1. Three propositional variables p, q , and r are defined as follows:
• p: The printer is working.
• q: The printer has a paper jam.

• r: The printer has run out of ink.

Give a logical expression that is equivalent to each sentence below using the propositional variables. Any use of the word "or" is the inclusive or.

- (a) The printer is working even though it has run out of ink.
- (b) The printer is not working only if it has a paper jam.
- (c) The printer is not working if it has run out ink or has a paper jam.
- 2. Fill in the following truth table below. It is broken in two to fit on the page. The empty column is for your own use if you want it.

p	q	r	$(r \vee \neg q) \to p$
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	

p	q	r	$(r \vee \neg q) \to p$
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

- 3. Give the converse of the statement: "If 5 is prime then 4 is even".
- 4. For each statement below, indicate whether it is true or false:
 - (a) If 6 is a prime number, then 4 is an even number.
 - (b) If 4 is an even number, then 5 is a prime number.
 - (c) 5 is an even number if and only if 5 is a prime number.
 - (d) If 5 is a prime number, then 6 is a prime number.