CS 262: Computational Complexity

Homework 3

Due: May 13, 2013

Instructor: Sandy Irani

- 1. Show that the class $\mathbf{ZPP} = \mathbf{RP} \cap \mathbf{co} \mathbf{RP}$.
- 2. Describe a decidable language that is in P/poly but not in P.
- 3. The language **USAT** is the set of boolean formulae that have a unique satisfying assignment. In class we proved the Valiant-Vazirani theorem which says that that there exists a polynomial-time algorithm f such that for every n-variable boolean formula, ϕ

$$\phi \in SAT \Rightarrow Pr[f(\phi) \in USAT] \ge \frac{1}{8n}$$

 $\phi \notin SAT \Rightarrow Pr[f(\phi) \in SAT] = 0.$

Now suppose we have a polynomial time algorithm that given a boolean formula ϕ , will answer "yes" if $\phi \in USAT$, will answer "no" if $\phi \notin SAT$ and will answer arbitrarily otherwise. Prove that this would imply that $\mathbf{RP} = \mathbf{NP}$.

- 4. A language $L \subseteq \{0,1\}^*$ is *sparse* if there is a polynomial p such that $|L \cap \{0,1\}^n| \le p(n)$ for all n. Show that every sparse language is in \mathbf{P}/\mathbf{poly} .
- 5. Define $\mathbf{ZPP'}$ to be the class of all languages decided by a probabilistic Turing Machine running in expected polynomial time. That is, for every language L in $\mathbf{ZPP'}$ there is a probabilistic Turing Machine M (with two read-only tapes the first tape containing the input, and the second tape containing a random bit in every tape square) with the following behavior: on input $x \in L$, M always accepts, on input $x \notin L$, M always rejects, and for every input x,

$$E[\# \text{ steps before M halts}] = |x|^{O(1)}$$
.

Show that $\mathbf{ZPP'} = \mathbf{ZPP}$.

6. The class $\mathbf{P/log}$ is the class of languages decidable by a Turing Machines running in polynomial time that take $O(\log n)$ bits of advice. Show that $SAT \in \mathbf{P/log}$ implies $\mathbf{P} = \mathbf{NP}$.