	Thursday, May 24, 2018 3:01 PM
	For L= 3(0,6) \$ hes exactly & satisfying assignates }
	Showed LEIP Lis Co-NP hand, 80 CO-NP & IP.
	Theorem (Shamir): IP = PSPACE.
	IP & PSPACE is casy: Chonerale all possible interactions, explicitly calculate success probability.
	Threction is very proofel! Can interact w/ master player of generalized geography and determine if she can win, even if you can not compute optimal moves.)
	if you can not compute optimal moves.)
	Need to Show PSPACE SIP (i.e. QSATEIP). Same basic idea as co-NP proof (plus a four additional impedients).
(*)	First assume that he occurrence of X; separated by more than one Y from the point of granificiation:
	Ux 3 y 3 Y ho occurrences of x.
	This helps ensure has the deput of a single variable is $O(101)$

Wed, May 30, 2018 - page 1

	vved, iviay 30, 2018 - page 2
	Friday, May 25, 2018 8:02 AM
	Vx φ(x) Λ ∃y φ2(x,y) ν Y τ φ3(x,y,τ) ν ∃
∀×	$\phi_1(x) \wedge \exists y \phi_2(x,y) \vee \forall x' (x=x') \rightarrow \forall z \phi_3(x',y,z) \vee \exists y$
`	replane x w/ x'.
	Arithmetization:
	$\exists x_i \phi \longrightarrow \underbrace{\exists}_{x_i=0,1} P_{\phi}(x_i,)$
	∀x; φ → T P _b (xi,) ← depre and square
	x',=0,1 he size of Pp.
	Deput of a single variable x is bounded by poly (101).

Thursday, May 24, 2018 3:01 PM

Arithmetization:

 $\rightarrow 3x_i \phi \rightarrow \xi P_{\phi}(x_{i,...})$

this can double the $\rightarrow \forall x; \phi \rightarrow T P_{\phi}(x_i,...)$ depue and square the Size of Pp. x; = 0, 1

=> Quantified Boolean expression & is hue iff Po>0

Problem: the & (TT) terms may lause Pp > 22101 (too large to compare).

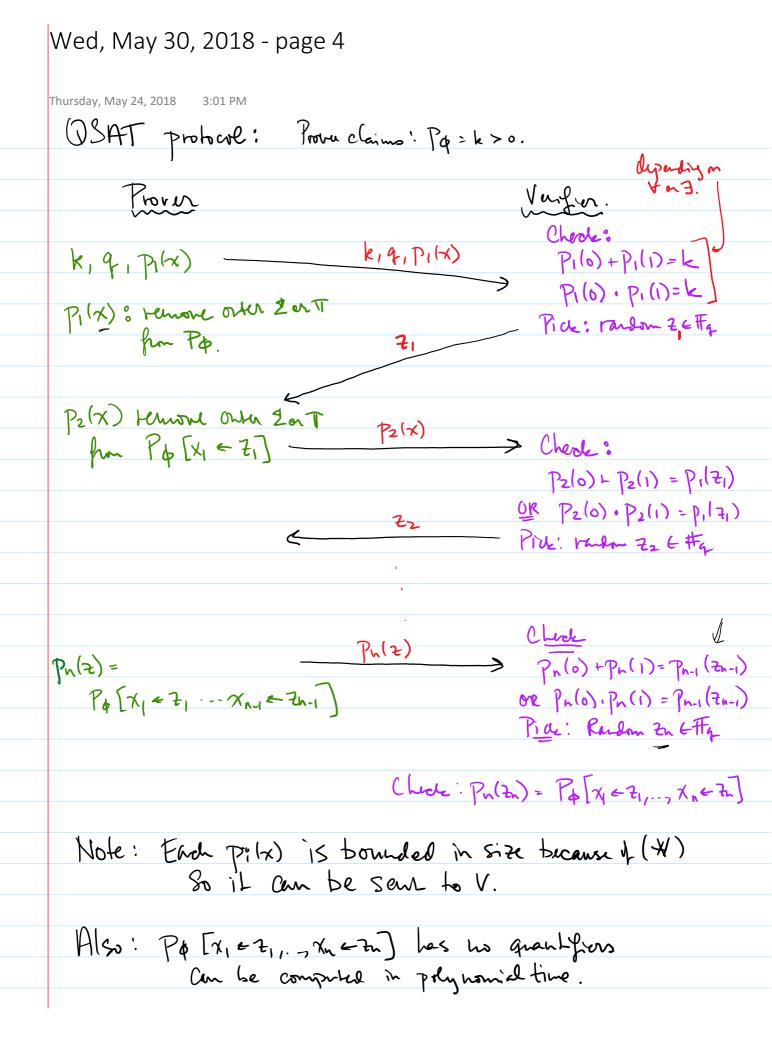
Solntin: evaluare mod q 2"< g < 23n

Prover sends a "good" q to Vin he frer round. a "good" q is one such than Po wed q>0.

Claim: A good of exists because the # primes in the range > 2"

To the product of all these primes > Po, So it can't be than Powerq = 0 for

all q in the range. Since prove is lenging to get V to accept, he is motivated to send a good q.



Wed, May 30, 2018 - page 5

Thursday, May 24, 2018 3:01 PM

Example:

2 (Z+ y(1-W))]

T 2 (x+y) * T [(x2+y(1-2)) + 22+y]

 $\frac{1}{X=0,1} \frac{2}{y=0,1} \left[(\chi+y) \cdot (2y)(\chi+2+y) \right]$

 $\prod_{\chi=0,1} (\chi+1) \cdot 2 \cdot (\chi+3) = (1\cdot 2\cdot 3)(2\cdot 2\cdot 4) = 96 = P_{\phi}$

Proper claims P\$>0.

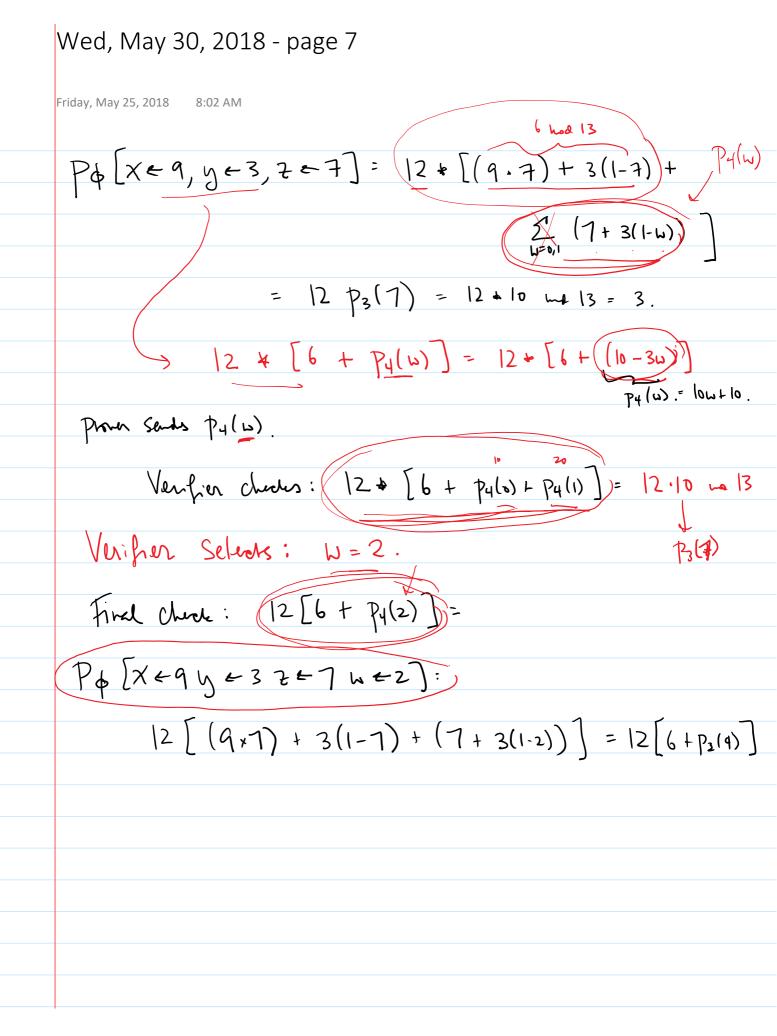
From Sends 9=13 claim: Popul q=96 mod 13=5 >0.
Sends le=5.

Remarks of TI and Sends: $(x+1)\cdot 2\cdot (x+3) = 2x^2 + 8x + 6 = 1$ 2x2 + 8x + 6 = P1(x)

Verifier chedes $p_1(0) \cdot p_1(1)$ and q = 5. p(a) Verifier pides random $z_1 = 9$.

Wed, May 30, 2018 - page 6 Thursday, May 24, 2018 PA [x < 9] = 5 [(9+y) x TT [(9z+y(1-z)) + 2 (7+4(1-6))]] $P_2(y) = (9+y) * \prod_{z=0,1} [(9z+y(1-z)) + 2z+y]$ $= (9+y)(2y)(11+y) = 2y^3 + 18y^2 + 22y^2 + 198y ma B$ $= 2y^3 + y^2 + 3y$ From Sends: P2(y) = 2y3+y2+3y Verifier Chedes P2(6) + P2(1) = P1(9) mod 13 Verifier pides random: y=3 Pz(3)=7 mod 13. P4[x49 y43] = [(9+3) x T (92+3(1-2))+ $P_3(2) = 62 + 3 + 22 + 3$ = 82 + 6

Provu sents $p_3(2)$. Verifier checks $|2 \cdot p_3(0) \cdot p_3(1)| = p_2(3)$ $|2 \cdot (\cdot)| = 7 \text{ had } |3|$ Verifier Selects vandom $2 \leftarrow 7$



Wed, May 30, 2018 - page 8

Friday, May 25, 2018

Completeness: if \$ EGSAT then an honest prover (who also sends good 4) will cause V to accept.

Soundness: Let P;(x) be correct polyhonial Let P;+(x) be poly sent by prover.

If \$\phi \phi \QSAT then P_1(0) +/* P_1(1) = 0 \deq k.

If Pi*(0) +/+ Pi*(1) + k then V will reject.

If this doesn't happen then P1 ≠ P1.

Prob_{z1} [Pr^{*}(z₁) = P₁(z₁)] \(\) Poly(1\phi)\)

Zu on any style

Van Wole.

By induction assume: $P_i^*(z_i) \neq P_i(z_i) = P_{iH}(0) + /** P_{iH}(1)$

If Pi+ (0) +/* Pi+(1) + Pi+(2) hen V regross.

Ohnrise Pin + 774

=D Prob [PiH (ZiH) = PiH (ZiH)] { Pry (101)

Wed, May 30, 2018 - page 9 · Xn ~ 7n Tuesday, May 29, 2018 At the end, we have (Pn(Zn) + Pn (Zn) from the original & and 3 - . - Zh V will detect that they are unequal Virill reject as long as P:(2i) + P; (2i) \vert i For each i, the probability $Pi(\overline{z}_i) = P_i^*(\overline{z}_i) \leq prey(|\phi|)$ Prob Mer for any i, $P((\pm i)) = P_i^{\dagger}(\pm i) + N \cdot pdy(|\phi|) \ll \frac{1}{3}$