CS 262: Computational Complexity

Homework 4

Due: May 29, 2013

Instructor: Sandy Irani

- 1. Consider the problem whose input is a graph with integer weights and asks whether the minimum length tour is unique. For what class in the polynomial hierarchy is this problem complete? Prove your answer.
- 2. Show that if $\mathbf{NP} \subseteq \mathbf{TIME}(n^{\log n})$, then $\mathbf{PH} \subseteq \bigcup_{k \geq 1} \mathbf{TIME}(n^{\log^k n})$.
- 3. **FP** is the set of functions from $\{0,1\}^*$ to $\{0,1\}^*$ that can be computed by a deterministic Turing Machine in polynomial time. Show that computing the permanent of a matrix with integer entries can be done in $\mathbf{FP}^{\#\mathbf{SAT}}$. Note that the integer entries may be negative but you will get partial credit if you prove this under the restriction of non-negative entries.
- 4. Define a language L to be downward self-reducible if there's a polynomial-time algorithm R that for any n and $x \in \{0,1\}^n$, $R^{L_{n-1}}(x) = L(x)$ where by L_k we denote an oracle that solves L on inputs of size at most k. Prove that if L is downward-self-reducible, then $L \in PSPACE$.
- 5. Recall the definition of QSAT:

QSAT =
$$\{\Phi(x_1,\ldots,x_n) \mid \exists x_1 \forall x_2 \ldots \forall x_n \Phi(x_1,\ldots,x_n) = 1\},\$$

where Φ is a 3-CNF formula. Show that $P^{QSAT} = NP^{QSAT}$.