CS 262: Computational Complexity

Due: March 8, 2010

Homework 6

Instructor: Sandy Irani

Do three of the following four problems:

- 1. Prove that if $\mathbf{NP} \subseteq \mathbf{BPP}$, then $\mathbf{NP} = \mathbf{RP}$. (*Hint:* use your \mathbf{BPP} algorithm for SAT to give an \mathbf{RP} algorithm for SAT by constructing a satisfying assignment).
- 2. Show that **BPP** and **RP** are closed under reductions.
- 3. Consider the problem whose input is a graph with integer weights and asks whether the minimum length tour is unique. For what class in the polynomial hierarchy is this problem complete? Prove your answer.
- 4. Show that if $\mathbf{NP} \subseteq \mathbf{TIME}(n^{\log n})$, then $\mathbf{PH} \subseteq \bigcup_{k \geq 1} \mathbf{TIME}(n^{\log^k n})$.