Homework 2

Due: April 29, 2013

Instructor: Sandy Irani

- 1. Prove that the problem of deciding whether a digraph is strongly connected is complete for NL.
- 2. Define a $coding \kappa$ to be a mapping from Σ to Σ . Note that κ need not be one-to-one. If $x = \sigma_1 \dots \sigma_n$, where each $\sigma_i \in \Sigma$, then we define $\kappa(x) = \kappa(\sigma_1) \dots \kappa(\sigma_n)$. If L is a language, then $\kappa(L)$ is defined to be $\{\kappa(x)|x \in L\}$.
 - (a) Prove that NP is closed under codings. That is, show that if $L \in \text{NP}$ and κ is a coding defined on the alphabet of L, then $\kappa(L) \in \text{NP}$.
 - (b) We expect that P is not closed under codings, but we can not prove this without establishing that $P \neq NP$. Instead, show that P is closed under codings if and only if P = NP.
- 3. Prove that if *every* unary language in \mathbf{NP} is also in \mathbf{P} , then $\mathbf{EXP} = \mathbf{NEXP}$. Recall that a language is unary if and only if it is a subset of 1^* .
- 4. Say that class C_1 is superior to C_2 if there is a language L_1 in C_1 such that for every language $L_2 \in C_2$ and every n sufficiently large, there is an input whose length is between n and n^2 on which L_1 and L_2 differ. That is, there is a string x whose length is between n and n^2 such that either $x \in L_1$ and $x \notin L_2$ or $x \notin L_1$ and $x \in L_2$.
 - (a) Is $DTIME(n^4)$ superior to DTIME(n)?
 - (b) Why does our proof of the Non-deterministic Time Hierarchy not prove that $\mathbf{NTIME}(\mathbf{n^{1.5}})$ is superior to $\mathbf{NTIME}(\mathbf{n})$?
- 5. In the Arora-Boak text gives an alternative definition of the class **NL** which makes use of a Turing Machine with a special read-once tape. The head on a read-once tape starts at the left-most end of the non-blank symbols written on the tape and can only move to the right or stay in the same place (i.e. it can never move left). The alternative definition says that a language L is in **NL** if there is a deterministic Turing Machine M (called a *verifier*) with a special read-once tape and a polynomial p such that for every $x \in \Sigma^*$,

$$x \in L \Leftrightarrow \exists u \in \Sigma^{p(|x|)} \text{ such that } M(x, u) = 1,$$

where M(x, u) is the output of M when x is placed on the input tape and u is placed on its special read-once tape and M uses $O(\log n)$ space on its work tape for every input x.

Prove that this definition is equivalent to the definition using non-deterministic Turing Machines discussed in class.

6. Prove that if in the above definition, the read-once tape is replaced with a read-only tape (which could be read many times), then the resulting class is NP.