Tuesday, October 9, 2018 9:37 AM

Tensor Products:

Suppose that we have two quantum systems with Hilbert spaces V: C's (dimension L)

W: C's (dimension l)

What is the Hilbert space of the composite system?

Composite system will have dimension k.l

Hilbert space VOW ("V tensor W")

Suppose Basis for V: |VI> 1/2> |VL>
Basis for W: |WI> 1W2> |We>

A basis for VOW will be: Ivi> 0 |wj> 1 4 i 4 k 14 j 4 l.

An arbitrary state in VOW can be expressed as: 10> = \$\frac{1}{2!} \frac{1}{2!} \dis |V:>0 |Wi>

> Lk. L complex numbers used to discribe a generic state in V & W.

Tuesday, October 9, 2018 9:37 AN

n quats Tensor Products - 3 + 4 guldt 2 P2 & C2 Lylin 4 Tuesday, October 9, 2018 9:37 AM We have already seen tensor products: n times Hilbert span for ngubit: (2°0°0°0 ... C2 Note: When we add I qubit, we doubte the length of the vectors to describe a state. Example: V= C² (lupt qubit) bissis 3/07, 1273
W= C² (right qubit) bissis 3/07, 1273 VOW = C2 & C2 Basis for VOW: 10> 010> = 100> (0) = (1) 1470 0> = 110> 1) 6 127 - 122> Tensor Products & States: 14v>= 3 dilvi> 14u>= 3 bilui> $|\psi\rangle\otimes|\psi\rangle\rangle = \sum_{i=1}^{k} \sum_{i=1}^{\ell} \alpha_i \cdot \beta_i \quad |V_i\rangle\otimes|W_i\rangle$ T sperified by ktl complex humbers La generic State in VOW

requires k.l complex humbers)

Tuesday, October 9, 2018 9:37 A

Viend as vectors:
$$\begin{bmatrix} do \\ d_1 \end{bmatrix} \otimes \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} do \\ b_1 \end{bmatrix} \begin{bmatrix} do \\ b_1 \end{bmatrix} \begin{bmatrix} do \\ b_1 \end{bmatrix} \begin{bmatrix} do \\ b_1 \end{bmatrix}$$

	More Generally:	[6]	d1B1	
		d ₁ ;	,	
	[d1] [P1]			
	; \ \(\) ;	[70]		
	6	α ₂		
	[du] [pe]	6.	1	
4	1701467= 2 dif; Vi>81Wi>	:		
		[Bi]		
	1727 G	de B.	dake	
		- Lvx >)	. ((2,13)	

Tuesday, October 9, 2018 10:24 AM

An alternate tasis for a 2-guloit system is:

$$|+\rangle \otimes |-\rangle = \frac{1}{2} |00\rangle + \frac{1}{2} |02\rangle + \frac{1}{2} |10\rangle + \frac{1}{2} |11\rangle$$

$$\begin{bmatrix}
1/62 \\
1/62
\end{bmatrix} = \begin{bmatrix}
1/62 \\
-1/62
\end{bmatrix} = \begin{bmatrix}
1/62 \\
-1/62
\end{bmatrix} = \begin{bmatrix}
1/62 \\
-1/62
\end{bmatrix}$$

$$\begin{bmatrix}
1/62 \\
-1/62
\end{bmatrix} = \begin{bmatrix}
1/62 \\
-1/62
\end{bmatrix}$$

Tuesday, October 9, 2018 10:21 A

Not every 2-qubit state can be expressed as:

For example: $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$ is an entangled state.

This has important implications for measurement.

Consider again:

$$|\psi_{a}\rangle = |\phi_{0}\rangle + |\phi_{1}|^{2} = 1$$

$$|\psi_{b}\rangle = |\phi_{0}\rangle + |\phi_{1}|^{2} = 1$$

$$|\psi_{b}\rangle = |\phi_{0}\rangle + |\phi_{1}|^{2} = 1$$

14a> 8 14b> = (do po) 100> + (do p) 100> + dipo 120> + dip, 111>

Now measure the first qubit:

Probability of 0:
$$|\alpha_0 \beta_0|^2 + |\alpha_0 \beta_1|^2$$

= $|\alpha_0|^2 |\beta_0|^2 + |\alpha_0 \beta_1|^2$
= $|\alpha_0|^2 |\beta_0|^2 + |\alpha_0 \beta_1|^2$
= $|\alpha_0|^2 |\beta_0|^2 + |\alpha_0 \beta_1|^2$

Afterwards state is:
$$\frac{\langle \phi | \phi | \phi \rangle + \langle \phi | \phi | \phi \rangle}{\left[|\phi |_{\phi} |_{\phi} \right]^{2} + |\phi |_{\phi} |_{\phi} |_{\phi}^{2}}$$

Tuesday, October 9, 2018 10:46 AM

If a 2-qubit system is in a tensor product Star 140> @ 146> and the first gubit is measured then:

· prob of different outcomes depends rly m 142>
· afterwards, State is 10>60 146>
or 11>6 146>.

(State of Second qubit unchanged).

(no info gained about the state of the 2nd qubit).

Now Consider 1/2 (100> + 1117) (not a tensor product state)

Measure 18h qubit: = 100> + = 111>

Obtaine = 0

b.p. 1/2

b.p. 1/2

After measuring the first qubit we know the value of the 2nd qubit with certainty.

(even if gubits are physially separated).

Tuesday, October 9, 2018 10:55 AM

Linear Operators on Composite Systems

Example: 2-gulit system

$$X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad |1> < 0| + |0> < 1|$$

$$2 \otimes \times |1 \rangle = Z |1 \rangle \otimes \times |0 \rangle$$

$$-|1 \rangle \otimes |1 \rangle = -|1 \rangle$$

What does the mainx representation look like?

Tensor Products - 10 Tuesday, October 9, 2018 10:55 AM We will talk about "gates" that act on a pair of gubits in a larger u-bit system Example: CNOT gate. 92 is the control tit. if 91=0 92 doesn't change of g2 = 4 g2 is slipped CHOT 100> 100> 00 10 00 01 - 101> (0) (1) 1115 11.7 What does court do to the state: 10> = doloo> + d1 |01> + d2 |10> + d3 |11> Loloo> + d, lo1> + L3/10> + 22/11>

 $|1\rangle = \frac{1}{r_{2}}(10) + |11\rangle \otimes |0\rangle$ $|0\rangle = \frac{1}{r_{2}}(10) + |11\rangle = \frac{1}{r_{2}}(10) + \frac{1}{r_{2}}(10)$ $|0\rangle = \frac{1}{r_{2}}(10) + |11\rangle = \frac{1}{r_{2}}(10) + \frac{1}{r_{2}}(10)$

Tuesday, October 9, 2018 10:55 A

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
T_{3} \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
0
\end{bmatrix}$$

$$\begin{bmatrix}
T_{3} \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
0
\end{bmatrix}$$

$$\begin{bmatrix}
T_{3} \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}$$

Tuesday, October 9, 2018 12:59 PM

Had a mord
$$H = \frac{1}{r_2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 Flips behvern $0|1$ and $1/2$ bases

(b)

 $H|0\rangle = |1\rangle$
 $H|1\rangle = |0\rangle$
 $H|1\rangle = |1\rangle$

$$H(0) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$\frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{NoT}$$

$$X(0) = \langle 12 \rangle \quad \times \langle 12 \rangle = \langle 0 \rangle.$$