NP in PCP(poly,1) Monday, June 4, 2018 4:07 PN

We will prove a weater vorsion of the PCP theorem:

Theorem: NP & PCP (polysin), 1)

Verifier will expect the prover to supply an expanded encoding of the usual certificare for the problem in NP.

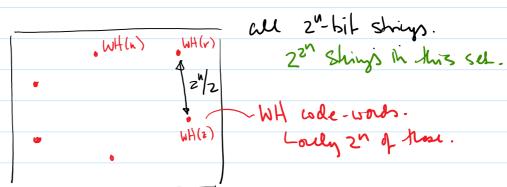
Walsh - Hadanard Code

Let u & 30, 23h Define function for: 30,25h -> 30,23

For $x \in 30,43^h$ $f(x) = x \cdot u$ That product product product product is a first product of the first product of the first product pr

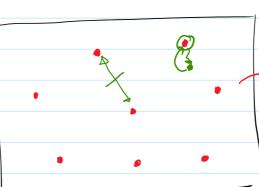
For example X = 1011011 W = 1001101 X·W = 1+0+0+1+0+0+1 = 1.

One way to spearly for is the input output table:


	fu(x)	0	
060	0	•	The 1/o table is
00		10	a 2"-til-string
	(,	Sy rows: or for	Man Specifies fu.
I	•	every possible inpu x.	
(: \	Inpur 7.	Call flux shing WH(u)
	'		Wη(~)
111			

Monday, June 4, 2018

If |u|=n then $|wH(u)|=2^n$.


If f = 30, 132" is WH(n) for some u = 30, 13" then f is said to be a Walsh-Hadamad Code Ward.

Note the # of Walsh-Hidamand code words of length 2" is 2". (Each one corresponds to a ne 80,43")

In general the idea behind on ever correcting cook
is to encode Skings of leigh in as shings
of length d>n all 2ª ships.

Cale: 30,45 - 30,45 The range of function Code is he su of code bods.

goal is to have them speced for apart.

Can recover our shal shing if a few bots get flipped in transmission.

Monday, June 4, 2018 4:25 PM

Random Subsel Principle:

if h, v & 30,45 at h +v then for 1/2

of all the x's in 30,25" fulx) + fv(x)

This means that any two Walsh-Hadamard code words differ in $\frac{Z^N}{2}$ location.

 $N \neq V \Rightarrow$ distance between WH(N) + WH(V)is $2^{n}/2$.

Prof: $u = \overline{u}0$ $\overline{u}, \overline{v} \in \S_0, 1\S^{n-1}$ $v = \overline{v}1$

Consider x 6 30,23h-1

if ux + vx hen u·(xo) + v·(xo)

if ux = Vx hen h. (x1) + v. (x1)

1/2 of x's hx = v.x h.x = v.x.

NP in PCP(poly,1) Tuesday, June 5, 2018 7:59 AM The WH code words are the Set of all linear functions: (|f(x)+f(y)=f(x+y) \fix,y \Rightarrow \fu \fix)=u.x \fix ← Suppose flx) = h.x $f(x) + f(y) = h \cdot x + h \cdot y = h \cdot |x+y| = f(x+y)$ => Suppose flx)+fly)=f(x+y) Yx,y. let e; = 0..010...0 til location. I is completely defined by f(ei) for i= 4,..., n. for example: f(10110) = f(e1) + f(es) + f(e4) Constant n: in til of n is flei) > f(ei) = u.e. Version heads to: (1) Chede has he proof is in the correct format (i.e. check has he proof is a W-H code word.) 2) Check that the proof is a correct witness for the input. (For example check that it encodes a satisfying assismment for \$).

Tuesday, June 5, 2018 8:08 AN

Given f, we want to test her f= WH(n) for some n.

Same as: test if f(x) +f(y) = f(x+y) f x,y.

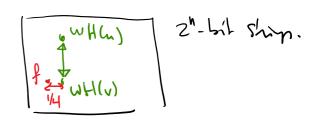
We can't do this exhaustively. We want to be able to make this check w/ a constant # of probes to f.

Namnal test: Pick X+y at vandom and test
if f(x) + f(y) = f(X+y)

(requires 3 Probes).

If f is linear, verifier will wort.

However if f is close to linear, we could easily miss than!


With Iscal tests, we can only hope to riger functions that are far from linear.

Definition Let $p \in [0,1]$ $f,g:30,13^n \rightarrow 30,13$ are f-close if $Pr_x[q(x)=q(x)] \ge p$

Theorem: (linearity testing) [BLR]

Let $f: 30, 43^n \rightarrow 30, 43$ be such that $Pr_{x,y} \left[f(x) + f(y) = f(x+y) \right] \ge \rho$ for $\rho > 1/2$ Then f is ρ -close to a linear function.

Thursday, May 31, 2018 9:10 AM

FOR S<1/2 If f is not (1-8)-close to a linear function, the probability one fails to detact this is (1-8). Can repeat 1/s times to get the prots of (1-8) = 1/e.
feir line to detect hon-linearity = 1/z.

Suppose for some 8 < 1/4 $f: 30, 13^n \rightarrow 30, 13$ is (1-8) close to some linear function \bar{f} .

f is uniquely determined by f because two distinct linear functions differ in ≥ 1/2 of their tots.

fiven x, he want to compute f(x) tent only have access to f.

X is hot tandonly chosen, so we can hot assume that $f(x) = f(x) \times x$ could be one of the localisms where they differ.

We want a randomized procedure hat uses f to produce the correct of (x) for all x, with high probability probability over random choices how the verifier controls.

Thursday, May 31, 2018

f(x) = h.x

The following requires two cells to f:

f(x')+f(x")] (x1)+ f(x")

1. pick x' \(\) \

x'' and x'' are distributed uniformly (but are not independent). Prob has $f(x) \neq \overline{f}(x')$ or $f(x'') \neq \overline{f}(x'') \leq 2.5$.

Prob [f(x') = f(x') AND f(x") = f(x")] > 1-28.

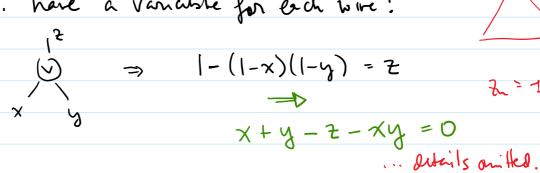
this is known as self-correction of the WH code.

Proof Plan NP = PCP (poly(n), 1)

We will show an NP-complete language in PCP (poly(n), 2)

The NP-complete language will be QUADEQ:

= language of systems of quadrelic equatrons over GF(z)


Mar are Soursfiable (GF(z)=50,13, + · mod z)

Thursday, May 31, 2018 1:44 PM

Here is an instance of QUADEQ:

 $N_1 U_2 + U_3 U_4 + U_1 U_5 = 1$ $N_2 U_3 + U_1 U_4 = 0$ $N_3 U_4 + U_3 U_4 = 1$ $N_4 U_3 U_5 + U_3 U_4 = 1$ $N_1 U_4 U_5 = 1$

Can show Cran't SAT & QUADEQ. Ede: have a variable for each wire:

Since $u_i = (u_i)^2$, can assume that there are no linear terms.

Tuesday, June 5, 2018 8:21 AM

M linear egnations over a variables can be described as an mxn² matrix A and an m-vector b.

b= (h, m)

The system is satisfiable iff I n²-vedor U which can be expressed as uou for some n-vedor u such how: AU = b.

 $h\otimes h = \langle h_1 u_1, u_1 u_2, \dots, u_n u_n \rangle$

Are hur u, uz uz s.t.

U= < U1h1 U1h2, U1h3, U2h1, U2h2, U2h3, U3h1, U3V2, U3V3>

 $A \cdot V = 5$?

Overview - 1

Friday, June 8, 2018 8:19 AM

Now he gre a PCP system for QUADEQ. Les A,b be an instance of QUADEQ.

Suppose (A,b) is satisfiable by u & 30,13"

Encoling Scheme is Walsh-Hadamand encorling.

For h = 30, 13h lu fr: 30, 23h - 30, 13

fn(x) = x. u. WH(n) is the 2"-bit

String indicating the value

f:50,25h,50,25 (=> 2h.bit strings.)

of for every possible injure.

Version exprose: WH (n) and WH (non).

Overview - 2

Friday, June 8, 2018 8:30 AM

(1) Prover just dom 2^{n} - hit shing $f: 50, 23^{n} \Rightarrow 50, 23$. $2^{n^{2}}$ - but shing $g: 50, 23^{n^{2}} \rightarrow 50, 23$

Need to verify par f & g are (1-e) dose to sme Walsh-Hadahard code words.

Verify 7 h & \$0,15° f differs from WH(n) in

a fraction of & & backins.

3 W & \$0,23h^2 g differs from WH(w) in

a fraction of & & backions.

- 2) Veryly har W= Wo n.
- 3) Verify ther is saisfies the instance of QUADEQ

 A. w = b.

Thursday, May 31, 2018 1:44 PM

Now we give a PCP system for QUADEQ. Les A,b be an instance of QUADEQ.

Suppose (A,L) is satisfiable try $u \in 30,13^n$ Venfer V gets areas to proof $TT \in 30,13^{2^n+2^{n^2}}$

T is inderpreted as a pair of functions:

f: 30,15" \rightarrow \(\)0,13" \rightarrow \(\)0,13" \(\) \(\

For a corresponding to a Satisfying assignment.

The verifier will accept the corresponding TT

W/ PASS 1.

Step 1: Check har ftg are linear functions. Do a (1-6) - linearly test on ftg.

If either for g is how (1-6) close to a linear function then test fails w/ high probability.

 $\Rightarrow \text{ assume } \exists \text{ linear } \hat{j}: 30,13^n \rightarrow 30,13^n \\ \hat{j}: 30,13^{n^2} \rightarrow 30,13^n$

fis (1-6) close h g g is (1-6)-dose to g.

(In a corred proof $f=\hat{f}$ at $g=\hat{g}$). $\hat{f}(x)$.

Thursday, May 31, 2018

We will assume that the verifier can gury falogo directly. This is because of self-correction: Can mover any J(x) U.P. ≥ (1-26).

The number of gueries to for g in later steps is ~ 30 So he prob her any guerry fails \(\leq \) 60 \(\varphi\). Assume \(\text{is} \) Shall enough that all queries Succeed \(\text{w.p.} \) \(\geq \)

Rename J+ g to be J+g. Assume J+g are linear.

f(x) = x. u for some u g(y) = y. u for some w x, w & 30, 23°.

Do the following 10 times:

Pick v + r' at random from 30,25h

Verify $f(r) \cdot f(r') = g(r \otimes r')$ If not to REJECT (r,r', r,r₂)....

In a correct proof:

 $f(r)f(r') = \left(\sum_{i=1}^{r} u_i \cdot r_i\right) \left(\sum_{j=1}^{r} u_i \cdot r_i'\right) = \sum_{i,j}^{r} u_i u_j r_i r_j'$ $= (N \otimes u) \cdot (r \otimes r') = g(r \otimes r')$

(سرر)

NP in PCP(poly,1) Thursday, May 31, 2018 1:44 PM Now Suppose W + NON We claim how one test fails w.p. > 1/4. Prob of rejecting at least one trial is 1- (3/4) > . 9 Let U be an nxn medix Vij = uiuj Let W to a uxu hohix W s DIVN, Smoon = ws g (ror') = W. (ror') = 21 Win+j. rirj = rWr' f(r) f(r') = (u·r)(u·r') = {uir; &uir; &uir; = &uin; r;r; + r Ur' $(r_1 r_2 ... r_i r_n)$ $u_1u_1 u_1u_2 ... u_1u_n$ r'_1 v'_1 v'_2 v'_3 v'_4 v'_5 v'_6 v'_6

rWr' + rUr'

V rejudes of

	NP in PCP(poly,1) 1/2 of the pression of feat.
	Thursday, May 31, 2018 1:44 PM $\bigvee \cdot \chi \neq \bigvee \cdot \chi$
	Random Subsum Principle: y W # U
	then 2 1/2 of all r satisfy VW + VU
	Let j be a Column where W+U deffer.
	jh ad
	$(r_1 \cdots r_n)$ $(r_1 \cdots r_n)$
	r. (wjq w) ≠ r (wjq v) w.p. ≥ 1/2
	1, (ac) t a) + 1 (ac) to b) = 15
	jp からない) jp からかい.
	None a lilicia on children has a
	Now conditioning on rW ≠ rV the prob that a random v' has rWr' ≠ rVr' is ≥ 1/2
	Trial tijents W.P. = 1/4
ids(rW	r' f (Vr')=Prob[rW+rU]. Prob[rWr'+rUr' rW+rU]

Thursday, May 31, 2018

Step 3: Verify hat generales a satisfying assignment.

First Show how to verify that the ke lequestion is verified. Check:

 $\leq \frac{1}{1} \left(A_{k}, (i,j) \right) u_{i} u_{j} = b_{k}$

Let Zk E {0,1}, n2 = Ak, (i,j)

21 Ak(ij) Winj = g(Zk) test g(Zk) = Dk

But he can't check all k t 31,..., m3 We can check a random subset of he k's and Use the random subset principle

Pick random r & 30,13h Compute rA = Zr = Z ri Aire

i=1 Zin rom 1A

2" + 2"

Test of g(22) = rb.

Suppose 3k g(Zk) + bk.

(3(7)) (5(7)) (5(7))

g(zr) = g(zr, Air) = 2r, g(z) this is +r.b

W.P. ≥ 1/2 //