Part I: Select the statements to correctly fill in the blanks of the proof of the Theorem 1 given below.

Theorem 1. For any real number x, if $x^2 - 6x + 5 \ge 0$, then $x \ge 5$ or $x \le 1$. (Inclusive "or").

Proof: Proof by contrapositive.

Assume that _____(a)____

We will prove that _____(b)____.

By assumption, we know that _____(c)____. By subtracting 1 from both sides of the inequality, we get that x - 1 > 0 and therefore x - 1 is positive.

By assumption, we know that ______(d)_____. By subtracting 5 from both sides of the inequality, we get that x - 5 < 0 and therefore x - 5 is negative.

The product of a positive number and a negative number is negative. Therefore, _____(e)_ Multiplying out the left side of the inequality, we get that _____(f)____.

1. In the proof of the Theorem 1, what expression should go in the space labeled (a)?

A
$$x < 5$$
 and $x > 1$.
B. $x^2 - 6x + 5 > 0$

B.
$$x^2 - 6x + 5 > 0$$

C.
$$x < 5 \text{ or } x > 1$$

D.
$$x > 5$$
 or $x < 1$

2. In the proof of the Theorem 1, what expression should go in the space labeled (b)?

A.
$$x^2 - 6x + 5 < 0$$

B. $x < 5$ and $x > 1$.

$$R = x < 5$$
 and $x > 1$

C.
$$x \ge 5$$
 or $x \le 1$

D
$$x^2 - 6x + 5 > 0$$

3. In the proof of the Theorem 1, what expression should go in the space labeled (c)?

A.
$$x < 5$$

$$(B) x > 1$$

C.
$$x^2 - 6x + 5 > 0$$

D.
$$x > 1$$

4. In the proof of the Theorem 1, what expression should go in the space labeled (d)?

A.
$$x^2 - 6x + 5 > 0$$

B.
$$x > 1$$

$$C. x \ge 1$$

$$C. \ x \ge 1$$

$$D. x < 5$$

5. In the proof of the Theorem 1, what expression should go in the space labeled (e)?

A.
$$(x-1)(x-5) \ge 0$$

(B.)
$$(x-1)(x-5) < 0$$

C.
$$x^2 - 6x + 5 \ge 0$$

D.
$$(x+1)(x-5) < 0$$

6. In the proof of the Theorem 1, what expression should go in the space labeled (f)?

A.
$$x^2 - x - 5 < 0$$

B.
$$x^2 - 6x + 5 > 0$$

C.
$$x^2 - 6x + 5 \le 0$$

$$(D.)x^2 - 6x + 5 < 0$$

Part II: For the next four questions, your choices will be one of the following five statements. Any of the statements could be the correct answer for more than one question.

A. x is rational and y is rational.

B. x + y is rational.

C. x is irrational and y is irrational.

D. x is irrational or y is irrational.

E. x + y is irrational.

Theorem 2. For any two real numbers, x and y, if x is rational and y is rational then x + y is rational.

Statement 1: A direct proof of Theorem 2 would assume for real numbers x and y that (+) and would prove that (*).

7. What expression should go in the space labeled (+) in Statement 1? A

8. What expression should go in the space labeled (*) in Statement 1?

Statement 2: A proof by contraspositive of Theorem 2 would assume for real numbers x and y that (x) and would prove that (x).

9. What expression should go in the space labeled (&) in Statement 2?

10. What expression should go in the space labeled (\$) in Statement 2?

Part III:

Define the following sets:

• $A = \{x \in \mathbb{Z} : x \text{ is a multiple of } 3\}$

• $B = \{3, 5, 7, 9\}.$

• $C = \{2, 3, 4, 5\}.$

Indicate whether the following statements are true or false. Select A for true and B for false. The universe set is the set of all integers.

11. |B| = |C| True

12. $|A \cap B| = |A \cap C|$ False

13. $A \cap C \subseteq A \cap B$

14. $C - B \subseteq \overline{A}$. The

15. $B \cup C = \{3, 5\}$. Fals 4

16. $2 \in A \cup C$. The

17. $\{2,3\} \in C$ False

18. $\{3\} \in P(C)$ Thus

19. $\overline{A} \cap B \cap C = \emptyset$ False

20. $\emptyset \in A$. False.