Monday, November 19, 2018 10:01 AM

Unstructured Search

We have access to a function $f: \{0, 15^h = \{0, 1\}$ Through an oracle Op:

Up: 1x>1y> -> 1x>1y @ fhx)>
n quints & quint.

We want to determine of I a s.t. fla)=1. Let M = [3 x | f(x) = 1 3] M=1?

Last time we showed that if we are guaranted than if h=0 or h=1 then there is a guaranted circuit that can distinguish between those two cases using O(VN) queries to f.

We still need to give an algorithm that can handle general by (coming later.)

In this letter he will show that even if you are told then M=0 or M=1, a quantum circuit will require $\Sigma(TN)$ guerres.

Remember that $N=Z^n$ n=# input Variables to f. So this is an exponential lower bound.

Monday, November 19, 2018 10:01 AM

The main technical tool used in the proof is the Cauchy-Schwartz inequality:

For any two complex vectors of the same length:

 $\langle v | v \rangle \langle w | w \rangle \geq |\langle v | w \rangle|^2$

Normalize IV> and Iw>:

 $|\overline{V}\rangle = |\overline{V}\rangle |\overline{W}\rangle |\overline{W}\rangle |\overline{V}\rangle |\overline{V}$

Note (V/V) = (~ ~ ~ .

Look at | <v | is :

The length of the projection of | w > onto | v > is \le 1.

| (1) (1) | 41

lengh = | < v | v > |

1 / (V/V)/2 / (W/W)/2 / 1

| \lu> | 2 \lu> \lu>

Monday, November 19, 2018 10:01 AM

Cauchy-Schwartz

For any two complex vectors of the same length:

$$\langle v | v \rangle \langle \omega | \omega \rangle \geq |\langle v | \omega \rangle|^2$$

Suppose:
$$|V\rangle = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix}$$

$$\sum_{j=1}^{N} |\alpha_{j}|^{2} \cdot \sum_{j=1}^{N} |\beta_{j}|^{2} \geq \sum_{j=1}^{N} |\alpha_{j}^{*}|^{2} \cdot \sum_{j=1}^{N}$$

Plug in
$$(\beta_1 = \beta_2 \dots = \beta_N = 1)$$
 $\dot{\alpha}_i \in [\alpha_i]$

$$\begin{array}{c|c}
N \cdot \sum_{j=1}^{N} |d_{j}|^{2} \geq \left(\sum_{j=1}^{N} |d_{j}| \right)^{2}.
\end{array}$$

For any complex vides (d, , , dn)

$$N \neq T$$

$$\alpha_{j} = |\alpha_{2}, Y|$$

$$N \cdot \sum_{j=1}^{N} |\alpha_{j}|^{2} \ge \left(\sum_{j=1}^{N} |\alpha_{j}|\right)^{2}$$

Monday, November 19, 2018 10:01 AM

Any algorithm can be seen as a sequence of calls to Of interleaved with computation (unitaries)

Suppose there are T calls to the oracle.

Let dx,t be the amplitude of 1x> just before the the call to Of.

That is, just before the the call to Of
the input register is in stare: \(\frac{21}{\times} d_{\times 1} | \times \)

Since $\frac{Z}{|x|^2 = 1}$ then $\frac{Z}{|x|} \frac{Z}{|x|^2 = 1}$ Switching Summahins gives: $\frac{Z}{|x|} \frac{Z}{|x|^2 = 1}$

> Select the x that minimizes this sum. Suppose it is minimized at (2)

The minimum is at most t=1 N. The average.

By Cachy-Schwark: $\left(\frac{1}{2}|\alpha_{2,t}|\right)^2 \leq T \cdot \left(\frac{1}{2}|\alpha_{2,t}|^2\right)^2 \leq \left(\frac{1}{2}|\alpha_{2,t}|\right)^2 \leq \left(\frac{1}{2}|\alpha_{2,t}|\right)$

Monday, November 19, 2018 10:01 AM

Now define two functions:
$$\Rightarrow f(x) = 0 \quad \forall x$$

 $\Rightarrow g(x) = 0 \quad \forall x \neq z$, $g(z) = 1$.

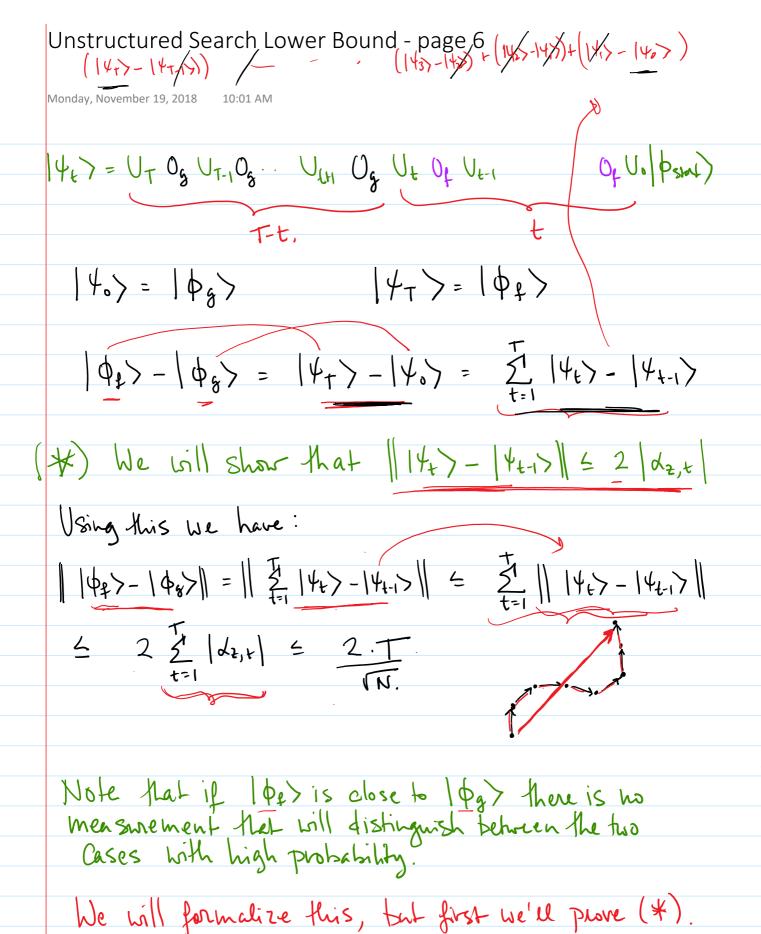
The algorithm must be able to distinguish between these two functions with reasonably high probability.

Les (pe) be the final state of the algorithm with wade Of

Les (pg) be the final state of the algorithm with oracle Og

199> = UT (Of) VT-1 Of ... Of Vo | Astan >

10g) = UT (Og) UT-1 Og Og Vo | \$ store > computation


We will define a series of intermediate states.

14ty will be the 8tele that results of

first t calls to Op.

Oast T-t calls to Og.

14th = UT Og UT-10g. Ut Of Ut-1 Of Uo psint)
T-t,

Unstructured Search Lower Bound - page 7 Monday, November 19, 2018 11/47-14-1>11 £ 2 | dz,t Proof 14th and 14th differ in only one place: (| 4t) = UT Og UT-10g... Ut Of Ut-1 Of Ut-2 Of ... Of No | psint) 14t>= U Op 10> 14t+>= U Og 10> Note har Of + Of are the same except on two basis vectors: 12>10> d 12>11> 8(5)0 ()\$ (5)(0) > (5)(0) ()\$ (5)(1) > (5)(7) 9(2):1 Og (2)10> -> (2)12> Og (2)12> -> (2)10> Amplitude of 12>11> in 10> is $d_{20,t}$ | $d_{2,t}$ |² = Amplitude of 12>11> in 10> is $d_{21,t}$ | $d_{20,t}$ |² + $|d_{21,t}$ |² () f | \$\phi > = Og | \$\phi > = \delta_{20,t} | \frac{12}{10} + \delta_{21,t} | \frac{12}{12} | \frac{1}{12} \right\}
= \delta_{21,t} | \frac{12}{12} | 0 > - \delta_{20,t} | \frac{12}{12} | \frac{1}{12} \right\}

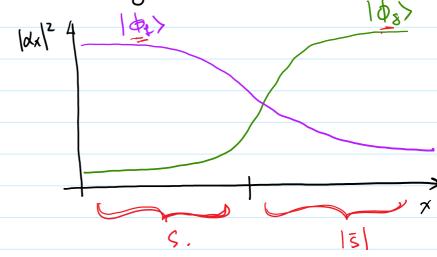
	Unstructured Search Lower Bound - page 8
	142 = U Ox 10>
	Tuesday, November 20, 2018 8:46 AM $ \psi_{\xi-1}\rangle = 0$
	Of 10> - Og 10> = (27/0) + (21/4) 2> 11>
	$ \psi_{t} \rangle - \psi_{t-1} \rangle = $
(axb)	$= \left[2 \left \sqrt{2} \right _{t}^{2} \right]_{z}^{1/2} = \left[2 \left \sqrt{2} \right _{t}^{2} \right]_{t}^{1/2} = \left[2 \left \sqrt{2} \right _{t}^{2} \right]_{t}^{1/2} = \left[2 \left \sqrt{2} \right _{t}^{2} \right]_{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2} + \left \sqrt{2} \right _{t}^{2} = \left[2 \left \sqrt{2} \right _{t}^{2}$
	$ \frac{1}{ dx_{0} ^{2}} = \sqrt{2} \left(dx_{0} + dx_{1} \right) = \sqrt{2} \left(dx_{0} + dx_{1} \right) $ $ \frac{1}{2} = \sqrt{2} \left(dx_{0} + dx_{1} ^{2} \right) = \sqrt{2} \left(dx_{0} + dx_{1} \right) $
/dziel2	(1012)(1 (1012)(1 /)
	$= \sqrt{2} \sqrt{2} \left(d_{20,t} ^2 + d_{21,t} ^2 \right)^{1/2} = 2 d_{2,t} .$
	We have established than $\ \phi_s\rangle - \phi_t\rangle\ \leq 2T$
	Presumably if the two states are close, we can not
	Presumably if the two states are close, we can not distinguish tetween them with a single measurement with high probability.
	The algorithm will perform some measurement and based on the outcome will output "f"
	and based on the outcome will output "f"
	(Δ) `` ¼ ` .

Ouantum Page 8

Tuesday, November 20, 2018 8:54 A

We can assume this last measurement is in the Standard trasis (otherwise we can insert a unitary operation which clarges he basis.

1- gulsil example


Semes.

* Measure in 16> 10'> basis.

Upply unitary $|\phi\rangle \rightarrow |0\rangle$ Then measure in $0|\pm basis$.

Let S be the Set of ontcomes for which the answer is "f" Let S be the Set of outcomes for which the answer is "g".

For Snall error We would head:

Tuesday, November 20, 2018 9:01 AM

Suppose the error is £1/3.

$$\frac{5!}{y \in S} |dy, g|^2 \leq \frac{1}{3}$$
. $\frac{1}{2} = \frac{2!}{y} |dy g|^2 = ||f_{e}||^2$

$$\sum_{y \in S} |\Delta_{y,f}|^2 \leq \frac{1}{3} \implies \sum_{y \in S} |\Delta_{y,f}|^2 = \frac{2}{3}$$

Then we know:

$$\frac{2^{1}}{y \in S} \left| \frac{dy_{1} + 2^{2}}{\sqrt{3}} - \left| \frac{dy_{1} + 2^{2}}{\sqrt{3}} \right|^{2} \right| \leq \frac{1}{3}$$

Will Show:

$$\frac{4}{5^{1}} |x_{y,g}|^{2} - |x_{y,g}|^{2} \leq 2 ||x_{y,g}|^{2} + ||x_{y,g}|^{2}$$

From before: | | 10/2> - | 0/8> | 4 2T

Tuesday, November 20, 2018 9

$$\frac{2^{1}}{y+s} |d_{y,g}|^{2} - |d_{y,g}|^{2} \leq 2 ||\phi_{g}\rangle - |\phi_{g}\rangle| + ||\phi_{g}\rangle - |\phi_{g}\rangle|^{2}$$

$$\frac{1}{y_{65}} \frac{|\alpha_{y,6}|^{2} - |\alpha_{y,6}|^{2}}{|\alpha_{y,6}|^{2} + |\alpha_{y,6}|^{2}} = \frac{|\alpha_{y,6}|^{2} + |\alpha_{y,6}|^{2}}{|\alpha_{y,6}|^{2} + |\alpha_{y,6}|^{2}}$$

$$|\alpha_{y,6}|^{2} + |\alpha_{y,6}|^{2} + |\alpha_{y,6}|^{2} + |\alpha_{y,6}|^{2} + |\alpha_{y,6}|^{2}$$

$$= 2 \left[\frac{1}{565} |dy_1g|^2 \frac{1}{565} |dy_1g - dy_1g|^2 \right] \left[\frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{5} \frac{1}{2} \frac{1}{5} \frac{1}{5} \frac{1}{2} \frac{1}{5} \frac{1}{5}$$