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Course Overview

Prerequisites
I Probability (distributions, transformations)
I Statistical Inference (standard procedures)
I Ideally two semesters at graduate level

Broad Outline
I Univariate/multivariate models
I Hierarchical models and model checking
I Computation
I Other models (glm’s, missing data, etc.)

Computing
I R - covered in class
I STAN - introduction provided



Bayesian Statistics - History

I Bayes & Laplace (late 1700s) - inverse probability
I probability - statements about observables given assumptions

about unknown parameters
I inverse probability - statements about unknown parameters

given observed data values

I Ex: given y successes in n iid trials with probability of success
θ, find Pr(a < θ < b|y)

I Little progress after Bayes/Laplace except for isolated
individuals (e.g., Jeffreys)

I Interest resumes in mid 1900s (the term Bayesian statistics is
born)

I Computational advances in late 20th/early 21st centuries have
led to increase in interest



Bayes vs Frequentist

I Bayes
I parameters as random variables
I subjective probability (for some people)

I Frequentist
I parameters as fixed but unknown quantities
I probability as long-run frequency

I Some controversy in the past (and present)

I Goal here is to introduce Bayesian methods and some
advantages



Some Things Not Discussed (Much)

I The following terms are sometimes associated with Bayesian
statistics. They will be discussed briefly but will not receive
much attention here:

I decision theory
I nonparametric Bayesian methods
I subjective probability
I objective Bayesian methods
I maximum entropy



Motivating Example: Cancer Maps

I Kidney cancer mortality rates (Manton et al. - JASA, 1989)
I Age-standardized death rates for by county



Motivating Example: Cancer Maps

I Kidney cancer mortality rates (Manton et al. - JASA, 1989)
I Empirical Bayes (smoothed) estimated death rates



Motivating Example: Cancer Maps

I Kidney cancer mortality rates (Manton et al. - JASA, 1989)
I Observed (left) and Smoothed (right)



Motivating Example: SAT coaching

I SAT coaching study (Rubin - J. Educ. Stat., 1981)
I Randomized experiments in 8 schools
I Outcome is SAT-Verbal score
I Effect of treatment (coaching) is estimated separately in each

school using analysis of covariance

Estimated Standard error
treatment of effect Treatment

School effect estimate effect

A 28 15 ?
B 8 10 ?
C − 3 16 ?
D 7 11 ?
E − 1 9 ?
F 1 11 ?
G 18 10 ?
H 12 18 ?



Bayesian Inference: Two key ideas

I Explicit use of probability for quantifying uncertainty
I probability models for data given parameters
I probability distributions for parameters

I Inference for unknowns conditional on observed data
I inverse probability
I Bayes’ theorem (hence the modern name)
I formal decision-making



Introduction to Bayesian Methods
Probability review

I Probability (mathematical definition):
A set function that is

I nonnegative
I additive over disjoint sets
I sums to one over entire sample space

I For Bayesian methods probability is a fundamental measure of
uncertainty

I Pr(1 < ȳ < 3|θ = 0) or Pr(1 < ȳ < 3) is
interesting before data has been collected

I Pr(1 < θ < 3|y) is interesting after data has been collected

I Where do probabilities come from?
I frequency argument (e.g., 10,000 coin tosses)
I physical argument (e.g., symmetry in coin toss)
I subjective (e.g., if I would be willing to bet on A given 1:1

odds, then I must believe the probability of A is greater than
.5)



Introduction to Bayesian Methods
Probability review

I Some terms/definitions you should know
I joint distribution p(u, v)
I marginal distribution p(u) =

∫
p(u, v)dv

I conditional distribution p(u|v) = p(u, v)/p(v)
I moments:

E (u) =
∫
u p(u)du =

∫ ∫
u p(u, v) dv du

Var(u) =
∫

(u − E (u))2p(u)du

E (u|v) =
∫
u p(u|v)du (a fn of v)



Introduction to Bayesian Methods
Probability review (cont’d)

I Some terms/definitions you should know
I conditional distributions play a large role in Bayesian inference

so the following rules are useful
I E(u) = E(E(u|v))
I Var(u) = E(Var(u|v)) + Var(E(u|v))

I transformations (one-to-one)
I denote distribution of u by pu(u)
I take v = f (u)
I distribution of v is

pv (v) = pu(f −1(v)) in discrete case
pv (v) = pu(f −1(v))|J| in continuous case

where Jacobian J is
∣∣∣ ∂ui∂vj

∣∣∣ =
∣∣∣ ∂f−1(v)

∂vj

∣∣∣



Introduction to Bayesian Methods
Probability review - intro to simulation

I Simulation plays a big role in modern Bayesian inference and
one particular transformation is important in this context

I Probability integral transform
I suppose X is a continuous r.v. with cdf FX (x)
I then Y = FX (X ) has uniform distn on 0 to 1

I Application in simulations
I if U is uniform on (0, 1) and F (·) is cdf of a continuous r.v.
I then Z = F−1(U) is a r.v. with cdf F
I example:

I let F (x) = 1− e−x/λ = exponential cdf
I then F−1(u) = −λ log(1− u)
I if we have a source of uniform random numbers then we can

transform to construct samples from an exponential distn

I This is a general strategy for generating random samples



Introduction to Bayesian Methods
Notation/Terminology

I θ = unobservable quantities (parameters)

I y = observed data (outcomes, responses, random variable)

I x = explanatory variables (covariates, often treated as fixed)

I Don’t usually distinguish between upper and lower case roman
letters since everything is a random variable

I ỹ = unknown but potentially observable quantities
(predictions, response to a different treatment)

I NOTE: don’t usually distinguish between
univariate, multivariate quantities



Introduction to Bayesian Methods
Notation/Terminology

I p(·) or p(·|·) denote distributions (generic)

I It would take too many letters if each distribution
received its own letter

I We write Y |µ, σ2 ∼ N(µ, σ2) to denote that Y has a normal
density

I We write p(y |µ, σ2) = N(y |µ, σ2) to refer to the normal
density with argument y

I Same for other distributions: Beta(a, b),Unif(a, b),
Exp(θ),Pois(λ), etc.



Introduction to Bayesian Methods
The Bayesian approach

I Focus here is on three step process
I specify a full probability model
I posterior inference via Bayes’ rule
I model checking/sensitivity analysis

I Usually an iterative process - specify model, fit and check,
then respecify model



Introduction to Bayesian Methods
Specifying a full probability model

I Data distribution p(y |θ) = p(data | parameters)
I also known as sampling distribution
I p(y |θ) when viewed as a function of θ is also known as the

likelihood function L(θ|y)

I Prior distribution p(θ)
I may contain subjective prior information
I often chosen vague/uninformative
I mathematical convenience

I Marginal model
I above can be combined to determine implied marginal model

for y .... p(y) =
∫
p(y |θ)p(θ)dθ

I useful for model checking
I Bayesian way of thinking leads to new distns that can be

useful even for frequentists (e.g., Beta-Binomial)



Introduction to Bayesian Methods
Posterior inference/Model checking

I Posterior inference
I Bayes’ thm to derive posterior distribution

p(θ|y) =
p(y |θ)p(θ)

p(y)
=

p(y |θ)p(θ)∫
p(y |θ)p(θ)dθ

I probability statements about unknowns
I formal decision-making is based on posterior distn
I sometimes write p(θ|y) ∝ p(θ)p(y |θ) because the denominator

is a constant in terms of θ

I Model checking/sensitivity analysis
I does the model fit
I are conclusions sensitive to choice of

prior distn/likelihood



Introduction to Bayesian Methods
Likelihood, Odds, Posteriors

I Recall that p(θ|y) ∝ p(θ)p(y |θ)
I posterior ∝ prior × likelihood
I consider two possible values of θ, say θ1 and θ2

p(θ1|y)

p(θ2|y)
=

p(θ1)

p(θ2)
× p(y |θ1)

p(y |θ2)

I posterior odds = prior odds × likelihood ratio
I note likelihood ratio is still important



Introduction to Bayesian Methods
Likelihood principle

I Likelihood principle - if two likelihood functions agree, then
the same inferences about θ should be drawn

I Traditional frequentist methods violate this
I Example: given a sequence of coin tosses with constant

probability of success θ we wish to test Ho : θ = 0.5
I observe 9 heads, 3 tails in 12 coin tosses
I if binomial sampling (n = 12 fixed), then

L(θ|y) = p(y |θ) =

(
12

9

)
θ9(1− θ)3

and p-value is Pr(y ≥ 9) = .073
I if negative binomial sampling (sample until 3 tails), then

L(θ|y) = p(y |θ) =

(
11

9

)
θ9(1− θ)3

and p-value is Pr(y ≥ 9) = .033
I but data (and likelihood function) is the same ... 9 successes,

3 failures ... and should carry the same information about θ



Introduction to Bayesian Methods
Independence

I A common statement in traditional statistics courses:
assume Y1, . . . ,Yn are iid r.v.’s

I In Bayesian class, we need to think hard about independence
I Why?

I Consider two ”indep” Bernoulli trials with probability of
success θ

I It is true that

p(y1, y2|θ) = θy1+y2 (1− θ)2−y1−y2 = p(y1|θ)p(y2|θ)

so that y1 and y2 are independent given θ
I But ... p(y1, y2) =

∫
p(y1, y2|θ)p(θ)dθ may not factor

I If p(θ) = Unif(θ|0, 1) = 1 for 0 < θ < 1, then

p(y1, y2) = Γ(y1 + y2 + 1)Γ(3− y1 − y2)/Γ(4)

so y1 and y2 are not independent in their marginal distribution



Introduction to Bayesian Methods
Exchangeability

I If independence is no longer the key concept, then what is?
I Exchangeability

I Informal defn: subscripts don’t matter
I Formally: given events A1, . . . ,An, we say they are

exchangeable if P(A1A2 . . .Ak) = P(Ai1Ai2 . . .Aik ) for every k
where i1, i2, . . . , in are a permutation of the indices

I Similarly, given random variable Y1, . . . ,Yn,
we say they are exchangeable if
P(Y1 ≤ y1, . . . ,Yk ≤ yk) = P(Yi1 ≤ y1, . . . ,Yik ≤ yk)
for every k



Introduction to Bayesian Methods
Exchangeability and independence

I Relationship between exchangeability and independence
I r.v.’s that are iid given θ are exchangeable
I an infinite sequence of exchangeable r.v.’s can always be

thought of as iid given some parameter (de Finetti)
I note previous point requires an infinite sequence

I What is not exchangeable?
I time series, spatial data
I may become exchangeable if we explicitly include time or

spatial location in the analysis
I i.e., y1, y2, . . . , yt , . . . are not exchangeable but

(t1, y1), (t2, y2), . . . may be



Introduction to Bayesian Methods
A simple example

I Hemophilia - blood clotting disease
I sex-linked genetic disease on X chromosome
I males (XY) - affected or not
I females (XX) - may have 0 copies of disease gene (not

affected), 1 copy (carrier), 2 copies (usually fatal)

I Consider a woman – brother is a hemophiliac, father is not
I we ignore the possibility of a mutation introducing the disease
I woman’s mother must be a carrier
I woman inherits one X from mother
−− > 50/50 chance of being a carrier

I Let θ = 1 if woman is carrier, 0 if not
I a priori we have Pr(θ = 1) = Pr(θ = 0) = 0.5

I Let yi = status of woman’s ith male child
(1 if affected, 0 if not)



Introduction to Bayesian Methods
A simple example (cont’d)

I Given two unaffected sons (not twins),
what inference can be drawn about θ?

I Assume two sons are iid given θ

I Pr(y1 = y2 = 0|θ = 1) = 0.5 ∗ 0.5 = .25
Pr(y1 = y2 = 0|θ = 0) = 1 ∗ 1 = 1.00

I Posterior distn by Bayes’ theorem

Pr(θ = 1|y) =
Pr(y |θ = 1) Pr(θ = 1)

Pr(y)

=
Pr(y |θ = 1) Pr(θ = 1)

Pr(y |θ = 1) Pr(θ = 1)+Pr(y |θ = 0) Pr(θ = 0)

=
.25 ∗ .5

.25 ∗ .5 + 1 ∗ .5
= .2



Introduction to Bayesian Methods
A simple example (cont’d)

I Odds version of Bayes’ rule
I prior odds Pr(θ = 1)/Pr(θ = 0) = 1
I likelihood ratio Pr(y |θ = 1)/Pr(y |θ = 0) = 1/4
I posterior odds = 1/4

(posterior prob = .25/(1 + .25) = .20)

I Updating for new information
I suppose that a 3rd son is born (unaffected)
I note: if we observe an affected child, then

we know θ=1 since that outcome is assumed
impossible when θ = 0

I two approaches to updating analysis
I redo entire analysis (y1, y2, y3 as data)
I update using only new data (y3)



Introduction to Bayesian Methods
A simple example (cont’d)

I Updating for new information - redo analysis
I as before but now y = (0, 0, 0)
I Pr(y |θ = 1) = .5 ∗ .5 ∗ .5 = .125,

Pr(y |θ = 0) = 1
I Pr(θ = 1|y) = .125 ∗ .5/(.125 ∗ .5 + 1 ∗ .5) = .111

I Updating for new information - updating
I take previous posterior distn as new prior distn

(Pr(θ = 1) = .2 and Pr(θ = 0) = .8)
I take data as consisting only of y3

I Pr(θ = 1|y3) = .5 ∗ .2/(.5 ∗ .2 + 1 ∗ .8) = .111
I same answer!



Single Parameter Models
Introduction

I We introduce important concepts/computations in the
one-parameter case

I There is generally little advantage to the Bayesian approach in
these cases

I The benefits of the Bayesian approach are more obvious in
hierarchical (often random effects) models

I Main approach is to teach via example
I First example is binomial data (Bernoulli trials)

I easy
I historical interest (Bayes, Laplace)
I representative of a large class of distns

(exponential families)



Single Parameter Models
Binomial Model

I Consider n exchangeable trials

I Data can be summarized by total # of successes
I Natural model: define θ as probability of success and take

Y ∼ Bin(n, θ)

p(y |θ) = Bin(y |n, θ) =

(
n

y

)
θy (1− θ)n−y

I Question - do we have to be explicit about
conditioning on n? (usually are not)

I Prior distribution: To start assume p(θ) = Unif(θ|0, 1)



Single Parameter Models
Binomial Model

I Posterior distribution:

p(θ|y) =

(
n

y

)
θy (1− θ)n−y/

∫ 1

0

(
n

y

)
θy (1− θ)n−ydθ

= (n + 1)

(
n

y

)
θy (1− θ)n−y =

(n + 1)!

y !(n − y)!
θy (1− θ)n−y

=
Γ(n + 2)

Γ(y + 1)Γ(n − y + 1)
θy+1−1(1− θ)n−y+1−1

= Beta(y + 1, n − y + 1)

I Note: could have noticed p(θ|y) ∝ θy (1− θ)n−y and inferred
it is a Beta(y + 1, n − y + 1) distribution (formal calculation
confirms this)



Single Parameter Models
Binomial Model

I Inferences from the posterior distribution
I point estimation

I posterior mean = (y + 1)/(n + 2)
(compromise between sample proportion y

n
and prior mean 1

2
)

I posterior mode = y/n
I best point estimate depends on loss function
I posterior variance =

(
y+1
n+2

) (
n−y+1
n+2

) (
1

n+3

)
I interval estimation

I 95% central posterior interval - find a,b s.t.∫ a

0
Beta(θ|y + 1, n − y + 1)dθ = .025 and∫ b

0
Beta(θ|y + 1, n − y + 1)dθ = .975

I alternative is highest posterior density region
I note this interval has the interpretation we want to give to

traditional CIs

I hypothesis test – don’t say anything about this now



Single Parameter Models
Binomial Model

I Inference by simulation
I the inferences mentioned (point estimation, interval

estimation) can be done via simulation
I simulate 1000 draws from the posterior distribution

I available in standard packages
I we will discuss algorithms for harder problems later

I point estimates easy to compute (now include Monte Carlo
error)

I interval estimates easy – find percentiles of the simulated
values



Single Parameter Models
Prior distributions

I Where do prior distributions come from?
I a priori knowledge about θ (“thinking deeply about context”)
I population interpretation (a population of possible θ values)
I mathematical convenience

I Frequently rely on asymptotic results (to come) which
guarantee that likelihood will dominate the prior distn in large
samples



Single Parameter Models
Conjugate prior distributions

I Consider Beta(α, β) prior distn for binomial model
I think of α, β as fixed now (but these could also be random and

given their own prior distn)
I p(θ|y) ∝ θy (1− θ)n−yθα−1(1− θ)β−1

∝ θy+α−1(1− θ)n−y+β−1

I recognize as kernel of Beta(y + α, n − y + β)
I example of conjugate prior distn - posterior distn is in the

same parametric family as the prior distn
I convenient mathematically
I convenient interpretation - prior in this case is like observing α

successes in α + β “prior” trials



Single Parameter Models
Conjugate prior distributions - general

I Definition:
Let F be a class of sampling distn (p(y |θ)).
Let P be a class of prior distns (p(θ)).
P is conjugate for F if p(θ) ∈ P and p(y |θ) ∈ F implies that
p(θ|y) ∈ P

I Not a great definition ... trivially satisfied by P = { all distns}
but this is not an interesting case

I Exponential families (most common distns):
the only distns that are finitely parametrizable
and have conjugate prior families



Single Parameter Models
Conjugate prior distributions - exponential families

I The density of an exponential family can be written as

p(yi |θ) = f (yi )g(θ)eφ(θ)tu(yi )

p(y1, . . . , yn|θ) = (
n∏

i=1

f (yi ))g(θ)neφ(θ)t t(y)

with φ(θ) denoting the natural parameter(s) and
t(y) =

∑
i u(yi ) denoting the sufficient statistic(s)

I Note that p(θ) ∝ g(θ)ηeφ(θ)tν will be conjugate family
I Binomial example

I p(y |θ) =
(
n
y

)
θy (1− θ)n−y

I exponential family with φ(θ) = log(θ/(1− θ)) and
g(θ) = 1− θ

I conjugate prior distn is θν(1− θ)η−ν (Beta distribution)



Single Parameter Models
Conjugate prior distributions - normal distn with known variance

I Normal example
I p(yi |θ) = 1√

2πσ2
e−(yi−θ)2/2σ2

I exponential family with φ(θ) = θ/σ and g(θ) = e−θ
2/2σ2

I conjugate prior distn is exponential of quadratic form in θ
(i.e., normal distribution)

I take prior distn as θ ∼ N(µ, τ 2)
I posterior distn is p(θ|y) = N(θ|µ̂,V ) with

µ̂ =
n
σ2 ȳ + 1

τ 2µ
n
σ2 + 1

τ 2

and V =
1

n
σ2 + 1

τ 2



Single Parameter Models
Conjugate prior distributions - normal distn with known variance

I Normal example (cont’d)
I posterior distribution is p(θ|y) = N(θ|µ̂,V ) with

µ̂ =
n
σ2 ȳ + 1

τ 2µ
n
σ2 + 1

τ 2

and V =
1

n
σ2 + 1

τ 2

I posterior mean = wtd average of prior mean and sample mean
I weights depend on precision (inverse variance) of the prior

distribution and the data distribution
I posterior precision is the sum of the prior precision and the

data precision
I if n→∞ then posterior distn resembles

p(θ|y) = N(θ|ȳ , σ2/n); like classical sampling distn result
(so the data dominates the prior distn for large n)



Single Parameter Models
Conjugate prior distributions - general

I Advantages
I mathematically convenient
I easy to interpret
I can provide good approx to many prior opinions (especially if

we allow mixtures of distns from the conjugate family)

I Disadvantages
I may not be realistic



Single Parameter Models
Nonconjugate prior distributions

I No real difference conceptually in how analysis proceeds

I Harder computationally
I One simple idea is grid-based simulation

I specify prior distn on a grid Pr(θ = θi ) = πi
I compute likelihood on same grid li = p(y |θi )
I posterior distn lives on the grid with

Pr(θ = θi |y) = π∗i = πi li/(
∑

j πj lj)
I can sample from this posterior distn easily in R
I can do better with a trapezoidal approx to the prior distn

I However there are serious problems with grid-based simulation

I We will see better computational approaches



Single Parameter Models
Noninformative prior distributions

I Sometimes there is a desire to have the prior distn play a
minimal role in forming the posterior distn (why?)

I To see how this might work recall our normal example with
y1, . . . , yn|θ ∼ iidN(θ, σ2) and p(θ|µ, τ2) = N(θ|µ, τ2) where
σ2, µ, τ2 are known

I a conjugate family with p(θ|y) = N(θ|µ̂,V ) where

µ̂ =
n
σ2 ȳ + 1

τ 2µ
n
σ2 + 1

τ 2

and V =
1

n
σ2 + 1

τ 2

I if τ 2 →∞, then p(θ|y) ≈ N(θ|ȳ , σ2/n)
(this yields the same estimates and intervals as classical
methods; can be thought of as non-informative)

I same result would be obtained by taking p(θ) ∝ 1
BUT that is not a proper prior distn

I we can use an improper prior distn but must
check that the posterior distn is a proper distn



Single Parameter Models
Noninformative prior distributions

I How do we find noninformative prior distributions?
I Flat or uniform distributions

I did the job in the binomial and normal cases
I makes each value of θ equally likely
I but on what scale (should every value of log θ be equally likely

or every value of θ)

I Jeffrey’s prior
I invariance principle – a rule for creating noninformative prior

distns should be invariant to transformation
I this means that if pθ(θ) is prior distn for θ and we consider
φ = h(θ), then our rule should create
pφ(φ) = pθ(h−1(φ)) |dθ/dφ|

I Jeffrey’s suggestion to use p(θ) ∝ J(θ)1/2 where J(θ) is the
Fisher information satisfies this principle

I gives flat prior for θ in normal case
I does this work for multiparameter problems?



Single Parameter Models
Noninformative prior distributions

I How do we find noninformative prior distributions? (cont’d)
I Pivotal quantities

I location family has p(y − θ|θ) = f (y − θ) so should expect
p(y − θ|y) = f (y − θ) as well ...... this suggests p(θ) ∝ 1

I similar argument for scale family suggests p(θ) ∝ 1/θ
(where θ is a scale parameter like normal s.d.)

I Vague, diffuse distributions
I use conjugate or other prior distn with large variance



Single Parameter Models
Noninformative prior distributions - example

I Binomial case
I Uniform on θ is Beta(1, 1)
I Jeffreys’ prior distn is Beta(1/2, 1/2)
I Uniform on natural parameter log(θ/(1− θ)) is Beta(0, 0) (an

improper prior distn)

I Summary on noninformative distn
I very difficult to make this idea rigorous since it requires a

definition of “information’
I can be useful as a first approximation or first attempt
I dangerous if applied automatically without thought
I improper distributions can cause serious problems (improper

posterior distns) that are hard to detect
I some prefer vague, diffuse, or ”weakly informative” proper

distributions as a way of expressing ignorance



Single Parameter Models
Weakly informative prior distributions

I Proper distributions

I Intentionally made weaker (more diffuse) than the actual prior
information that is available

I Example 1 - normal mean
I Can take the prior distribution to be N(0,A2) where A is

chosen based on problem context (2A is a plausible upper
bound on θ)

I Example 2 - binomial proportion
I Can take the prior distribution to be N(0.5,A2) where A is

chosen so that 0.5± 2A contains all plausible values of θ



Multiparameter Models
Introduction

I Now write θ = (θ1, θ2) (at least two parameters)

I θ1 and θ2 may be vectors as well

I Key point here is how the Bayesian approach handles
“nuisance” parameters

I Posterior distn p(θ1, θ2|y) ∝ p(y |θ1, θ2)p(θ1, θ2)
I Suppose θ1 is of primary interest, i.e., want p(θ1|y)

I p(θ1|y) =
∫
p(θ1, θ2|y)dθ2 analytically or by numerical

integration
I p(θ1|y) =

∫
p(θ1|θ2, y)p(θ2|y)dθ2

(often a convenient way to calculate)
I p(θ1|y) =

∫
p(θ1, θ2|y)dθ2 by simulation

(generate simulations of both and toss out the θ2’s)

I Note: Bayesian results still usually match those of traditional
methods. We don’t see differences until hierarchical models



Multiparameters Models
Normal example

I y1, y2, . . . , yn|µ, σ2 are iid N(µ, σ2)
I Prior distn: p(µ, σ2) ∝ 1/σ2

I indep non-informative prior distns for µ and σ2

I equivalent to p(µ, log σ) ∝ 1
I not a proper distn

I Posterior distn:

p(µ, σ2|y) ∝
(

1

σ2

) n
2 +1

exp[− 1

2σ2

∑
i

(yi − µ)2]

∝
(

1

σ2

) n
2 +1

exp

[
− 1

2σ2

(∑
i

(yi − ȳ)2 + n(ȳ − µ)2

)]

I note that µ, σ2 are not indep in their posterior distn
I posterior distn depends on data only through the sufficient

statistics



Multiparameters Models
Normal example (cont’d)

I Further examination of joint posterior distribution

p(µ, σ2|y) ∝
(

1

σ2

) n
2

+1

exp

− 1

2σ2

∑
i

(yi − ȳ)2 + n(ȳ − µ)2



I conditional posterior distn p(µ|σ2, y)
I examine joint posterior distn but now think of σ2 as known
I focus only on µ terms
I p(µ|σ2, y) ∝ exp[− 1

2σ2 n(ȳ − µ)2]
I just like known variance case
I recognize µ|σ2, y ∼ N(ȳ , σ2/n)

I marginal posterior distn of σ2, i.e., p(σ2|y)
I p(σ2|y) =

∫
p(µ, σ2|y)dµ

I p(σ2|y) ∝ (σ2)−(n+1)/2 exp[− 1
2σ2

∑
i (yi − ȳ)2]

I known as scaled-inverse-χ2(n − 1, s2) distn with
s2 =

∑
i (yi − ȳ)2/(n − 1)



Multiparameters Models
Normal example (cont’d)

I Recall joint posterior distribution

p(µ, σ2|y) ∝
(

1

σ2

) n
2

+1

exp

− 1

2σ2

∑
i

(yi − ȳ)2 + n(ȳ − µ)2



I A useful identity for deriving marginal distributions from the
joint distribution and a conditional distribution

I marginal posterior distn of σ2 is defined as
p(σ2|y) =

∫
p(µ, σ2|y)dµ

I note also that p(σ2|y) = p(µ, σ2|y)/p(µ|σ2, y)
I LHS doesn’t have µ, RHS does
I equality must be true for any choice of µ
I evaluate this ratio at µ = ȳ

(why? the conditional density is N(µ|ȳ , σ2/n))
I this also yields p(σ2|y) ∝ (σ2)−(n+1)/2 exp[− 1

2σ2

∑
i (yi − ȳ)2]



Multiparameters Models
Normal example (cont’d)

I Further examination of joint posterior distribution

p(µ, σ2|y) ∝
(

1

σ2

) n
2 +1

exp

[
− 1

2σ2

(∑
i

(yi − ȳ)2 + n(ȳ − µ)2

)]

I so far, p(µ, σ2|y) = p(σ2|y)p(µ|σ2, y)
I this factorization can be used to simulate from joint posterior

distn
I generate σ2 from Inv-χ2(n − 1, s2) distn
I then generate µ from N(ȳ , σ2/n) distn

I often most interested in p(µ|y)

I p(µ|y) =
∫∞

0
p(µ, σ2|y)dσ2 ∝

[
1 + n(µ−ȳ)

(n−1)s2

]−n/2

I µ|y ∼ tn−1(ȳ , s2/n) (a t-distn)
I recall traditional result ȳ−µ

s/
√
n
|µ, σ2 ∼ tn−1

(note result doesn’t depend at all on σ2)



Multiparameters Models
Normal example (cont’d)

I Further examination of joint posterior distribution

p(µ, σ2|y) ∝
(

1

σ2

) n
2 +1

exp

[
− 1

2σ2

(∑
i

(yi − ȳ)2 + n(ȳ − µ)2

)]

I consider ỹ a future draw from the same population
I what is the predictive distn of ỹ , i.e., p(ỹ |y)
I p(ỹ |y) =

∫ ∫
p(ỹ |µ, σ2, y)p(µ, σ2|y)dµ dσ2

I note first term in integral doesn’t depend on y .... given
params we know distn of ỹ is N(µ, σ2)

I predictive distn by simulation
(simulate σ2 ∼ Inv-χ2(n − 1, s2),
then µ ∼ N(ȳ , σ2/n), then ỹ ∼ N(µ, σ2))

I predictive distn analytically (can proceed as for µ by first
conditioning on σ2)
ỹ |y ∼ tn−1(ȳ , (1 + 1

n )s2)



Multiparameters Models
Normal example - conjugate prior distn

I It can be hard to find conjugate prior distributions for
multiparameter problems

I It is possible for the normal (two-parameter) example

I Conjugate prior distribution is product of σ2 ∼ Inv-χ2(νo , σ
2
o)

and µ|σ2 ∼ N(µo , σ
2/κo)

I Conditional distribution for µ is equivalent to κo observations
on the scale of y

I This is known as the Normal-Invχ2(µo , κo ; νo , σ
2
o) prior

I The posterior distribution is of the same form with
I µn = κo

κo+nµo + n
κo+n ȳ

I κn = κo + n
I νn = νo + n
I νnσ

2
n = νoσ

2
o + (n − 1)s2 + κon

κo+n (ȳ − µo)2



Multiparameters Models
Normal example - other prior distns (cont’d)

I Semi-conjugate analysis
I for conjugate distn, the prior distn for µ

depends on scale parameter σ (unknown)
I may want to allow info about µ that does not depend on σ
I consider independent prior distributions
σ2 ∼ Inv-χ2(νo , σ

2
o) and µ ∼ N(µo , τ

2
o )

I may call this semi-conjugate
I note that given σ2, analysis for µ is conjugate normal-normal

case so that µ|σ2, y ∼ N(µn, τ
2
n ) with

µn =

1
τ 2
o
µo + n

σ2 ȳ

1
τ 2
o

+ n
σ2

and τ 2
n =

1
1
τ 2
o

+ n
σ2



Multiparameters Models
Normal example - other prior distns (cont’d)

I Semi-conjugate analysis (cont’d)
I p(σ2|y) is not recognizable distn

I calculate as
p(σ2|y) =∫ ∏n

i=1 N(yi |µ, σ2)N(µ|µo , τ
2
o )Inv− χ2(σ2|νo , σ2

o)dµ
I or calc p(σ2|y) = p(µ, σ2|y)/p(µ|σ2, y)

(RHS evaluated at convenient choice of µ)
I use a 1-dimensional grid approximation or some other

simulation technique

I Multivariate normal case
I no details here (see book)
I discussion is almost identical to that for

univariate normal distn with Inv-Wishart
distn in place of the Inv-χ2



Multiparameters Models
Multinomial data

I Data distribution

p(y |θ) =
k∏

j=1

θ
yj
j

where θ = vector of probabilities with
∑k

j=1 θj = 1

and y = vector of counts with
∑k

j=1 yj = n
I Conjugate prior distn is the Dirichlet(α) distn (α > 0)

(multivariate generalization of the beta distn)

p(θ) =
k∏

j=1

θ
αj−1
j

for vectors θ such that
∑k

j=1 θj = 1
I α = 1 yields uniform prior distn on θ vectors (noninformative?

... favors uniform distn)
I α = 0 uniform on log θ (noninformative but improper)

I Posterior distn is Dirchlet(α + y)



Multiparameters Models
A non-standard example: logistic regression

I A toxicology study (Racine et al, 1986, Applied Statistics)

I xi = log(dose), i = 1, . . . , k (k dose levels)

I ni = animals given ith dose level

I yi = number of deaths
I Goals:

I traditional inference for parameters α, β
I special interest in inference for LD50 (dose at which expect

50% would die)



Multiparameters Models
Logistic regression (cont’d)

I Data model specification
I within group (dose): exchangeable animals so model

yi |θi ∼ Bin(ni , θi )
I between groups: non-exchangeable (higher dose means more

deaths); many possible models including

logit(θi ) = log

(
θi

1− θi

)
= α + βxi

I resulting data model

p(y |α, β) =
k∏

i=1

(
eα+βxi

1 + eα+βxi

)yi ( 1

1 + eα+βxi

)ni−yi

I Prior distn
I noninformative: p(α, β) ∝ 1 ... is posterior distn proper?
I answer is yes but it is not-trivial to show
I should we restrict β > 0 ??



Multiparameters Models
Logistic regression example (cont’d)

I Posterior distn: p(α, β|y) ∝ p(y |α, β)p(α, β)

p(α, β|y) =
k∏

i=1

(
eα+βxi

1 + eα+βxi

)yi ( 1

1 + eα+βxi

)ni−yi

I Grid approximation
I obtain crude estimates of α, β

(perhaps by standard logistic regression)
I define grid centered on crude estimates
I evaluate posterior density on 2-dimensional grid
I sample from discrete approximation
I refine grid and repeat if necessary

I Grid approximations are risky because they may miss
important parts of the distn

I More sophisticated approaches will be developed later
(MCMC)



Multiparameters Models
Logistic regression example (cont’d)

I Inference for LD50
I want xi such that θi = 0.5
I turns out xi = −α/β
I with simulation it is trivial to get posterior distn of −α/β
I note that using MLEs it would be easy to get estimate but

hard to get standard error
I doesn’t make sense to talk about LD50 if β < 0 .... could do

inference in two steps
I Pr(β > 0)
I distn of LD50 given β > 0

I Real-data example (handout)



Large Sample Inference
Asymptotics in Bayesian Inference

I “Optional” because Bayesian methods provide proper finite
sample inference, i.e. we have a posterior distribution for θ
that is valid regardless of sample size

I Large sample results are still interesting – Why?
I theoretical results (the likelihood dominates the prior so that

frequentist asymptotic results apply to Bayesian methods also)
I approximation to the posterior distn
I normal approx can provide useful information to check

simulations from actual posterior distn



Large Sample Inference
Asymptotics in Bayesian Inference

I Large sample results are still interesting - Why?
(continuation)

I approximation to the posterior distn
I normal approx is easy (need only posterior mean and s.d.).
I normal approx often adequate if few

dimensions (especially after transforming)

I normal theory helps interprete posterior pdf’s: for d-dimension
normal approx

I −2 log(density) = (x − µ)′Σ−1(x − µ) is
approximately χ2

d as n→∞
I 95% posterior confidence region for µ contains all µ with

posterior density ≥ exp{−0.5χ2
d,0.95} ×max p(θ|y)



Large Sample Inference
Consistency

I Let f (y) be true data generating distn

I Let p(y |θ) be the model being fit
I Finite parameter space Θ.

I true value generating the data is θ0 ∈ Θ (i.e. f (y) = p(y |θo))
I assume p(θ0) > 0.

then
p(θ = θ0|y)→ 1 as n→∞

I Same result if p(y |θ) is not the right family of distn by taking
θ0 to be the Kullback-Leibler minimizer, i.e.,

θ0 s.t. H(θ) =
∫
f (y) log

(
f (y)
p(y |θ)

)
dy is minimized

I Can extend to more general parameter spaces



Large Sample Inference
Asymptotic Normality

(1-dimension parameter space)

Theorem (BDA3, pg 587)
Under some regularity conditions (notably that θ0 not be on the
boundary of Θ), as n→∞, the posterior distribution of θ
approaches normality with mean θ0 and variance (nJ(θ0))−1,
where θ0 is the true value or the value that minimizes the
Kullback-Leibler information and J(·) is the Fisher information.



Large Sample Inference
Asymptotic Normality

I Problems that affect Bayesian
and classical arguments

I If “true” θ0 is on the boundary of the parameter space, then
no asymptotic normality

I Sometimes the likelihood is unbounded
e.g.

f (y |λ, µ1, σ1, µ2, σ2) = λf1(y |θ) + (1− λ)f2(y |θ)

where

fi (y |θ) =
1√

2πσi
e
− 1

2

(
Y−µi

σi

)2

i = 1, 2

If we take µ1 = y1 and σ1 → 0, then f (θ|y) is unbounded



Large Sample Inference
Asymptotic Normality

I Problems that only affect Bayesians
I improper posterior distns (already discussed)
I prior distn that excludes “true” θ0

I problems where the number of parameters
increase with the sample size, e.g.,

Yi |θi ∼ N(θi , 1)
θi |µ, τ 2 ∼ N(µ, τ 2)

i = 1, . . . , n

then asymptotic results hold for µ, τ 2 but not θi



Large Sample Inference
Asymptotic Normality

I Problems that only affect Bayesians (cont’d)
I parameters not identified.

e.g. (
U
V

)
∼ N

[(
µ1

µ2

)
,

(
1 ρ
ρ 1

)]

if you observe only U or V for each pair, there is no
information about ρ.

I tails of the distribution may not be normal, e.g., our logistic
regression example


