Quiz 3

Instructor: Sandy Irani

1. Fill in the blanks in the following proof:

Theorem 1. If x is a positive integer and x^3 is even, then x is even.

Proof: Proof by contrapositive.

Assume that x is a positive integer and _____

We will prove that ______.

If x is odd, then it can be written as ______for some integer k.

Plug in the expression for x into x^3 to get ______.

The expression for x^3 can be written as

Since ______ is an integer, we can conclude that x^3 is odd.

2. Suppose you were to prove the following theorem:

Theorem 2. If $0 \le x \le 3$, then $15 - 8x + x^2 > 0$.

(a) In a direct proof, what would you assume and what would you prove?

(b) In a proof by contrapositive, what would you assume and what would you prove?