CS 264: Quantum Computation Homework 5 Spring 2012

Due: June 15, 2012

- 1. Give the check matrix for the 5-qubit code in standard form. Use this to find \bar{Z} and \bar{X} .
- 2. When a stabilizer S has n generators on n qubits, the subspace V_S is just a single state, called a *stabilizer* state. Show that the four Bell states $|00\rangle \pm |11\rangle$, $|01\rangle \pm |10\rangle$ are stabilizer states and give their stabilizers. Show that the state $|010\rangle |101\rangle$ is a stabilizer state and give its stabilizer. (In all cases, it is enough to specify a set of generators for the stabilizer.)
- 3. In this problem, we will construct a 4-qubit code which can detect (but not correct) an error on a single qubit. That is, we will be able to determine whether an error has occurred, but we will not be able to determine which error occurred.
 - (a) Show that the three operators in G_4 satisfy the conditions for a stabilizer: $g_1 = XXII$, $g_2 = IIXX$, $g_3 = ZZZZ$.
 - (b) Find an operator in G_4 which is independent from and commutes with $\{g_1, g_2, g_3\}$. Call this operator \bar{Z} .
 - (c) Construct a projector which projects onto the space stabilized by the $\langle g_1, g_2, g_3, \bar{Z} \rangle$. Do the same for $\langle g_1, g_2, g_3, -\bar{Z} \rangle$. Your projector can express your projector as a sum of products of the g_i 's and \bar{Z} .
 - (d) Use the projectors you have constructed to give a basis for V_S .
 - (e) Prove that any element of G_4 of weight 1 anti-commutes with at least one of the g_i 's.
 - (f) Explain how you can use the fact from the previous part to detect whether a 1-qubit error has occurred.