Phase Estimation - page 1

Sunday, November 25, 2018 8:03 PM

 L eme to K itaev 1995]

Phase estimation is another algorithm that We will use phase estimation for approximate
Counting: given function f, determine the
Wumber of distinct inputs x such that f(x)-1. Phase estimation is used in manyother grantin
algarithms: especially in chemistry
and thypics simulations. eigenveloped Phase Estimation:
Suppose we have a unitary U with eigenvector Where 6 is unknown. The goal is to estimate φ . (Actually, we will just estimate $|\varphi|$ We are given In> and a ser of black for non-negative j. (The actual existence of these block boxes depends on the application.)

Phase Estimation - page 1.5

Wednesday, November 28, 2018 10:54 AM

 $U^{\mu}U=U^{\mu}$ $U^{\dagger} = U^{-1}$ Why are the eigenvalues of a unitary $U^{\dagger} = U^{-1}$ If V is unitary then Wir engeneedom of U $0 = \frac{y}{\sqrt{2}} \lambda_i \sqrt{v_i} \lambda_j$ λ i espenbalus q U. $V^{-1} = \frac{y}{2} \left(\frac{1}{x_1} \right) \sqrt{x_2}$ Check: $\left(\frac{y}{z} \lambda_i |v_i\rangle \lambda v_i|\right)\left(\frac{z}{z-1} \left(\lambda_i \right)^{-1} |v_i\rangle \lambda v_i|\right)$ = $\sum_{i=1}^{N}$ $\lambda_i(x_i)^{-1}$ $|v_i\rangle \langle v_i| = \pm$ $U^{\dagger} = \sum_{i=1}^{N} (x_i)^{\dagger} |V_i\rangle \langle V_i|$ Complex $\lambda_i =$ hen $(\lambda_i)^{-1} = \lambda_i^*$ If Ut = V1 $m e^{i\theta}$
 $m \ge 0$ rad. λ_i^* = $m \cdot e^{-i\theta}$ $(\lambda_{i})^{-1} = m^{-1} e^{-i\theta}$ \Rightarrow $m = m^{-1}$ and $m = 1$. $\Rightarrow \lambda_i = e^{i\theta}$

Phase Estimation - page 2

Sunday, November 25, 2018 8:03 PM

Let's just start with C-U a controlled V operation.

Consider the following circuit on input 10>1w>.

 $|0\rangle|u\rangle \xrightarrow{H} |+\rangle|u\rangle \xrightarrow{C-U} |0\rangle|u\rangle + |1\rangle|u\rangle|$ $\frac{1}{\sqrt{2}}\left(\frac{10}{10}\frac{11}{2} + 13\frac{11}{2}\frac{1}{2}\$

 $\frac{H}{\sqrt{1+\frac{1}{2}}}\Bigg|\frac{1}{2}+\frac{1}{2}\Bigg|\frac{1}{2}\Bigg|\frac{1}{2}\Bigg|\frac{1}{2}\Bigg|\frac{1}{2}\Bigg|$

 $\left| \frac{1+\lambda}{2} \right|^2 \qquad \lambda = e^{2\pi i \varphi}$ After measurement : prob 0: PRS 1: $\frac{|1-2|}{2}$

Phase Estimation - page 3 Sunday, November 25, 2018 8:30 PM $\lambda = (e^{2\pi i \varphi})$ $\frac{|12|}{2}$ Affen measurement : prob 0: PMS 1: $\frac{1-\lambda}{2}$ $(1 + e^{2\pi i \varphi})(1 + e^{-2\pi i \varphi}) = \frac{2 + e^{2\pi i \varphi} + e^{2\pi i \varphi}}{4}$ $2 + 4\sqrt{2\pi(\phi) + i\sin(2\pi\phi) + i\sin(-2\pi\phi)}$ + isin(-24 ϕ) $\frac{1 + \cos 2\pi\phi}{2} \quad \text{pushability } 0$ \geq M $(\frac{1 - \omega_0 2\pi\varphi}{2})$ probability ψ 1. and $M-m$ P_{max} of the coin is (cus (2 π 10)/2 Estimating the bias of a cain to within E
With past a bility & requires $O(\log(V_s)/\epsilon)$ Prob Heard = $1/2 + b$ Samples. P_{roch} Tail = $1/2-b$. Estimating (COS (2TT (0)/2) to within m bits of Precision réguires 2 almi fials.

Phase Estimation - page 4

Monday, November 26, 2018 10:10 AM The exact statement for the error (which we
give without proof) is: In order to succusfully obtain (p) accurate to
within t bits with probability 1- 4 requires: $exp(t + \left\lceil log\left(2 + \frac{1}{2\epsilon}\right)\right\rceil)$ trials.

plase $\lambda = e^{2\pi i \oint}$ Phase Estimation - page 5 $\left(\begin{array}{c} 6 & 6 \\ 0 & 0 \end{array} \right) = \cdots, \frac{6}{9} = \frac{1}{2^{m}}$ Sunday, November 25, 2018 Here is a version than still has complexity 2m Estimating 4 to within in tits of accuracy is the is the best approximation of φ . $2\pi i / 2m$ I m is a parameter we control to determine accureag. $\frac{m}{m}$ /0> $QFI_{\nfrac{1}{2^{n}}}$ $\frac{10>-\frac{1}{11}}{10>-\frac{1}{11}}$ $\frac{1}{10^{8}log(n^{3})\cdot 2^{n}}$ $\frac{1}{10^{3}}$ $\frac{1}{10^{2}}$ $\frac{1}{10^{2}}$ $\frac{1}{10^{2}}$ $\frac{1}{10^{2}}$ $\frac{1}{10^{2}}$ $\frac{1}{10^{2}}$ $\frac{1}{10^{2}}$ $\frac{1}{10^{2}}$ $\frac{1}{10^{2}}$ $\frac{1}{10^{2}}$ $\frac{|0^m\rangle|u\rangle}{\sqrt{2^m}}\xrightarrow{\frac{1}{2^m}}\frac{\mu^{-1}}{2^m}\left|\frac{k}{k}\right\rangle\otimes|u\rangle\qquad \sqrt{\nu^6\upsilon^2\upsilon^2}$ $= 0.24$ $\frac{C\cup\limits_{k=0}^{N}1}{{\sqrt n}}\frac{1}{k!}\frac{z^{n}k}{k!}\frac{1}{k!}\frac{1}{k!}\frac{z^{n}k}{k!}\frac{1}{k!}\left(\frac{1}{k!}\sum_{k=0}^{N}\frac{1}{k!}\frac{1}{k!}\frac{1}{k!}\frac{1}{k!}\left(\frac{1}{k!}\sum_{k=0}^{N}\frac{1}{k!}\frac{1}{k!}\frac{1}{k!}\right)\otimes\left(\frac{1}{k!}\sum_{k=0}^{N}\frac{1}{k!}\frac{1}{k!}\frac{1}{k!}\frac{1}{k!}\frac{1}{k!}\frac{1$

Phase Estimation - page 6 Monday, November 26, 2018 10:03 AM $\frac{1}{\sqrt{n}}\sum_{k=0}^{i-1}\lambda^{k}(k)\right)\otimes|n\rangle$ $\lambda = e^{2\pi i(y_{2}^{n})}$ Now Suppose Admally $\lambda = e^{2\pi i Q}$ and J/m is the best appliximation to p to $ln\frac{1}{100}$ + $\frac{1}{100}$ $\frac{1}{\sqrt{x^m}}\sum_{k=0}^{2^{n-1}}\left(e^{2\pi i/x^m}\right)^{j,k} |k\rangle \qquad \text{(8)}$ $\overline{\tau}_{w=0}$ Sole that this is $FTn|j\rangle$ So if we apply FIn⁻¹ we get: $(\overrightarrow{f_{m}})^{1}$ $|\overrightarrow{j}\rangle|\omega\rangle$ If we have $(2 \times i)_{2}$, the output is j with high prob. $|\varphi - 3/2^{m}| = \frac{1}{2^{m+1}}$