CS 264: Quantum Computation

Homework 4 Spring 2012

Due: June 4, 2012

1. In class we discussed a method to simulate the dynamics of a quantum system when the Hamiltonian is the sum of local terms. We can expand the set of quantum systems that can be simulated to certain classes of non-local Hamiltonians. Give an algorithm to efficiently simulate the Hamiltonian

$$H = \bigotimes_{j=1}^{n} \sigma_{s_j}^{(j)}.$$

The superscript indicates the qubit on which the operator is acting. Also, $s_j \in \{0,1,2,3\}$ and $\sigma_0, \sigma_1, \sigma_2, \sigma_3$ represent the Pauli operators: $\sigma_0 = I$, $\sigma_1 = X$, $\sigma_2 = Y$ and $\sigma_3 = Z$. We have seen I, X, Z in class. The operator Y is

$$Y = iXZ = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right).$$

(Hint: start with $H = Z^{(1)} \otimes Z_{(2)} \otimes \cdots \otimes Z_{(n)}$.)

2. Suppose that a boolean function $f:\{0,1\}^n \to \{0,1\}$ has M solutions. That is, the number of x such that f(x)=1 is M. Prove that any quantum circuit which has the usual black-box access to f requires $\Omega(\sqrt{N/M})$ queries to f in the worst case to find a solution.