$DFT_N = FminTrFmax$ Wednesday, November 7, 2018 5:17 PM Fourner Transform Converse between Translation + Phase (x_0, d_1, d_2, d_3) => (d_3, d_0, d_1, d_2) Take FT $94i$ $>$ $194i$ 30 $|\hat{\psi}_{ij}\rangle = \sum_{y=0}^{N-1} \sum_{\chi=0}^{N-1} \frac{d_{\chi}}{d_{\chi}} \frac{(\chi+j)_{\gamma}}{V} |_{\gamma}$ $\frac{1}{5}$ $\frac{1}{21}$ $\frac{1}{41}$ $\frac{1}{41}$ $\frac{1}{41}$ $\frac{1}{41}$ $\frac{1}{41}$ $\frac{1}{41}$ $\frac{1}{41}$ $\frac{1}{41}$ \overline{d} $=$ $\frac{5}{2}$ $(\frac{15}{2})$ $dx \rightarrow$

Thursday, November 8, 2018 12:49 PM Suppose r divides Nevelly $\left|\left\langle\uparrow,\right\rangle\right\rangle = \sqrt{\frac{r}{N}} \sum_{i=1}^{N-1} |k_{i}\rangle$ Define $\frac{d_{x}}{f} = \sqrt{\frac{r}{N}} \frac{y \times is a}{h}$
and $\frac{d_{x}}{f} = \sqrt{\frac{r}{N}} \frac{y \times is a}{h}$
dx = 0 otherwise. d_{γ} = 0 otherwise Claim: $DT_{N}|\phi_{r}\rangle = |\phi_{N}\rangle = 24/3$ $\alpha_{3} = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} u^{x} \alpha_{x} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u^{k} \alpha_{3}$ y is a multiple of $(\frac{N}{r})$ y= j.M <u>Case 1</u> = $\frac{1}{\sqrt{N}}$. $\sqrt{\frac{N}{N}}$ $\frac{2}{\sqrt{N}}$ $\sqrt{2^{k}(\sqrt{N})}$ $\frac{1}{\sqrt{N}}$ $\frac{N}{\sqrt{N}}$ $\sqrt{1-\frac{1}{2}}$ $W^{11} = 1$ $=\frac{1}{\sqrt{r}}$ Note that since there are I multiplus of
Note the Sum of the Squares of the amplitudes
Sum to 1. => ly hot a multiple of N/r 2y=0).

Thursday, November 8, 2018 12:56 PM Case 2: y not a multiple of N/r =1> ày=0. $\Rightarrow \text{Tr}_{N}|\varphi\rangle = \sum_{k=0}^{r-1} \frac{1}{\sqrt{r}} |k \cdot \frac{N}{r}\rangle$ More intuitively look at : { (15gr) le If y is a multiple of $\frac{N}{r}$ ($\frac{N^2}{r^2}$ 1. All the vertors in the Sum line up: If y is hot a multiple of $utr.$ All the Victors in the Sum Cancel:

Thursday, November 8, 2018 For factoring, we are interested in the following subproblem: Suppose we have a periodic superposition $\frac{1}{\sqrt{\pi}}\sum_{k=0}^{\frac{N}{2}}|krt_{k}\rangle \Rightarrow \text{Find } r$ I we can't measure diridly φ u/ offst e) because lis antitrang. \sqrt{FFT} We may have many copies of this state but with $|\phi_{\text{min}}\rangle$ different offset !. If we apply the OFT then the offset e DFT_N yields $\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}\frac{e^{\cdot k.Nk}}{k!}k.\frac{N}{r}$ If we measure, we get (k. <u>N</u> = g.)
Where k is clussen at vandom from ?0,1,., r-13

Thursday, November 8, 2018 1:12 PM 9. KN We know g and N Let $\frac{L}{r}$ $\frac{L}{r}$ ged $(k,r)=1$ $\frac{q}{\sqrt{2}}$ ged $\left(\begin{matrix} \overline{N} \end{matrix}\right)$ $\left(\begin{matrix} \overline{K} \end{matrix}\right) = \left(\begin{matrix} \overline{N} \end{matrix}\right)$ (N, q) \ddot{z} ged I N/r evenly divides N + 4 $r=\frac{N}{\sqrt{N}}$ $\frac{50}{a}$ ged $(h, f) = a \cdot W|_{r}$. $c > 1$. (AN) everly divides N and q. The probability of
Selecting a k that
is relatively prime to $\frac{N}{aN}$ = $\frac{r}{a}$ = $a|r$ $\frac{(\rho|_{r})}{r} \geq \frac{1}{c \log e_{r}}$ $\frac{k^{\mu}/r}{a^{\mu}/r} = \frac{k}{a} \Rightarrow a/k.$ $9e^{2}(k_{r}) \neq 1$.

Thursday, November 8, 2018 1:21 PM

OUR Situation is a little more commpticated
Since r will not divide N perfectly. $|dp_{r}\rangle = \sum_{j=0}^{s-1} \frac{1}{\sqrt{s}} |kr\rangle$ $S = |N|$ DFT_{N} $|\phi_{r}\rangle = \frac{1}{2} \sqrt[n]{|a|a|}$ $\sqrt[n]{a} = \frac{1}{\sqrt{5N}} \sum_{k=1}^{S-1} k^{k}$ We want to find the values where
the w^{ere} line up to a single direction. For the case where r/N these never multiples $\begin{picture}(20,5) \put(0,0){\vector(1,0){10}} \put(15,0){\vector(1,0){10}} \put(15,0){\vector(1,$

Friday, November 9, 2018 11:24 AM Here's an approximate version: Claim: For every k ϵ 30, 1, r-23 there is a
Unique an Such that $|a_{k} \cdot r - kN| \le r/2$
and $|\vec{\alpha}_{a_{k}}| \ge c/5r$, for Some constant C.) $a_{2} = \frac{LN}{L} + \frac{SL}{L}$ FOR $r|N$: $N = 12$ $v = 4$. $N = 13$ $v = 4$. $\frac{1}{\sqrt{\frac{1}{\sqrt{1-\frac{1}{2}}}}}}$ If we measure las probability of getting an aj $=$ $\frac{2}{x}$ $|\hat{\alpha}_{\alpha_{k}}|^{2} \geq r \cdot \left(\frac{c}{r}\right)^{2} \geq c^{2}$ Probability of getting as where ged (k,r) = 1 p (ggr)

Thursday, November 8, 2018 3:48 PM

With probability = Ω $\left(\frac{1}{\ell_1\ell_3L}\right)$ can get a Such that $\left|\frac{1}{a}r-\frac{1}{b}r\right|\leq r/2$ and god $\left(\frac{1}{b},\frac{1}{c}\right)=1$. We know a and N and we want to find r. $\left|\frac{A}{N}-\frac{k}{r}\right|\leq\frac{1}{2N}$ for Some int k
for $\left|\frac{A}{N}-\frac{k}{r}\right|\leq\frac{1}{2N}$ for $\left|\frac{A}{N}\frac{1}{N}\right|=1$. We know of Which is a good approximation of le Will use properties of rational numbers
6 - and continued frections to recover r.

Thursday, November 8, 2018 3:52 PM Claim: For every k ϵ o, 1, ..., r-1} there is a
Unique an Such that $|a_{k}r - kN| \le r|_{2}$.
 $|\chi|_{a_{k}} \ge c|_{1}r$ for Some Constant c. $Proj$ $a_{k} = (k\frac{N}{r})$ rounded to the hears L int Since N/r>1, Cach ar will be unique. $|a_{k} - \underline{kN}| = |b_{k}|$ = $|a_{k} \cdot r - kN| = r|_{2}$ Nous to determine (2a):
W.l.og assume 0 = av-LN LV/2 $Q_{a} = \frac{1}{\sqrt{3N}} \sum_{n=0}^{3-1} (k^{r_{a}})^{n}$ $arch (N = 12)$ $0 \leq \ell \leq N$ $w^{ra} = w^{d} = e^{\frac{2\pi i}{N} \cdot d}$ K_{\bigoplus} $=$ $\frac{1}{\sqrt{5N}}$ $\frac{s-1}{s-0}$ $e^{1.0i}$ $0 \leq l \leq \frac{N}{r}$ $92\sqrt{145}$

these angles are all in the range O. T. Friday, November 9, 2018 12:03 PM $\frac{1}{\sqrt{5N}}$ $\frac{5^{-1}}{1^{50}}$ $e^{1.0^{1}}$ $0 = 2 \leq \frac{1}{2}$ dx $9 < \frac{\pi}{4}$ Take middle $\sim \theta \cdot \frac{N}{2r}$ 0 1. All vectors heve a positive Component in V direction. 2. At least half of the
vectors are within $\pi/\sqrt{1 + \frac{1}{\pi}}$ 3. At luegh help of the
Utdows here magnitude Q_{ν} $\left(\frac{N}{2r}\right)\cdot\left(\frac{1}{\sqrt{2}}\right)$ $\frac{51}{20}$ e^{10} $\frac{1}{2}$ $\frac{1}{252}$ $\frac{1}{\sqrt{N}} \cdot \frac{N}{2r} \cdot \frac{1}{\sqrt{2}}$