Tuesday, October 9, 2018 9:37 AM

Tensor Products:

Suppose that we have two quantum systems with
Hilbert spaces V: C⁶ (dimension L)
W: C⁶ (dimension l) What is the Hilbert space of the composite system? Composite system will have dimension k.l Hilbert space VOW ("V tensor W") Suppose Basis for V: 1/1> 1/2> ... 1/12>
Basis for W: 1/4> 1/2> ... 1/4> A basis for VOW will be: IVI> 0 IWj> 1 = i= le $14 \underline{\hspace{1.5cm}} \underline{\hspace{1.5$ An arbitrary state in VOW can be expressed as: $|\phi\rangle = \sum_{i=1}^{k} \sum_{j=1}^{l} \alpha'_{ij} |V_{i}\rangle \mathcal{Q} |U_{j}\rangle$

Lk. e complex numbers

Used to discribe

a gauric state in

 V & W .

Tuesday, October 9, 2018 9:37 AM

Inner Product of	W30	W3	and	W36	W3
$\langle V_1 V_1 \rangle \langle W_1 V_1 \rangle$	$\langle V_2 V_1 \rangle$				
$\frac{1}{1}$	$\frac{2}{1}$	$\frac{1}{2}$	$\frac{1}{2}$		
$\frac{1}{1}$	$\frac{2}{1}$	$\frac{1}{3}$			
$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$			
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				
$\frac{1}{3}$	$\frac{1}{3}$				

Tensor Products - 3 Tuesday, October 9, 2018 9:37 AM

Tuesday, October 9, 2018 9:37 AM

For example, suppose we have 2 qubits:

\n
$$
|\psi_{a}\rangle = \alpha_{0}|\rho\rangle + \alpha_{1}|\sqrt{2}
$$
\n
$$
|\psi_{b}\rangle = |b_{0}|\sqrt{2 + \beta_{1}|\sqrt{2}}
$$
\n
$$
|\psi_{a}\rangle = \alpha_{0}|\rho_{b}\rangle + \beta_{1}|\sqrt{2}
$$
\n
$$
|\psi_{a}\rangle = \alpha_{0}|\rho_{b}\rangle + \alpha_{0}|\rho_{1}|\sqrt{2 + \alpha_{0}|\rho_{0}|\sqrt{2 + \alpha_{0}|\rho_{1}|\sqrt{2 + \alpha_{0}|\rho_{1}|\sqrt{2
$$

Tensor Products - 5 Tuesday, October 9, 2018 10:24 AM An alternate tasis for a 2-qubit system is: $|+\rangle = \frac{1}{5} \log + \frac{1}{6} |2\rangle$
 $|-\rangle = \frac{1}{\sqrt{2}} \approx \frac{1}{2}$ $|+ \rangle$ ω $|+ \rangle$ $\frac{|+&> 0|}{|+&>}|$ $1 - 5 8 1 - 5$ $|+\rangle$ 0 $|-\rangle$ = $\frac{1}{2}|00\rangle$ = $\frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle = |11\rangle$ $\begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$ 8 $\begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$ = $\begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \end{bmatrix}$ = $\begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$ = $\begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \end{bmatrix}$ - $\begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \end{bmatrix}$

Tuesday, October 9, 2018 10:21 AM

,

Tuesday, October 9, 2018 10:46 AM

If a 2-quilt system is in a tensor product IS measured then: · prob of different out comes depends very on 14.5 afservands, state is 10>60/46> 0 $|4$ $>$ 0 $|4$ $|$ (State of Second qubit un changed).
(no info gained about the state of the 2nd gubit). $\frac{1}{\sqrt{2}}\left(\left|00\right\rangle + \left|1\right\rangle\right) \qquad \left(\omega_{0}\right) \le k\omega_{0}\epsilon$ Now Consider Product State) mensure 1st qubit: $\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}$ + $\frac{1}{\sqrt{2}}$ | 11> 6 Wesne = 1 Ohtome = 0 $W.p. 1/2$ $\frac{1}{2}$ $\frac{1}{2}$ $|00\rangle$ $|11\rangle$ After measuring the first qubit we know the
Value of the 2nd qubit with certainty.
(even if qubits are physially separated).

Tensor Products - 8 Tuesday, October 9, 2018 10:55 AM Lincer Operators on Composite Systems Av ack on V $(A_{\nu} \otimes A_{\omega})$ $(v > 8$ $|w>$ Aw ack on W = Av IVY & Au IWY Example: 2-gulit system $7 = (10)(650) - 1154)2$ $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad |1 \rangle \langle 0| + |0 \rangle \langle 1|$ $200 \times 100 = 21200 \times 100$
-12) 0 12) = -11) What does the methx representation look like? $20 x = 0 - 100 (0 + 100) = 100 (0 - 100)$ $\left(\begin{matrix} 0 & \begin{pmatrix} 0 & \lambda \\ 0 & \lambda & \lambda \end{pmatrix} & \begin{pmatrix} 0 & \lambda \\ 0 & \lambda & \lambda \end{pmatrix} \end{matrix}\right)$ -11

Quantum Page 8

Tensor Products - 10 Tuesday, October 9, 2018 10:55 AM We will talk about "gates" that act on
a pair of gubits in a larger n-bit system Example: CNOT gate. g1 is the control bit. if q1=0 q2 doesn't change $\frac{10}{12}$ $\frac{12}{12}$ $\frac{1}{12}$ is flipped $\vert \cdot \rangle$ $\vert \cdot \rangle$ $\left| \cdot \right|$ $\left| \begin{array}{c} \hline \hline \hline \hline \hline \hline \end{array} \right|$ $\sqrt{115}$ $| \cdot \rangle$ \bigwedge \uparrow q 1 q2 What does CNOT do to the state: $|\phi\rangle$ = $d_{0}|00\rangle + d_{1}|01\rangle + d_{2}|10\rangle + d_{3}|11\rangle$ $k_{0}|s_{0}\rangle + d_{1}|s_{1}\rangle + k_{3}|s_{0}\rangle + \overline{s_{2}}|s_{1}\rangle$ $\left\{ \downarrow \right\}$ | \circ $\left. \right\}$ $=$ $\frac{1}{2}$ (10> 112>) \otimes 10> $=\frac{1}{\sqrt{2}}\sqrt{00}+ \frac{1}{\sqrt{2}}\sqrt{10}$ $\frac{1}{12}(100) + 111)$ $\frac{1}{\sqrt{2}}(1607+1267)$

Quantum Page 10

Tuesday, October 9, 2018 10:55 AM

Tuesday, October 9, 2018 12:59 PM

Here are Some Common 1- qubit gates: Hadamord $H = \frac{1}{52} \left[\begin{array}{c} 1 & 1 \\ 1 & -1 \end{array}\right]$ Flips beholung 011 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (0)
 $H|0\rangle = |+\rangle$
 $H|1\rangle = |0\rangle$
 $H \cdot \frac{1}{12}(\begin{pmatrix} 1 \\ 1 \end{pmatrix}) = \frac{1}{2}(\begin{pmatrix} 2 \\ 0 \end{pmatrix}) = (\begin{pmatrix} 1 \\ 0 \end{pmatrix})$ $H(\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + H(\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 2 = $\begin{bmatrix} 10 \\ 01 \end{bmatrix}$ phase frip. $\begin{array}{ccc} 245 & 1 - 1 \\ 21 - 3 & 1 + 7 \end{array}$ $2|0\rangle = |0\rangle$ $2|1\rangle = -|1\rangle$ $X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ Not $x|y|$ = (+) x (+) = (0)