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Course Overview

Prerequisites
» Probability (distributions, transformations)
» Statistical Inference (standard procedures)
> Ideally two semesters at graduate level

Broad Outline

» Univariate/multivariate models

» Hierarchical models and model checking

» Computation

» Other models (gIm's, missing data, etc.)
Computing

» R - covered in class

» STAN - introduction provided



Bayesian Statistics - History

Bayes & Laplace (late 1700s) - inverse probability
> probability - statements about observables given assumptions
about unknown parameters
> inverse probability - statements about unknown parameters
given observed data values
Ex: given y successes in n iid trials with probability of success
0, find Pr(a < 6 < bly)

Little progress after Bayes/Laplace except for isolated
individuals (e.g., Jeffreys)

Interest resumes in mid 1900s (the term Bayesian statistics is
born)

Computational advances in late 20th/early 21st centuries have
led to increase in interest
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Bayes vs Frequentist

Bayes
» parameters as random variables
» subjective probability (for some people)

Frequentist
» parameters as fixed but unknown quantities
> probability as long-run frequency

Some controversy in the past (and present)

Goal here is to introduce Bayesian methods and some
advantages



Some Things Not Discussed (Much)

> The following terms are sometimes associated with Bayesian
statistics. They will be discussed briefly but will not receive
much attention here:

vV vy VY VvYy

decision theory

nonparametric Bayesian methods
subjective probability

objective Bayesian methods
maximum entropy



Motivating Example: Cancer Maps

» Kidney cancer mortality rates (Manton et al. - JASA, 1989)
» Age-standardized death rates for by county




Motivating Example: Cancer Maps

» Kidney cancer mortality rates (Manton et al. - JASA, 1989)
» Empirical Bayes (smoothed) estimated death rates




Motivating Example: Cancer Maps

» Kidney cancer mortality rates (Manton et al. - JASA, 1989)
» Observed (left) and Smoothed (right)




Motivating Example: SAT coaching

» SAT coaching study (Rubin - J. Educ. Stat., 1981)
» Randomized experiments in 8 schools
» Outcome is SAT-Verbal score
» Effect of treatment (coaching) is estimated separately in each
school using analysis of covariance

Estimated Standard error

treatment of effect Treatment
School effect estimate effect
A 28 15 ?
B 8 10 ?
C -3 16 ?
D 7 11 ?
E -1 9 ?
F 1 11 ?
G 18 10 ?
H 12 18 ?



Bayesian Inference: Two key ideas

» Explicit use of probability for quantifying uncertainty
» probability models for data given parameters
» probability distributions for parameters

> Inference for unknowns conditional on observed data

> inverse probability
» Bayes' theorem (hence the modern name)
» formal decision-making



Introduction to Bayesian Methods
Probability review

» Probability (mathematical definition):
A set function that is
> nonnegative
» additive over disjoint sets
> sums to one over entire sample space

» For Bayesian methods probability is a fundamental measure of
uncertainty
» Pr(l<y<3/0=0)orPr(l<y<3)is
interesting before data has been collected
» Pr(1 < 6 < 3ly) is interesting after data has been collected
» Where do probabilities come from?
» frequency argument (e.g., 10,000 coin tosses)
» physical argument (e.g., symmetry in coin toss)
» subjective (e.g., if | would be willing to bet on A given 1:1
odds, then | must believe the probability of A is greater than
.5)



Introduction to Bayesian Methods
Probability review

» Some terms/definitions you should know
» joint distribution p(u, v)
» marginal distribution p(u) = [ p(u, v)dv
» conditional distribution p(u|v) = p(u, v)/p(v)
> moments:
E(u)= [u p(u)du= [ [up(u,v) dv du

Var(u) = [(u — E(u))*p(u)du

E(ulv) = [u p(u|v)du (a fn of v)



Introduction to Bayesian Methods
Probability review (cont'd)

» Some terms/definitions you should know
» conditional distributions play a large role in Bayesian inference
so the following rules are useful
> E(u) = E(E(ulv))
» Var(u) = E(Var(u|v)) + Var(E(ulv))
» transformations (one-to-one)

> denote distribution of u by p.(u)

> take v = f(u)

» distribution of v is
pv(v) = pu(f~1(v)) in discrete case
pv(v) = pu(f71(v))|J] in continuous case

. . 1
where Jacobian J is | 24| = ‘78 av,(v)
J
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Introduction to Bayesian Methods
Probability review - intro to simulation

» Simulation plays a big role in modern Bayesian inference and
one particular transformation is important in this context

» Probability integral transform

» suppose X is a continuous r.v. with cdf Fx(x)
» then Y = Fx(X) has uniform distn on 0 to 1

» Application in simulations

v

vy

if U is uniform on (0,1) and F(-) is cdf of a continuous r.v.

then

Z=F7Y(U)is ar.v. with cdf F

example:

>
>
>

This

let F(x) =1— e */* = exponential cdf

then F7'(u) = —Xlog(1 — u)

if we have a source of uniform random numbers then we can
transform to construct samples from an exponential distn

is a general strategy for generating random samples
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Introduction to Bayesian Methods
Notation/Terminology

0 = unobservable quantities (parameters)
y = observed data (outcomes, responses, random variable)
x = explanatory variables (covariates, often treated as fixed)

Don't usually distinguish between upper and lower case roman
letters since everything is a random variable

¥ = unknown but potentially observable quantities
(predictions, response to a different treatment)

NOTE: don't usually distinguish between
univariate, multivariate quantities



Introduction to Bayesian Methods
Notation/Terminology

p(-) or p(:]-) denote distributions (generic)

It would take too many letters if each distribution

received its own letter

We write Y|u, 0? ~ N(p, 0?) to denote that Y has a normal
density

We write p(y|u, 02) = N(y|u, 0?) to refer to the normal
density with argument y

Same for other distributions: Beta(a, b), Unif(a, b),
Exp(0), Pois(\), etc.



Introduction to Bayesian Methods
The Bayesian approach

» Focus here is on three step process
» specify a full probability model
> posterior inference via Bayes' rule
» model checking/sensitivity analysis
» Usually an iterative process - specify model, fit and check,
then respecify model



Introduction to Bayesian Methods
Specifying a full probability model

» Data distribution p(y|6) = p(data | parameters)
» also known as sampling distribution
» p(y|0) when viewed as a function of § is also known as the
likelihood function L(8]|y)
» Prior distribution p(0)
» may contain subjective prior information
» often chosen vague/uninformative
» mathematical convenience

> Marginal model

» above can be combined to determine implied marginal model
for y ... p(y) = | p(y|0)p(0)d0

» useful for model checking

» Bayesian way of thinking leads to new distns that can be
useful even for frequentists (e.g., Beta-Binomial)



Introduction to Bayesian Methods
Posterior inference/Model checking

» Posterior inference
» Bayes' thm to derive posterior distribution

_ py10)p(0) _— p(yl®)p(9)
ploly) = ply) [ p(y|0)p(6)do

» probability statements about unknowns

» formal decision-making is based on posterior distn

» sometimes write p(f|y) o p(0)p(y|0) because the denominator
is a constant in terms of 6

» Model checking/sensitivity analysis

» does the model fit
» are conclusions sensitive to choice of

prior distn/likelihood




Introduction to Bayesian Methods
Likelihood, Odds, Posteriors

» Recall that p(0|y) « p(8)p(y|0)

» posterior o< prior x likelihood
» consider two possible values of 6, say #; and 6,

p(6aly) _ p(61)  p(y|01)

p(02ly)  p(62)  p(y|62)

> posterior odds = prior odds x likelihood ratio
» note likelihood ratio is still important



Introduction to Bayesian Methods
Likelihood principle

> Likelihood principle - if two likelihood functions agree, then
the same inferences about 6 should be drawn
» Traditional frequentist methods violate this
» Example: given a sequence of coin tosses with constant
probability of success 6 we wish to test H, : § = 0.5
» observe 9 heads, 3 tails in 12 coin tosses
» if binomial sampling (n = 12 fixed), then

o) = i) = (g )1 - 0

and p-value is Pr(y > 9) = .073
» if negative binomial sampling (sample until 3 tails), then

o) = oti0) = g )1 -0

and p-value is Pr(y > 9) =.033
» but data (and likelihood function) is the same ... 9 successes,
3 failures ... and should carry the same information about 6



Introduction to Bayesian Methods
Independence

» A common statement in traditional statistics courses:
assume Yi,..., Y, areiid r.v.'s

> In Bayesian class, we need to think hard about independence
> Why?

» Consider two "indep” Bernoulli trials with probability of
success 6
> |t is true that

p(y1, y2|0) = 0772(1 — 0)* 772 = p(y1|0)p(y2[0)

so that y; and y» are independent given 6

» But ... p(y1,y2) = [ P(y1,y210)p(6)df may not factor
» If p(#) = Unif(A|0,1) =1 for 0 < 6 < 1, then

p(y1,y2) =T(y1 +y2 + 1)1 (3 = y1 — y2)/T(4)

so y1 and y» are not independent in their marginal distribution



Introduction to Bayesian Methods
Exchangeability

» If independence is no longer the key concept, then what is?

» Exchangeability

> Informal defn: subscripts don’t matter

» Formally: given events Aj,...,A,, we say they are
exchangeable if P(A1A; ... Ax) = P(A; A, ... A;,) for every k
where i1, b, ..., I, are a permutation of the indices

» Similarly, given random variable Y,..., Y},
we say they are exchangeable if
PYi<yi,... .Y <yi) =P(Yi, <y1,---, Vi, < wi)
for every k



Introduction to Bayesian Methods
Exchangeability and independence

» Relationship between exchangeability and independence
> r.v.'s that are iid given 6 are exchangeable
» an infinite sequence of exchangeable r.v.'s can always be
thought of as iid given some parameter (de Finetti)
> note previous point requires an infinite sequence
» What is not exchangeable?
> time series, spatial data
» may become exchangeable if we explicitly include time or
spatial location in the analysis
> i.e., Y1,¥2,---,Yt,... are not exchangeable but

(t1,y1), (t2,¥2), ... may be



v

v

v

Introduction to Bayesian Methods
A simple example

Hemophilia - blood clotting disease
> sex-linked genetic disease on X chromosome
» males (XY) - affected or not
» females (XX) - may have 0 copies of disease gene (not
affected), 1 copy (carrier), 2 copies (usually fatal)
Consider a woman — brother is a hemophiliac, father is not
» we ignore the possibility of a mutation introducing the disease
» woman's mother must be a carrier
» woman inherits one X from mother
—— > 50/50 chance of being a carrier
Let 8 = 1 if woman is carrier, 0 if not
» a priori we have Pr(§ =1) =Pr(§ =0) =0.5

Let y; = status of woman's /th male child
(1 if affected, O if not)
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Introduction to Bayesian Methods
A simple example (cont'd)

Given two unaffected sons (not twins),
what inference can be drawn about 67

Assume two sons are iid given 6

Pr(y1 =y» =0/ =1)=05%0.5=.25
Pr(yi=y2=0/=0)=1%1=1.00
Posterior distn by Bayes' theorem

Pr(y|0 =1)Pr(6 =1)
Pr(y)
Pr(y|0 =1)Pr(6 =1)
Pr(y|0 = 1)Pr(6 = 1)+Pr(y|0 = 0)Pr(8 = 0)
25% .5

= — =2
25%x.54+1x%.5

Pr(¢ =1ly) =




Introduction to Bayesian Methods
A simple example (cont'd)

» Odds version of Bayes' rule
» prior odds Pr(§ =1)/Pr(§ =0) =1
> likelihood ratio Pr(y|6 = 1)/ Pr(y|0 = 0) = 1/4
» posterior odds = 1/4

(posterior prob = .25/(1 + .25) = .20)

» Updating for new information

>

>

suppose that a 3rd son is born (unaffected)
note: if we observe an affected child, then
we know 6=1 since that outcome is assumed
impossible when 6§ = 0
two approaches to updating analysis

> redo entire analysis (y1, y2, y3 as data)

> update using only new data (ys)



Introduction to Bayesian Methods
A simple example (cont'd)

» Updating for new information - redo analysis
» as before but now y = (0,0,0)
» Pr(yld =1)=.5%.5%.5=.125
Pr(yl¢ =0)=1
> Pr(f =1]y) = .125 .5/(.125 % .5 + 1 % .5) = .111
» Updating for new information - updating
» take previous posterior distn as new prior distn
(Pr(¢ =1) = .2 and Pr(6 =0) = .8)
> take data as consisting only of y3
> Pr(0=1ly;) = 5%.2/(5%.2+1x.8) =111
» same answer!



Single Parameter Models
Introduction

We introduce important concepts/computations in the
one-parameter case

There is generally little advantage to the Bayesian approach in
these cases

The benefits of the Bayesian approach are more obvious in
hierarchical (often random effects) models

» Main approach is to teach via example

> First example is binomial data (Bernoulli trials)

> easy

» historical interest (Bayes, Laplace)

> representative of a large class of distns
(exponential families)
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Single Parameter Models
Binomial Model

Consider n exchangeable trials

Data can be summarized by total # of successes

Natural model: define 6 as probability of success and take
Y ~ Bin(n,0)

ply16) = Binlyin.0) = (7)or(1— o)

Question - do we have to be explicit about
conditioning on n? (usually are not)

Prior distribution: To start assume p(6) = Unif(6/0, 1)



Single Parameter Models
Binomial Model

Posterior distribution:

ool = (J)ea-or) / 1 () 0"(1— 6)"do

~ n (n+1)! Vi1 pvn—y
= (n+1) (y) = yi!(n_y)!ﬂ (1-10)

_ (042 i e

— (y+1) (n_y+1)9 +1 1(1 9) +1-1

= Beta(y+1,n—y+1)

Note: could have noticed p(f|y) x 6¥(1 — )" and inferred
it is a Beta(y + 1,n — y + 1) distribution (formal calculation
confirms this)



Single Parameter Models
Binomial Model

» Inferences from the posterior distribution
> point estimation
> posterior mean = (y + 1)/(n+ 2)
(compromise between sample proportion £ and prior mean %)
> posterior mode = y/n
> best point estimate depends on loss function
> posterior variance = (%) (";i;l) (ﬁ)
> interval estimation
> 95% central posterior interval - find a,b s.t.
Jy Beta(ly +1,n — y 4+ 1)df = .025 and
fob Beta(fly + 1,n—y + 1)dd = .975
> alternative is highest posterior density region
> note this interval has the interpretation we want to give to
traditional Cls

> hypothesis test — don't say anything about this now



Single Parameter Models
Binomial Model

> Inference by simulation

>

the inferences mentioned (point estimation, interval
estimation) can be done via simulation
simulate 1000 draws from the posterior distribution

> available in standard packages

> we will discuss algorithms for harder problems later
point estimates easy to compute (now include Monte Carlo
error)
interval estimates easy — find percentiles of the simulated
values



Single Parameter Models
Prior distributions

» Where do prior distributions come from?
» a priori knowledge about 6 (“thinking deeply about context”)
» population interpretation (a population of possible 6 values)
» mathematical convenience
» Frequently rely on asymptotic results (to come) which
guarantee that likelihood will dominate the prior distn in large
samples



Single Parameter Models
Conjugate prior distributions

» Consider Beta(a, ) prior distn for binomial model

» think of a, 8 as fixed now (but these could also be random and
given their own prior distn)

> p(Oly) o 07(1—0)"ro (1 - 0)°

x 9y+a71(1 _ 9)n7y+[371

» recognize as kernel of Beta(y + a,n—y + )

» example of conjugate prior distn - posterior distn is in the
same parametric family as the prior distn

» convenient mathematically

» convenient interpretation - prior in this case is like observing o
successes in o+ (3 “prior” trials



Single Parameter Models
Conjugate prior distributions - general

» Definition:
Let F be a class of sampling distn (p(y|0)).
Let P be a class of prior distns (p(#)).
P is conjugate for F if p(f) € P and p(y|0) € F implies that
p(dly) € P

» Not a great definition ... trivially satisfied by P = { all distns}
but this is not an interesting case
» Exponential families (most common distns):

the only distns that are finitely parametrizable
and have conjugate prior families



Single Parameter Models
Conjugate prior distributions - exponential families

» The density of an exponential family can be written as

p(yil6) = f(yi)g(6)e??" )
p(y1,- - yal0) = (J] F(:))g () e )
i=1
with ¢(6) denoting the natural parameter(s) and
t(y) = >_; u(yi) denoting the sufficient statistic(s)
» Note that p(6) x g(@)”eqﬁ(e)t” will be conjugate family
» Binomial example
> p(ylo) = (7)1 —0)"
» exponential family with ¢(6) = log(6/(1 — 6)) and
g)=1-46
» conjugate prior distn is §”(1 — 0)"~" (Beta distribution)



Single Parameter Models
Conjugate prior distributions - normal distn with known variance

» Normal example
o~ (vi—0)2/20°

> p(yilf) = 5=

> exponential family with ¢(6) = 6/c and g(#) = e=¥/2"

» conjugate prior distn is exponential of quadratic form in 6
(i.e., normal distribution)

> take prior distn as 6 ~ N(u,72)

» posterior distn is p(f|y) = N(6]fi, V) with

1
T

n
o2

R +
QR

‘<|

and V =

U=
gt UH
e

o



Single Parameter Models
Conjugate prior distributions - normal distn with known variance

» Normal example (cont'd)
» posterior distribution is p(6]y) = N(6|f, V) with

n - 1
I3 Zn =7 _ 1
P="_"1 andV_L 1
P 72 o2 =)

» posterior mean = wtd average of prior mean and sample mean
» weights depend on precision (inverse variance) of the prior
distribution and the data distribution
> posterior precision is the sum of the prior precision and the
data precision
» if n — oo then posterior distn resembles
p(8ly) = N(0|y,c?/n); like classical sampling distn result
(so the data dominates the prior distn for large n)



Single Parameter Models
Conjugate prior distributions - general

» Advantages
» mathematically convenient
> easy to interpret
» can provide good approx to many prior opinions (especially if
we allow mixtures of distns from the conjugate family)
» Disadvantages
» may not be realistic
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Single Parameter Models
Nonconjugate prior distributions

No real difference conceptually in how analysis proceeds

Harder computationally

One simple idea is grid-based simulation
» specify prior distn on a grid Pr(6 = 6;) = m;
» compute likelihood on same grid /; = p(y|6;)
» posterior distn lives on the grid with

Pr(0 = bily) =} = mili/(32;ml;)
» can sample from this posterior distn easily in R
> can do better with a trapezoidal approx to the prior distn

However there are serious problems with grid-based simulation

We will see better computational approaches



Single Parameter Models
Noninformative prior distributions

» Sometimes there is a desire to have the prior distn play a
minimal role in forming the posterior distn (why?)

> To see how this might work recall our normal example with
yl, .. ,y,,|9 ~iidN(0,02) and p(0|u, 72) = N(6|u, 72) where
o2, ju, 72 are known
» a conjugate family with p(0|y) = N(0|f, V) where

Ly+ % 1
ﬁz*‘ﬂny Tfﬂ and V' = 5——
L —_ i + —_
0.2 T2 0.2 7_2

» if 72 — oo, then p(0ly) ~ N(0|y,o?/n)
(this yields the same estimates and intervals as classical
methods; can be thought of as non-informative)
» same result would be obtained by taking p(6) o 1
BUT that is not a proper prior distn
> we can use an improper prior distn but must
check that the posterior distn is a proper distn



Single Parameter Models
Noninformative prior distributions

» How do we find noninformative prior distributions?

> Flat or uniform distributions
» did the job in the binomial and normal cases
» makes each value of 8 equally likely
» but on what scale (should every value of logd be equally likely
or every value of )
> Jeffrey’s prior
» invariance principle — a rule for creating noninformative prior
distns should be invariant to transformation
» this means that if py(0) is prior distn for # and we consider
¢ = h(8), then our rule should create
ps(¢) = po(h~(¢)) |d0/d¢)|
» Jeffrey's suggestion to use p(6) oc J(A)/? where J(0) is the
Fisher information satisfies this principle
» gives flat prior for  in normal case
» does this work for multiparameter problems?



Single Parameter Models
Noninformative prior distributions

» How do we find noninformative prior distributions? (cont'd)
» Pivotal quantities
» location family has p(y — 0|0) = f(y — 6) so should expect
ply —0ly) = f(y —0) as well ...... this suggests p(6) 1
» similar argument for scale family suggests p(6) o< 1/6
(where 0 is a scale parameter like normal s.d.)
» Vague, diffuse distributions
> use conjugate or other prior distn with large variance



Single Parameter Models
Noninformative prior distributions - example

» Binomial case
» Uniform on 6 is Beta(1,1)
» Jeffreys’ prior distn is Beta(1/2,1/2)
» Uniform on natural parameter log(6/(1 — 0)) is Beta(0,0) (an
improper prior distn)
» Summary on noninformative distn
» very difficult to make this idea rigorous since it requires a
definition of “information’
» can be useful as a first approximation or first attempt
» dangerous if applied automatically without thought
» improper distributions can cause serious problems (improper
posterior distns) that are hard to detect
» some prefer vague, diffuse, or "weakly informative” proper
distributions as a way of expressing ignorance



v

v

v

v

Single Parameter Models
Weakly informative prior distributions

Proper distributions

Intentionally made weaker (more diffuse) than the actual prior
information that is available
Example 1 - normal mean
» Can take the prior distribution to be N(0, A%) where A is
chosen based on problem context (2A is a plausible upper
bound on 6)
Example 2 - binomial proportion

» Can take the prior distribution to be N(0.5, A%) where A is
chosen so that 0.5 4+ 2A contains all plausible values of ¢



Multiparameter Models
Introduction

Now write 6 = (01, 6>) (at least two parameters)
f1 and 6> may be vectors as well

Key point here is how the Bayesian approach handles
“nuisance” parameters

Posterior distn p(01, 62|y) o< p(y[61,02)p(01,62)

» Suppose 61 is of primary interest, i.e., want p(61]y)

» p(61ly) = [ p(61,62]y)d6> analytically or by numerical
integration

> p(01ly) = [ p(61]02, y)p(02]y)db>
(often a convenient way to calculate)

» p(61]y) = | p(6r. Baly)d6 by simulation
(generate simulations of both and toss out the 65's)

Note: Bayesian results still usually match those of traditional
methods. We don’t see differences until hierarchical models



Multiparameters Models
Normal example

> Y1, Y2, 7)/n|/%0-2 are iid N(y, 02)

» Prior distn: p(u,0?) < 1/5?
» indep non-informative prior distns for ;1 and o2
» equivalent to p(u,logo) o< 1
> not a proper distn

» Posterior distn:

p(p,0?ly) o (;)gﬂexp[—;ﬂ Z(Yi—ﬂ)z]

« (%) oo [—Qi (Z(”‘ (7 - u)zﬂ

1

» note that u, 02 are not indep in their posterior distn
» posterior distn depends on data only through the sufficient
statistics



Multiparameters Models
Normal example (cont'd)

» Further examination of joint posterior distribution

J+1
P, o2ly) oc (%) " exp {7% (Z(y,' — 7)Y +n(y — #)Zﬂ

i

» conditional posterior distn p(u|a?,y)
> examine joint posterior distn but now think of o2 as known
focus only on u terms
p(plo®,y) o exp[— 55 n(y — )]
just like known variance case
recognize o,y ~ N(¥,0%/n)
» marginal posterior distn of 02, i.e., p(c?|y)
> p(o’ly) = [ P, o°|y)dp
> p(o’ly) o (0%) "D 2 expl— 525 32, (vi — 7))
> known as scaled-inverse-x*(n — 1,s%) distn with

s =3,y —¥)?/(n—1)

vVvyyvyy



Multiparameters Models
Normal example (cont’d)

» Recall joint posterior distribution

g+1
P, o2|y) o (%) > e {—ﬁ (Z(y,- — 7 +n(y — u)zﬂ

i

» A useful identity for deriving marginal distributions from the
joint distribution and a conditional distribution
» marginal posterior distn of o2 is defined as
p(o?ly) = [ p(u,o?|y)dp
note also that p(a?|y) = p(u, o?|y)/p(ulo?, y)
LHS doesn’t have y, RHS does
equality must be true for any choice of u
evaluate this ratio at p =y
(why? the conditional density is N(u|y,o?/n))
> this also yields p(o2|y) o (02)~("D/2 exp[— 24 3= (vi — 7)]

vV vy Vvyy



Multiparameters Models
Normal example (cont'd)

> Further examination of joint posterior distribution

Pt () e l—; (Z(y,- PP mz)]

i

> so far, p(u,0°|y) = p(o®|y)p(ulo?, y)
» this factorization can be used to simulate from joint posterior
distn

» generate o from Inv-x*(n — 1, s?) distn
> then generate u from N(y,o?/n) distn
» often most interested in p(p|y)

—n/2
> p(uly) = 5 p(u, 0|y)do” o [1+ e 1)”]

> uly ~ ta—1(7,5°/n) (a t-distn)
> recall traditional result /\f“u,,a‘ ~ th_1

(note result doesn’t depend at all on o?)



Multiparameters Models
Normal example (cont’d)

» Further examination of joint posterior distribution

141
Pt o (%) e [—2(1, <Z(y,- 7P+ (7 u)Qﬂ

vV vy vy

i

consider y a future draw from the same population
what is the predictive distn of y, i.e., p(¥|y)
p(Fly) = [ [ p(7lp, 02, y)p(p, o°|y)dp do?
note first term in integral doesn't depend on y .... given
params we know distn of 7 is N(u,0?)
predictive distn by simulation
(simulate 02 ~ Inv-x%(n — 1, s?),
then u ~ N(y,0%/n), then § ~ N(u,0?))
predictive distn analytically (can proceed as for pu by first
conditioning on o?)
)7|y ~ tn—l(?a (1 + %)52)



Multiparameters Models
Normal example - conjugate prior distn

It can be hard to find conjugate prior distributions for
multiparameter problems

It is possible for the normal (two-parameter) example

Conjugate prior distribution is product of a2 ~ Inv-x?(v,, 02)

and N’U2 ~ N(ﬂ0702/’€o)

Conditional distribution for p is equivalent to k, observations
on the scale of y

» This is known as the Normal-Invx?(fio, Ko; Vo, 02) prior

» The posterior distribution is of the same form with

> Hn = fﬂfﬁinuo + Wolny

> Kn =Ko+ n

> Up=Vo+n

> 102 = 1502+ (n—1)s% + L (§ — p,)?

n Ko+n




Multiparameters Models
Normal example - other prior distns (cont'd)

» Semi-conjugate analysis

>

for conjugate distn, the prior distn for u
depends on scale parameter o (unknown)

» may want to allow info about x4 that does not depend on o
» consider independent prior distributions

02 ~ Inv-x%(vo,02) and p ~ N(po, 72)

» may call this semi-conjugate
» note that given o2, analysis for y is conjugate normal-normal

case so that |02,y ~ N(pn, 72) with

FHo + &

1
_ 2 _
Pn = L_A'_L and T"_i_i_
T2 o2 T2 o



Multiparameters Models
Normal example - other prior distns (cont'd)

» Semi-conjugate analysis (cont'd)
» p(c?|y) is not recognizable distn
> calculate as
o’ly) =
fH, 1 Nyl 0?)N(pfpio, 75)Inv — X(02|vo, 03)d s

> or calc p(o”ly) = p(u, o°|y)/p(ulo?, y)
(RHS evaluated at convenient choice of 1)

> use a 1l-dimensional grid approximation or some other
simulation technique
» Multivariate normal case

» no details here (see book)

» discussion is almost identical to that for
univariate normal distn with Inv-Wishart
distn in place of the Inv-)?



Multiparameters Models
Multinomial data

» Data distribution .

p(y|0) =] 67
j=1
where 6 = vector of probabilities with Z}‘Zl 0 =1
and y = vector of counts with Zf:l yj=n
» Conjugate prior distn is the Dirichlet(a) distn (o > 0)
(multivariate generalization of the beta distn)

k
a;j—1
o)~ 107
j=1

for vectors 6 such that Zj-‘zl g =1
» « =1 yields uniform prior distn on € vectors (noninformative?
... favors uniform distn)
» «a = 0 uniform on log & (noninformative but improper)

» Posterior distn is Dirchlet(a + y)
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Multiparameters Models
A non-standard example: logistic regression

A toxicology study (Racine et al, 1986, Applied Statistics)

x; = log(dose),i =1,..., k (k dose levels)
n; = animals given ith dose level

yi = number of deaths

Goals:

» traditional inference for parameters «, 3
» special interest in inference for LD50 (dose at which expect
50% would die)



Multiparameters Models
Logistic regression (cont'd)

» Data model specification
» within group (dose): exchangeable animals so model
y,'|9,' ~ Bin(n,-,@,-)
» between groups: non-exchangeable (higher dose means more
deaths); many possible models including

logit(#;) = log (1 fie) = o+ Bx;

> resulting data model

k

eaJrﬁXi Yi 1 ni—yi
p(Y|O‘7B) = H (1 I eoz+ﬂx,'> (1 + ea+ﬂ><i>

i=1

» Prior distn
» noninformative: p(«, 3) oc 1 ... is posterior distn proper?
> answer is yes but it is not-trivial to show
» should we restrict 3 > 0 77
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Multiparameters Models
Logistic regression example (cont'd)

Posterior distn: p(a, Bly) x p(y|a, 8)p(a, B)

k Oé-‘rﬁX' Yi ni—Yyi
g% 1
p(a7/6|y):H<1+ea+ﬂX;> <1+ea+5Xi>

i=1

Grid approximation

>

vV vy vVvYyYy

obtain crude estimates of «, 8

(perhaps by standard logistic regression)

define grid centered on crude estimates
evaluate posterior density on 2-dimensional grid
sample from discrete approximation

refine grid and repeat if necessary

Grid approximations are risky because they may miss
important parts of the distn

More sophisticated approaches will be developed later
(MCMCQ)



Multiparameters Models
Logistic regression example (cont'd)

» Inference for LD50

vV vy

want x; such that 6; = 0.5
turns out x; = —a/
with simulation it is trivial to get posterior distn of —«a/3
note that using MLEs it would be easy to get estimate but
hard to get standard error
doesn’t make sense to talk about LD50 if 8 < 0 .... could do
inference in two steps

» Pr(8>0)

» distn of LD50 given 8 > 0

> Real-data example (handout)



Large Sample Inference
Asymptotics in Bayesian Inference

» “Optional” because Bayesian methods provide proper finite
sample inference, i.e. we have a posterior distribution for
that is valid regardless of sample size

> Large sample results are still interesting — Why?

>

theoretical results (the likelihood dominates the prior so that
frequentist asymptotic results apply to Bayesian methods also)

> approximation to the posterior distn
» normal approx can provide useful information to check

simulations from actual posterior distn



Large Sample Inference
Asymptotics in Bayesian Inference

> Large sample results are still interesting - Why?
(continuation)
> approximation to the posterior distn
> normal approx is easy (need only posterior mean and s.d.).
> normal approx often adequate if few
dimensions (especially after transforming)
» normal theory helps interprete posterior pdf's: for d-dimension
normal approx
» —2log(density) = (x — u)' X" (x — ) is

approximately x% as n — oo

> 95% posterior confidence region for u contains all p with
posterior density > exp{—0.5x7 ¢.05} x max p(6]y)



Large Sample Inference
Consistency

Let f(y) be true data generating distn

> Let p(y|€) be the model being fit
Finite parameter space O.
» true value generating the data is 6y € © (i.e. F(y) = p(y|6,))
» assume p(6p) > 0.
then
p(0 =6ply) > 1asn— o0

Same result if p(y|#) is not the right family of distn by taking
0y to be the Kullback-Leibler minimizer, i.e.,

0o s.t. H(O) = [f(y) Iog( Fly) ) dy is minimized

p(y16)
Can extend to more general parameter spaces



Large Sample Inference
Asymptotic Normality
(1-dimension parameter space)

Theorem (BDA3, pg 587)

Under some regularity conditions (notably that 6y not be on the
boundary of ©), as n — oo, the posterior distribution of 6
approaches normality with mean 6y and variance (nJ(6p))?,
where 0 is the true value or the value that minimizes the
Kullback-Leibler information and J(-) is the Fisher information.



Large Sample Inference
Asymptotic Normality

» Problems that affect Bayesian
and classical arguments
> If “true” 6 is on the boundary of the parameter space, then
no asymptotic normality
» Sometimes the likelihood is unbounded

e.g.
f(yIA g1, 01, p2,02) = AMa(y]0) + (1 — N)fa(y(0)
where
fivle) = e HF) 12

If we take p3 = y1 and o1 — 0, then f(0]y) is unbounded



Large Sample Inference
Asymptotic Normality

» Problems that only affect Bayesians

>

>

>

improper posterior distns (already discussed)
prior distn that excludes “true” 6q

problems where the number of parameters
increase with the sample size, e.g.,

Yi0; ~ N(6;,1)

Oilp, 7% ~ N(p, 72) =1

PR

then asymptotic results hold for u, 72 but not 6;



Large Sample Inference
Asymptotic Normality

» Problems that only affect Bayesians (cont’d)
> parameters not identified.

S ()0

if you observe only U or V for each pair, there is no
information about p.

» tails of the distribution may not be normal, e.g., our logistic
regression example



