Version A

Quiz 2

ICS 6D Fall 2014 Monday, Oct 27, 2014

Instructor: Sandy Irani

Instructions:

- 1. Wait until instructed to turn over the cover page.
- 2. Write you name on you Scantron form.
- 3. Write you student ID number in the box labeled "Subject" on your scantron form.
- 4. Write the version of your test (A, B, C, or D) in the box labeled "TEST NO" on your scantron form.

Recursive Algorithm

The function receives two inputs: a and n. a is a real number and n is a non-negative integer. It should return

$$SuperPower(a, n) = a^{3^n}$$

Note that in the expression above, the exponent of a is 3^n . Below is a recursive algorithm to compute SuperPower(a, n) with some lines missing.

```
SuperPower( a, n )  \begin{tabular}{ll} If ( A ) Return( B ) & // Base case \\ y := SuperPower( C , D ) // Recursive Call \\ Return( E ) & // Mathematic expression using y and/or a End \\ \end{tabular}
```

Inductive Proof

The sequence $\{g_n\}$ is defined recursively as follows:

- $g_0 = 3$
- $\bullet \ g_n = 2 \cdot g_{n-1} + n$

Theorem 1. For any non-negative integer n, $g_n = 5 \cdot 2^n - n - 2$.

Below is an inductive proof of the theorem with some lines missing:

Proof:

$$g_n = \underline{\hspace{1cm}}(H)\underline{\hspace{1cm}} \text{ (by definition)}$$

$$= \underline{\hspace{1cm}}(I)\underline{\hspace{1cm}} \text{ (by the inductive hypothesis)}$$

$$= 5 \cdot 2 \cdot 2^{n-1} - 2 \cdot (n-1) - 2 \cdot 2 + n$$

$$= 5 \cdot 2^n - 2n + 2 - 4 + n$$

$$= 5 \cdot 2^n - n - 2$$

1. For the recursive algorithm, what expression should go in the space labeled A?	
(a) $n = 1$	(c) $a = 1$
(b) $a = 0$	(d) $n = 0$
2. For the recursive algorithm, what expression should go in the space labeled B?	
(a) 0	(c) 1
(b) <i>a</i>	(d) a^3
3. For the recursive algorithm, what expression should go in the space labeled C?	
(a) $a - 1$	(c) $\lfloor a/2 \rfloor$
(b) <i>a</i>	(d) $n-1$
4. For the recursive algorithm, what expression should go in the space labeled D?	
(a) $n-1$	(c) $\lfloor n/2 \rfloor$
(b) <i>n</i>	(d) $a - 1$
5. For the recursive algorithm, what expression should go in the space labeled E?	
(a) a^3	(c) $y \cdot a^3$
(b) $y^3 \cdot a$	(d) y^3
6. According to the definition of the sequence $\{g_n\}$ defined under "Inductive Proof". What is g_3 ?	
(a) 16	(c) 35
(b) 32	(d) 24
7. For the inductive proof, what expression should go in the space labeled F?	
(a) $g_{n-1} = 5 \cdot 2^{n-1} - (n-1) - 2$.	(c) $n = 0$: $q_0 = 3 = 5 \cdot 2^0 - 0 - 2$.
(b) $g_1 = 2 \cdot g_0 + 1$.	(d) $n = 1$: $g_1 = 7 = 5 \cdot 2^1 - 1 - 2$.
8. For the inductive proof, what expression should go in the space labeled G?	
(a) $g_n = 2 \cdot g_{n-1} + n$.	(c) $g_{n-1} = 5 \cdot 2^{n-1} - n - 2$.
(b) $g_0 = 3$.	(d) $g_{n-1} = 5 \cdot 2^{n-1} - (n-1) - 2$.
9. For the inductive proof, what expression should go in the space labeled H?	

10. For the inductive proof, what expression should go in the space labeled I?

(a)
$$2 \cdot (5 \cdot 2^{n-1} - (n-1) - 2) + n$$
.
(b) $2 \cdot (5 \cdot 2^n - n - 2) + n$.

(c)
$$2 \cdot g_{n-1} + n$$

(b)
$$2 \cdot (5 \cdot 2^n - n - 2) + n$$

(b) $2 \cdot g_{n-1} + n$.

(c)
$$2 \cdot g_{n-1} + n$$
.
(d) $5 \cdot 2^{n-1} - (n-1) - 2$.

(d) $2 \cdot g_{n-1} + (n-1)$.