Statistics 225 Bayesian Statistical Analysis (Part 2)

Hal Stern

Department of Statistics University of California, Irvine sternh@uci.edu

March 28, 2019

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Hierarchical models – motivation James-Stein inference

► Suppose $X \sim N(\theta, 1)$

 \triangleright X is admissible (not dominated) for estimating θ with squared error loss

$$
\blacktriangleright \text{ Now } X_i \sim N(\theta_i, 1), i = 1, \ldots, r
$$

 $X = (X_1, \ldots, X_r)$ is admissible if $r = 1, 2$ but not $r \geq 3$

• for
$$
r \geq 3
$$

$$
\delta_i = \big(1 - \frac{r-2}{\sum_i X_i^2}\big)X_i
$$

KORKA SERKER ORA

yields better estimates

 \blacktriangleright known as James-Stein estimation

Hierarchical models – motivation James-Stein inference (cont'd)

- ► The Bayes view: $X_i \sim N(\theta_i,1)$ and $\theta_i \sim N(0,a)$
	- ► posterior distn: $\theta_i | X_i \sim N$
	- ► posterior mean is $(1-\frac{1}{a+1})X_a$
	- \triangleright need to estimate a; one natural approach yields James-Stein
- \blacktriangleright Summary
	- \triangleright estimation results depend on loss function
	- \triangleright squared-error loss do well on avg but maybe poor for one component

KORK ERKER ADE YOUR

 \triangleright powerful lesson about combining related problems to get improved inferences

Hierarchical Models

Suppose we have data

$$
Y_{ij} \quad j = 1, \ldots, J
$$

$$
i = 1, \ldots, n_j
$$

such that Y_{ij} $i = 1, \ldots, n_i$ are independent given θ_i with distribution $p(Y|\theta_j)$. e.g. *scores* for *students* in *classrooms* It ${Y}$ (i) (j) might be reasonable to expect θ_j 's to be "similar" (but not necessarily identical).

Therefore, we may perhaps try to estimate population distribution of θ_j 's. This is achieved in a natural way if we use a prior distribution in which the θ_j 's are viewed as a sample from a common population distribution.

Hierarchical Models

- **Key:** The observed data, y_{ii} , with units indexed by *i* within groups indexed by i , can be used to estimate aspects of the population distribution of the θ_j 's even though the values of θ_i are not themselves observed.
- \triangleright How? It is natural to model such a problem hierarchically
	- \triangleright observable outcomes modeled conditionally on parameters θ

KORK ERKER ADE YOUR

 \triangleright θ given a probabilistic specification in terms of other parameters, ϕ , known as *hyperparameters*.

Hierarchical Models

- \triangleright Nonhierarchical models are usually inappropiate for hierarchical data. Why?
	- ► a single θ (i.e., $\theta_i \equiv \theta \ \forall j$) may be inadequate to fit a combined data set.
	- **E** separate unrelated θ_i are likely to "overfit" data.
	- information about one θ_i can be obtained from others' data.

KORK ERKER ADE YOUR

 \blacktriangleright Hierarchical model uses many parameters but population distribution induces enough structure to avoid overfitting.

Setting up hierarchical models Exchangeability

Recall: A set of random variables $(\theta_1, \ldots, \theta_k)$ is exchangeable if the joint distribution is invariant to permutations of the indexes $(1, \ldots, k)$. The indexes contain no information about the values of the random variables.

- hierarchical models often use exchangeable models for the prior distribution of model parameters
- iid random variables are one example
- seemingly non-exchangeable r.v.'s may become exchangeable if we condition on all available information (e.g., regression analysis)

KORKAR KERKER E VOOR

Setting up hierarchical models Exchangeable models

- \triangleright Basic form of exchangeable model
	- $\theta = (\theta_1, \ldots, \theta_k)$ are independent conditional on additional parameters ϕ (known as hyperparameters)

$$
\rho(\theta|\phi) = \prod_{j=1}^k \rho(\theta_j|\phi)
$$

- $\rightarrow \phi$ referred to as hyperparameter(s) with hyperprior distn $p(\phi)$
- implies $p(\theta) = \int p(\theta|\phi)p(\phi)d\phi$
- ightharpoonup work with joint posterior distribution, $p(\theta, \phi | y)$
- \triangleright One objection to exchangeable model is that we may have other information, say (X_i) . In that case may take

$$
p(\theta_1,\ldots,\theta_J|X_1,\ldots,X_J)=\prod_{i=1}^J p(\theta_i|\phi,X_i)
$$

Setting up hierarchical models

- \triangleright Model is usually specified in nested stages
	- **E** sampling distribution of data $p(y|\theta)$ (first level of hierarchy)
	- **P** prior (or population) distribution for θ is $p(\theta|\phi)$ (second level of hierarchy)
	- **P** prior distribution for ϕ (hyperprior) is $p(\phi)$
	- \triangleright Note: more levels are possible
	- \blacktriangleright hyperprior at highest level is often diffuse but improper priors must be checked carefully to avoid improper posterior distributions.

Setting up hierarchical models

- \blacktriangleright Inference
	- \blacktriangleright Joint distn:

$$
p(y, \theta, \phi) = p(y|\theta, \phi)p(\theta|\phi)p(\phi) = p(y|\theta)p(\theta|\phi)p(\phi)
$$

 \blacktriangleright Posterior distribution

$$
p(\theta, \phi | y) \propto p(\phi) p(\theta | \phi) p(y | \theta) = p(\theta | y, \phi) p(\phi | y)
$$

- **•** often $p(\theta|\phi)$ is conjugate for $p(y|\theta)$
- if we know (or fix) ϕ : $p(\theta|y, \phi)$ follows from conjugacy

KORK ERKER ADE YOUR

In then need inference for ϕ : $p(\phi|y)$

Computational approaches for hierarchical models

 \blacktriangleright Marginal model

$$
p(y|\phi) = \int p(y|\theta)p(\theta|\phi)d\theta
$$

do inference only for ϕ (e.g. marginal maximum likelihood)

 \triangleright this is the approach that is often used in traditional random effects models

no inference for θ

Computational approaches for hierarchical models

 \blacktriangleright Empirical Bayes

$$
p(\theta|y,\hat{\phi}) \propto p(y|\theta)p(\theta|\hat{\phi})
$$

KORK STRATER STRAKES

- **Externate** ϕ **(often using marginal maximum likelihood)**
- inference for θ conditional on the estimated ϕ
- **In underestimates the uncertainty about** θ

Computational approaches for hierarchical models

 \blacktriangleright Hierarchical Bayes (a.k.a. full Bayes)

 $p(\theta, \phi | y) \propto p(y | \theta) p(\theta | \phi) p(\phi)$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

inference for θ and ϕ

- **Figure 1** full posterior distribution of θ and ϕ is obtained
- \blacktriangleright this is the approach we rely on

Hierarchical models and random effects Animal breeding example

Consider the following mixed linear model commonly used in animal breeding studies

 $Y = X\beta + Zu + e$

 $X =$ design matrix for fixed effects $Z =$ design matrix for random effects β = fixed effects parameters $u =$ random effects parameters $e =$ individual variation $\sim N(0, \sigma_e^2 I)$ $Y|\beta, u, \sigma_{e}^{2} \sim N(X\beta + Zu, \sigma_{e}^{2})$ $u|\sigma_a^2 \sim N(0, \sigma_a^2 A)$

(can also think of β as random with $p(\beta) \propto 1$) **K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O** Hierarchical models and random effects Animal breeding example

 \triangleright Marginal model (after integrating out u)

$$
Y|\beta, \sigma_a^2, \sigma_e^2 \sim N(X\beta, \sigma_a^2 ZAZ' + \sigma_e^2 I)
$$

KORKAR KERKER EL VOLO

- \blacktriangleright Note: the separation of parameters into θ and ϕ is somewhat ambiguous here:
	- **•** model specification suggests $\phi = {\sigma_a^2}$ and $\theta = \{\beta, u, \sigma^e\}$
	- **F** marginal model suggests $\phi = \{\beta, \sigma_a^2, \sigma_e^2\}$ and $\theta = \{u\}$

Hierarchical models and random effects Animal breeding example

Empirical Bayes (known as REML/BLUP) We can estimate σ_a^2 , σ_e^2 by marginal (restricted?) maximum likelihood $(\hat{\sigma}_a^2, \hat{\sigma}_e^2)$. Then

$$
p(u, \beta | y, \hat{\sigma}_a^2, \hat{\sigma}_e^2) \propto p(y | \beta, u, \hat{\sigma}_e^2) p(u | \hat{\sigma}_a^2)
$$

(a joint normal distn)

 \blacktriangleright Hierarchical Bayes

$$
p(\beta, \sigma_a^2, \sigma_e^2, \mu|y) \propto p(y|\beta, u, \sigma_e^2) P(u|\sigma_a^2) p(\beta, \sigma_a^2, \sigma_e^2)
$$

Computation with hierarchical models

- \blacktriangleright Two cases
	- **Example 21** conjugate case $(p(\theta|\phi)$ conjugate prior for $p(y|\theta)$)
		- \blacktriangleright approach described below
	- \blacktriangleright non-conjugate case
		- \blacktriangleright requires more advanced computing
		- \blacktriangleright problem-specific implementations
- \triangleright Computational strategy for conjugate case
	- vite $p(\theta, \phi | y) = p(\phi | y) p(\theta | \phi, y)$
	- identify conditional posterior density of θ given ϕ , $p(\theta|\phi, y)$ (easy for conjugate models)

- **•** obtain marginal posterior distribution of ϕ , $p(\phi|y)$
- **F** simulate from $p(\phi|y)$ and then $p(\theta|\phi, y)$

Computation with hierarchical models

The marginal posterior distribution $p(\phi|y)$

- Approaches for obtaining $p(\phi|y)$
	- \blacktriangleright integration $p(\phi | y) = \int p(\theta, \phi | y) d\theta$
	- **•** algebra for a convenient value of θ

$$
p(\phi|y) = \frac{p(\theta, \phi|y)}{p(\theta|\phi, y)}
$$

- Sampling from $p(\phi|y)$
	- \blacktriangleright easy if known distribution
	- **Figure 1** grid if ϕ is low-dimensional
	- \triangleright more sophisticated methods (later)

Normal-normal hierarchical model

 \blacktriangleright Data model

- ► $y_j|\theta_j \sim \mathcal{N}(\theta_j, \sigma_j^2), j = 1, \ldots, J \text{ (indep)}$
- \blacktriangleright σ_j^2 's are assumed known for now (can release this assumption later)
- \triangleright motivation: y_i could be a summary statistic with (approx) normal distn from the i -th study (e.g., regression coefficient, sample mean)

 \blacktriangleright Prior distn

- **need a prior distn** $p(\theta_1, \ldots, \theta_J)$
- if exchangeable, then model θ 's as iid given parameters ϕ

Normal-normal hierarchical model: motivation

 \triangleright Can think of this data model as a one-way ANOVA model (especially if y_j is a sample mean of n_j obs in group j). Typical ANOVA analysis begins by testing:

$$
H_0: \theta_1 = \ldots = \theta_J
$$

$$
H_a: \text{ not } H_0
$$

If we don't reject H_0 , we might prefer to estimate each θ_i by the pooled estimate,

$$
\bar{y}_{..} = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_j^2} y_j}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2}}
$$

- \blacktriangleright If we reject H_0 , we might use separate estimates, $\hat{\theta}_j = y_j$ for each j.
- \triangleright Alternative: compromise between complete pooling and none at all, e.g., a weighted combination,

$$
\theta_j = \lambda_j y_j + (1 - \lambda) \bar{y}
$$
 where $\lambda_j \in (0, 1)$

Normal-normal hierarchical model

\triangleright Constructing a prior distribution

- (a) The pooled estimate $\hat{\theta} = \bar{y}$ is the posterior mean if the J values θ_i are restricted to be equal, with a uniform prior density on the common θ ; i.e. $p(\theta) \propto 1$.
- (b) The unpooled estimate $\hat{\theta}_j = y_j$ is the posterior mean if the J values θ_i have independent uniform prior densities on $(-\infty, \infty)$; i.e. $p(\theta_1, \ldots, \theta_l) \propto 1$.
- (c) The weighted combination is the posterior mean if the J values θ_j are iid $N(\mu, \tau^2)$.

KORK ERKER ADE YOUR

Note: (a) corresponds to (c) with $\tau^2=0$

(b) corresponds to (c) with $\tau^2\to\infty$

Normal-normal hierarchical model

► Data model
$$
p(y_j|\theta_j) \sim N(\theta_j, \sigma_j^2), j = 1, ..., J
$$

 σ_j^2 's assumed known

 \blacktriangleright Prior model for θ_j 's is normal (conjugate)

$$
p(\theta_1,\ldots,\theta_J|\mu,\tau)=\prod_{j=1}^J N(\theta_j|\mu,\tau^2)
$$

i.e. θ_j 's conditionally independent given (μ,τ)

I Hyperprior distribution $p(\mu, \tau)$

► noninformative distribution for μ given τ , i.e., $p(\mu|\tau) \propto 1$ (this won't matter much because the combined data from all J experiments are highly informative about μ)

KORK ERKER ADE YOUR

If more on $p(\tau)$ later

$$
\blacktriangleright \ \ p(\mu,\tau) = p(\tau)p(\mu|\tau) \propto p(\tau)
$$

Normal-normal model: computation

 \blacktriangleright Joint posterior distribution:

$$
p(\theta, \mu, \tau | y) \propto p(\mu, \tau) p(\theta | \mu, \tau) p(y | \theta)
$$

$$
\propto p(\tau) \prod_{j=1}^{J} N(\theta_j | \mu, \tau^2) \prod_{j=1}^{J} N(y_j | \theta_j, \sigma_j^2)
$$

$$
\propto p(\tau) \frac{1}{\tau^J} \exp \left[-\frac{1}{2} \sum_j \frac{1}{\tau^2} (\theta_j - \mu)^2 \right] \exp \left[-\frac{1}{2} \sum_j \frac{1}{\sigma_j^2} (y_j - \theta_j)^2 \right]
$$

- Factors that depend only on y and $\{\sigma_i\}$ are treated as constants because they are known
- \triangleright Posterior distn is a distn on $J + 2$ parameters
- \triangleright Can compute using MCMC (later) or
- \blacktriangleright Hierarchical computation:

$$
1. \ \rho(\theta_1,\ldots,\theta_J|\mu,\tau,y)
$$

$$
2. \ \rho(\mu|\tau, y)
$$

3. $p(\tau | y)$

Normal-normal model: computation Conditional posterior distn of θ given μ, τ, ν

- **Figure 1** Treat (μ, τ) as fixed in previous expression
- Given (μ, τ) , the J separate parameters θ_i are independent in their posterior distribution
- \blacktriangleright $\theta_j|$ y $, \mu, \tau$ \sim $\mathcal{N}(\hat{\theta}_j, \mathcal{V}_j)$ with

$$
\hat{\theta}_j = \frac{\frac{1}{\sigma_j^2} y_j + \frac{1}{\tau^2} \mu}{\frac{1}{\sigma_j^2} + \frac{1}{\tau^2}} \text{ and } V_j = \frac{1}{\frac{1}{\sigma_j^2} + \frac{1}{\tau^2}}
$$

 \triangleright Result from simple normal-normal conjugate analysis \blacktriangleright $\hat{\theta}_j$ is weighted average of hyperprior mean and data

Normal-normal model: computation Marginal posterior distribution of μ , τ given y

 \triangleright We can analytically integrate the full posterior distn $p(\theta, \mu, \tau | y)$ over θ

$$
p(\mu, \tau | y) = \int p(\theta, \mu, \tau | y) d\theta
$$

- \triangleright An alternative is to use the marginal model $p(\mu, \tau | y) \propto p(y | \mu, \tau) p(\mu, \tau)$
- \blacktriangleright Marginal model

$$
p(y|\mu,\tau) = \prod_{j=1}^{J} \int \underbrace{N(\theta_j|\mu,\tau)N(\bar{y}_j|\theta_j,\sigma_j^2)}_{\text{quadratic in } y_j} d\theta_j
$$

\n
$$
\Rightarrow y_j|\mu,\tau \sim \text{Normal}
$$

\n
$$
E(y_j|\mu,\tau) = E(E(y_j|\theta_j,\mu,\tau)) = E(\theta_j) = \mu
$$

\n
$$
Var(y_j|\mu,\tau) = E(Var(y_j|\mu,\tau,\theta_j)) + Var(E(y_j|\mu,\tau,\theta_j))
$$

\n
$$
= E(\sigma_j^2) + Var(\theta_j) = \sigma_j^2 + \tau^2
$$

Normal-normal model: computation Marginal posterior distribution of μ, τ given y

 \blacktriangleright End result is

$$
p(\mu, \tau | y) \propto p(\tau) \prod_{j=1}^{J} N(y_j | \mu, \sigma_j^2 + \tau^2)
$$

$$
\propto p(\tau) \prod_{j=1}^{J} (\sigma_j^2 + \tau^2)^{-1/2} \exp \left(-\frac{(y_j - \mu)^2}{2(\sigma_j^2 + \tau^2)}\right)
$$

 \triangleright Note: in non-normal models, it is not generally possible to integrate over θ and rely on the marginal model, so that more elaborate computational methods are needed

Normal-normal model: computation Posterior distribution of μ given τ , γ

- Instead of sampling (μ, τ) on a grid, factor the distribution: $p(\mu, \tau | \mathbf{y}) = p(\tau | \mathbf{y}) p(\mu | \tau, \mathbf{y})$
- \blacktriangleright p($\mu|\tau, y$) is obtained by looking at $p(\mu, \tau|y)$ and thinking of τ as known:

$$
\Rightarrow \quad p(\mu|\tau, y) \propto \prod_{j=1}^{J} N(y_j|\mu, \sigma_j^2 + \tau^2)
$$

- \triangleright This is the posterior distn corresponding to a normal sampling distribution with a noninformative prior density on μ
- ► Result: $\mu | \tau, y \sim N(\hat{\mu}, V_{\mu})$ with

$$
\hat{\mu} = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2} y_j}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}} \text{ and } V_{\mu} = \frac{1}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}}
$$

Normal-normal model: computation

Posterior distribution of τ given y

- \blacktriangleright $p(\tau | y)$ can be found in two equivalent ways
	- integrate $p(\mu, \tau | y)$ over μ
	- **If** use algebraic form $p(\tau | y) = p(\mu, \tau | y)/p(\mu | \tau, y)$, which must hold for any μ
- \triangleright Choose the second option, and evaluate at $\mu = \hat{\mu}$ (for simplicity):

$$
p(\tau|y) \propto \frac{\prod_{j=1}^{J} N(y_j|\hat{\mu}, \sigma_j^2 + \tau^2)}{N(\hat{\mu}|\hat{\mu}, V_{\mu})}
$$

$$
\propto V_{\mu}^{1/2} \prod_{j=1}^{J} (\sigma_j^2 + \tau^2)^{-1/2} \exp \left(-\frac{(y_j - \hat{\mu})^2}{2(\sigma_j^2 + \tau^2)}\right)
$$

- \blacktriangleright Note that V_μ and $\hat{\mu}$ are both functions of τ
- **If Compute** $p(\tau | y)$ **on a grid of values of** τ

Normal-normal model: computation Summary

- \blacktriangleright To simulate from joint posterior distribution $p(\theta, \mu, \tau | y)$:
	- 1. draw τ from $p(\tau | y)$ (grid approximation)
	- 2. draw μ from $p(\mu|\tau, y)$ (normal distribution)
	- 3. draw $\theta = (\theta_1, \ldots, \theta_J)$ from $p(\theta | \tau, y)$ (independent normal distribution for each θ_i)
- **Choice of** $p(\tau)$
	- ► $p(\tau) \propto 1$ proper posterior distribution
	- ► $p(\log \tau) \propto 1$ improper posterior distribution (equivalent to $p(\tau^2) \propto 1/\tau^2$ but this common noninformative prior for variances doesn't work in this case

KORKA SERKER ORA

- \blacktriangleright discuss further on the next slide
- \triangleright Then illustrate with SAT coaching example (add to slides or do separately)

Normal-normal model: computation

Hyperprior distribution

- **IDED** Non-informative or weakly informative prior distributions for τ
	- ► $p(\tau) \propto 1$ yields a proper posterior distribution $(J > 2)$; can be thought of as limit of $U(0, A)$; sometimes useful to use $U(0, A)$ with A determined by context of problem
	- ► $p(\log \tau) \propto 1$ yields an improper posterior distribution; why??
		- \blacktriangleright this is a common noninformative prior for variances
		- \blacktriangleright here $1/\tau^2$ assigns infinite mass near $\tau=0$ and the data can never rule out $\tau = 0$ because the θ_i 's are not observable
		- ighth can contrast with σ^2 in usual normal model where data (assuming all y 's are not equal) rules out $\sigma^2=0$
	- \blacktriangleright $p(\tau) =$ inverse-gamma (ϵ, ϵ) proper prior distribution; but does not yield a proper posterior in the limit as $\epsilon \to 0$ so choice of ϵ matters
	- $\blacktriangleright~~ p(\tau) \propto (1+\tau^2/A^2\nu)^{-(\nu+1)/2}$ known as half-t; distn of absolute value of a mean zero t distribution with scale parameter A and degrees of freedom ν (see Gelman 2006)

- \triangleright Series of toxicology studies
- Study *j*: n_i exchangeable individuals

 y_i develop tumors

- \blacktriangleright Model specification:
	- ► $y_j|\theta_j \sim \mathsf{Bin}(n_j, \theta_j), j = 1, \ldots, J \; \text{(indep)}$
	- $\blacktriangleright \theta_j, j=1,\ldots,J \mid \alpha, \beta \sim \mathsf{Beta}(\alpha,\beta) \; \mathsf{(iid)}$
	- \blacktriangleright $p(\alpha, \beta)$ to be specified later, hopefully "non" or "weakly" informative
- \blacktriangleright Marginal model:
	- \blacktriangleright can integrate out $\theta_j, j=1,\ldots,J$ in this case

$$
\begin{array}{lcl} \rho(y|\alpha,\beta) & = & \displaystyle \int \cdot \int \prod_{j=1}^J \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha-1}(1-\theta_j)^{\beta-1} \binom{n_j}{y_j} \theta_j^{y_j}(1-\theta_j)^{n_j-y_j} d\theta_1 \cdot d\theta_j \\ \\ & = & \displaystyle \prod_{j=1}^J \binom{n_j}{y_j} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)}{\Gamma(\alpha+\beta+n_j)} \end{array}
$$

- $\blacktriangleright\hspace{0.1cm} y_j, j = 1, \ldots, J$ are ind
- \blacktriangleright \blacktriangleright \blacktriangleright [dis](#page-29-0)tn of y_j is known as beta-binomial distn

I Conditional distn of θ 's given α , β , y

$$
\blacktriangleright \ \ \rho(\theta|\alpha,\beta,y) = \prod_j \text{Beta}(\alpha + y_j, \beta + n_j - y_j)
$$

- \blacktriangleright independent conjugate analyses
- **Find this by algebra or by inspection of** $p(\theta, \alpha, \beta | y)$
- \triangleright analysis is thus reduced to finding (and simulating from) $p(\alpha, \beta | y)$

 \blacktriangleright Marginal posterior distn of α, β

$$
p(\alpha, \beta | y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha + y_j)\Gamma(\beta + n_j - y_j)}{\Gamma(\alpha + \beta + n_j)}
$$

KORKAR KERKER EL VOLO

- \triangleright could derive from marginal distn on previous slide
- \triangleright could also derive from joint posterior distn
- not a known distn (on α , β) but easy to evaluate

- \blacktriangleright Hyperprior distn $p(\alpha, \beta)$
	- First try: $p(\alpha, \beta) \propto 1$ (flat, noninformative?)
	- \triangleright equivalent to $p(\alpha/(\alpha+\beta), \alpha+\beta) \propto (\alpha+\beta)$ (relevant because $\alpha/(\alpha + \beta)$ is the mean and $1/(\alpha + \beta)$ is roughly proportional to variance)
	- **Example 1** equivalent to $p(\log(\alpha/\beta), \log(\alpha+\beta)) \propto \alpha\beta$
	- \triangleright check to see if posterior is proper
		- \triangleright consider diff't cases (e.g., $\alpha \rightarrow 0$, β fixed)
		- If $\alpha, \beta \to \infty$ with $\alpha/(\alpha + \beta) = c$, then $p(\alpha, \beta | y) \propto$ constant (not integrable)
		- \blacktriangleright this is an improper distn
		- \triangleright contour plot would also show this (lots of probability extending out towards infinity)

ACTIVITY AND A START AND A START AND A START AND A

► Hyperprior distn $p(\alpha, \beta)$

- \triangleright Second try: $p(\alpha/(\alpha+\beta), \alpha+\beta) \propto 1$ (flat on prior mean and precision)
	- \triangleright more intuitive, these two params are plausibly independent
	- \triangleright equivalent to $p(\alpha, \beta) \propto 1/(\alpha + \beta)$
	- \triangleright still leads to improper posterior distn
- \triangleright Third try: $p(\log(\alpha/\beta), \log(\alpha+\beta)) \propto 1$ (flat on natural transformation of prior mean and variance)
	- ► equivalent to $p(\alpha, \beta) \propto 1/(\alpha\beta)$
	- \triangleright still leads to improper posterior distn
- ► Fourth try: $p(\alpha/(\alpha+\beta),(\alpha+\beta)^{-1/2})\propto 1$ (flat on prior mean and prior s.d.)
	- ► equivalent to $p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$
	- \triangleright "final answer" proper posterior distn
	- ► equivalent to $p(\log(\alpha/\beta), \log(\alpha+\beta)) \propto \alpha\beta(\alpha+\beta)^{-5/2}$ (this will come up later)

ACTIVITY AND A START AND A START AND A START AND A

- \blacktriangleright Computing
	- \blacktriangleright later consider more sophisticated approaches
	- \blacktriangleright for now, use grid approach
		- \triangleright simulate α, β from grid approx to posterior distn
		- In then simulate θ 's using conjugate beta posterior distn
	- **•** convenient to use $(\log(\alpha/\beta), \log(\alpha + \beta))$ scale because contours "look better" and we can get away with smaller grid

KORKA SERKER ORA

Illustrate with rat tumor data (add slides or do separately?)