/2) ∝ 1
(flat on prior mean and prior s.d.)

I equivalent to p(α, β) ∝ (α + β)−5/2

I ”final answer” - proper posterior distn
I equivalent to p(log(α/β), log(α + β)) ∝ αβ(α + β)−5/2 (this

will come up later)



Beta-binomial example

I Computing
I later consider more sophisticated approaches
I for now, use grid approach

I simulate α, β from grid approx to posterior distn
I then simulate θ’s using conjugate beta

posterior distn

I convenient to use (log(α/β), log(α + β)) scale because
contours ”look better” and we can get away with smaller grid

I Illustrate with rat tumor data (add slides or do separately?)


